Analysis of Morphological Parameters and Body Composition in Adolescents with and without Intellectual Disability
Abstract
:1. Introduction
2. Materials and Methods
- Height—To accurately measure a subject’s height, they must stand barefoot, with their back, head, and heels touching a vertical wall and their head facing forward. Using a telemeter, the distance from the ground to the perpendicular wall projection of the vertex point (the highest cranial point), determined using a 90°-angle object (e.g., a set square) placed with one of the sides on the vertex and one on the wall, is measured. It is recorded in centimetres and subdivisions of 0.5 cm. For the measurements made on this group of subjects, we used a telemeter with a Bosch GLM 80 laser to obtain an accurate measurement.
- We used a professional device called TANITA MC 580 S and dedicated analysis software to determine body composition. BIA (bioelectrical impedance analysis) is a technique used to measure body composition. The technology for analysing bioelectrical impedance involves the passage of a low-intensity electrical current (around 500 µA) from the electrodes under the soles to those held in the hands. Professional models provide a segmental analysis; the seven electrodes offer additional information for each foot, arm, and area (abdominal). The electrical signal passes rapidly through the water in the hydrated muscle tissue, but it faces resistance from the adipose tissue. This resistance, also known as impedance, is measured and introduced into scientifically validated Tanita equations to calculate body composition measurements. TANITA multiple-frequency monitors can measure the bioelectrical impedance analysis on three or six different frequencies. Additional frequencies provide an exceptional precision level compared to monitors with one or two frequencies. Lower frequencies measure the impedance outside the cell membrane. Higher frequencies can penetrate the cell membrane, measuring the impedance at the lower and higher levels, thus possibly estimating extracellular and intracellular water and total body water. Such information is essential to provide data on a person’s health and indicate potential health risks.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- World Health Organization. Global Action Plan on Physical Activity 2018–2030: More Active People for a Healthier World. Available online: https://www.who.int/health-topics/physical-activity#tab=tab_1 (accessed on 20 December 2022).
- Hazart, J.; Montel, F.; Gentes, E.; Lahaye, C.; Pouget, M.; Farigon, N.; Miolanne, M.; Mulliez, A.; Boirie, Y. Body Mass Trajectory Affects the Long-Term Occurrence of Metabolic Syndrome in Adult Patients with Severe Obesity. Children 2023, 10, 27. [Google Scholar] [CrossRef]
- Ferreira, J.P.; Matos, R.; Campos, M.J.; Monteiro, D.; Antunes, R.; Jacinto, M. Effects of Physical Exercise Program in Adults with Intellectual and Developmental Disabilities—A Study Protocol. J. Clin. Med. 2022, 11, 7485. [Google Scholar] [CrossRef]
- Krause, S.; Ware, R.; McPherson, L.; Lennox, N.; O’Callaghan, M. Obesity in adolescents with intellectual disability: Prevalence and associated characteristics. Obes. Res. Clin. Pract. 2016, 10, 520–530. [Google Scholar] [CrossRef]
- Sun, Y.; Supriya, R.; Gao, Y.; Yu, S.; Wang, A.; Ou, X.; Tao, D.; Baker, J.S. The Relationships between Parenting Practices and Child Health-Related Behaviors in Children with Intellectual Disability: The Moderating Role of Child Body Weight Status. Nutrients 2022, 14, 5206. [Google Scholar] [CrossRef]
- Morin, D.; Mérineau-Côté, J.; Ouellette-Kuntz, H.; Tassé, M.J.; Kerr, M. A comparison of the prevalence of chronic disease among people with and without intellectual disability. Am. J. Intellect. Dev. Disabil. 2012, 117, 455–463. [Google Scholar] [CrossRef]
- Farías-Valenzuela, C.; Ferrari, G.; Espoz-Lazo, S.; Ferrero-Hernández, P.; Jofré-Saldia, E.; Álvarez-Arangua, S.; Poblete-Aro, C.; Godoy-Cumillaf, A.; Cofre-Bolados, C.; Valdivia-Moral, P. Anthropometric Indicators of the Cardiometabolic Risk, Muscle Strength, and Functional Capacity of Schoolchildren with Intellectual Disabilities during Lockdown in Chile. Children 2022, 9, 1315. [Google Scholar] [CrossRef]
- Zwierzchowska, A.; Rosołek, B.; Sikora, M.; Celebańska, D. Forced Sedentariness and Sports Activity as Factors Differenti-ating Anthropometric Characteristics, Indices, and Body Composition in People with Disabilities. Biology 2022, 11, 906. [Google Scholar] [CrossRef]
- Muhanna, R.G.; Aljuraiban, G.S.; Almadani, N.K.; Alquraishi, M.; El-Sharkawy, M.S.; Abulmeaty, M.M.A. Value of Adding Bioelectrical Impedance Analysis to Anthropometric Indices in the Diagnosis of Metabolic Syndrome in 10–16 Years Old Schoolgirls. Healthcare 2022, 10, 419. [Google Scholar] [CrossRef]
- Waninge, A.; Van Der Weide, W.; Evenhuis, I.J.; Van Wijck, R.; Van Der Schans, C.P. Feasibility and reliability of body composition measurements in adults with severe intellectual and sensory disabilities. J. Intellect. Disabil. Res. 2009, 53, 377–388. [Google Scholar] [CrossRef]
- Kfir, A.; Lahav, Y.; Gepner, Y. Cross-Validation of a New General Population Resting Metabolic Rate Prediction Equation Based on Body Composition. Nutrients 2023, 15, 805. [Google Scholar] [CrossRef]
- Maury-Sintjago, E.; Rodríguez-Fernández, A.; Ruíz-De la Fuente, M. Predictive Equations Overestimate Resting Metabolic Rate in Young Chilean Women with Excess Body Fat. Metabolites 2023, 13, 188. [Google Scholar] [CrossRef]
- Staśkiewicz, W.; Grochowska-Niedworok, E.; Zydek, G.; Grajek, M.; Krupa-Kotara, K.; Białek-Dratwa, A.; Jaruga-Sękowska, S.; Kowalski, O.; Kardas, M. The Assessment of Body Composition and Nutritional Awareness of Football Players According to Age. Nutrients 2023, 15, 705. [Google Scholar] [CrossRef]
- EUR-lex. Available online: https://eur-lex.europa.eu/homepage.html (accessed on 19 December 2022).
- Field, A. Discovering Statistic Using SPSS for Windows; Sage Publication: London, UK, 2000. [Google Scholar]
- Sava, F. Data Analysis in Psychological Research. In Complementary Statistical Methods; ASCR Publishing House: Cluj-Napoca, Romania, 2004. [Google Scholar]
- Tabachnick, B.G.; Fidell, L.S. Using Multivariate Statistics, 6th ed.; Pearson: Harlow, UK, 2014. [Google Scholar]
- Rencher, A.C.; Christensen, W.F. Methods of Multivariate Analysis, 3rd ed.; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- World Health Organization. Available online: https://www.who.int/tools/growth-reference-data-for-5to19-years/indicators/bmi-for-age (accessed on 22 December 2022).
- Müller, A.; Nagy, Z.; Kovács, S.; Szőke, S.; Bendíková, E.; Ráthonyi, G.; Ráthonyi-Ódor, K.; Szabados, G.; Gabnai, Z.; Bába, É.B. Correlations between Physical Fitness and Body Composition among Boys Aged 14–18—Conclusions of a Case Study to Reverse the Worsening Secular Trend in Fitness among Urban Youth Due to Sedentary Lifestyles. Int. J. Environ. Res. Public Health 2022, 19, 8765. [Google Scholar] [CrossRef]
- Ballarin, G.; Licenziati, M.R.; Alicante, P.; Di Vincenzo, O.; Valerio, G.; Scalfi, L. Bioelectrical Impedance Analysis-Derived Phase Angle and Body Composition Are Predictors of Health-Related Fitness in Children and Adolescents with Obesity. Children 2022, 9, 1943. [Google Scholar] [CrossRef] [PubMed]
- Skrzypek, M.; Koch, W.; Goral, K.; Soczyńska, K.; Poźniak, O.; Cichoń, K.; Przybysz, O.; Czop, M. Analysis of the Diet Quality and Nutritional State of Children, Youth and Young Adults with an Intellectual Disability: A Multiple Case Study. Preliminary Polish Results. Nutrients 2021, 13, 3058. [Google Scholar] [CrossRef] [PubMed]
- Nils, A.A. Physical Activity and Body Composition in Norwegian Adolescent. Ph.D. Thesis, The Arctic University of Norway, Tromsø, Norway, October 2020. [Google Scholar]
- Chung, A.; Backholer, K.; Wong, E.; Palermo, C.; Keating, C.; Peeters, A. Trends in child and adolescent obesity prevalence in economically advanced countries according to socioeconomic position: A systematic review. Obes. Rev. 2016, 17, 276–295. [Google Scholar] [CrossRef]
- Martinho, D.V.; Gouveia, É.R.; França, C.; Lopes, H.; Ihle, A.; Marques, A.; Rodrigues, A.; Alves, R.; Sarmento, H. Body Composition and Physical Fitness in Madeira Youth. Children 2022, 9, 1833. [Google Scholar] [CrossRef]
- Farías-Valenzuela, C.; Ferrero-Hernández, P.; Ferrari, G.; Espoz-Lazo, S.; Castillo-Paredes, A.; Álvarez-Arangua, S.; Valdivia-Moral, P. Reference Values of Absolute and Relative Handgrip Strength in Chilean Schoolchildren with Intellectual Disabilities. Children 2022, 9, 1912. [Google Scholar] [CrossRef]
- Domaradzki, J. Congruence between Physical Activity Patterns and Dietary Patterns Inferred from Analysis of Sex Differences in Lifestyle Behaviors of Late Adolescents from Poland: Cophylogenetic Approach. Nutrients 2023, 15, 608. [Google Scholar] [CrossRef]
- Kaplowitz, P.B. Link between body fat and the timing of puberty. Pediatrics 2008, 121 (Suppl. 3), S208–S217. [Google Scholar] [CrossRef] [Green Version]
- Abe, T.; Thiebaud, R.S.; Ozaki, H.; Yamasaki, S.; Loenneke, J.P. Children with Low Handgrip Strength: A Narrative Review of Possible Exercise Strategies to Improve Its Development. Children 2022, 9, 1616. [Google Scholar] [CrossRef]
- Rigamonti, A.E.; Frigerio, G.; Caroli, D.; De Col, A.; Cella, S.G.; Sartorio, A.; Fustinoni, S. A Metabolomics-Based Investigation of the Effects of a Short-Term Body Weight Reduction Program in a Cohort of Adolescents with Obesity: A Prospective Interventional Clinical Study. Nutrients 2023, 15, 529. [Google Scholar] [CrossRef]
Subjects | Gen | N | Age (Mean ± Std. Dev.) | Case Observation |
---|---|---|---|---|
Group 1 (WID) Without intellectual disability | M | 44 | 17.7 ± 0.9 | BWID |
Group 2 (WID) Without intellectual disability | F | 55 | 17.2 ± 0.7 | GWID |
Group 3 (MID) Moderate intellectual disability | M | 57 | 17.05 ± 0.7 | BMID |
Group 4 (MID) Moderate intellectual disability | F | 22 | 16.6 ± 0.8 | GMID |
Group 5 Severe intellectual disability (SID) | M | 23 | 17.4 ± 0.8 | BSID |
Group 6 Severe intellectual disability (SID) | F | 11 | 17.1 ± 0.8 | GSID |
Height cm | Body Mass kg | BMI (kg/m2) | Body Fat % | Muscle Mass % | BMR (kcal) | Body Fat Kg | Muscle Mass Kg | SMM | |
---|---|---|---|---|---|---|---|---|---|
Valid N | 212 | 212 | 212 | 212 | 212 | 212 | 212 | 212 | 212 |
Missing | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Mean | 167.416 | 62.413 | 22.128 | 20.759 | 44.554 | 1612.23 | 13.559 | 46.529 | 27.735 |
Std. Deviation | 9.5748 | 14.6358 | 4.4270 | 8.5665 | 5.5875 | 283.509 | 8.2494 | 9.5670 | 5.9110 |
Skewness | 0.295 | 1.216 | 1.446 | 0.560 | −1.155 | 0.736 | 1.859 | 0.737 | 0.843 |
Std. Error of Skewness | 0.167 | 0.167 | 0.167 | 0.167 | 0.167 | 0.167 | 0.167 | 0.167 | 0.167 |
Kurtosis | −0.272 | 2.025 | 3.213 | 0.325 | 2.659 | 0.528 | 5.477 | 0.785 | 1.012 |
Std. Error of Kurtosis | 0.333 | 0.333 | 0.333 | 0.333 | 0.333 | 0.333 | 0.333 | 0.333 | 0.333 |
Minimum | 145.0 | 33.1 | 13.7 | 4.6 | 19.6 | 1042 | 3.0 | 25.3 | 15.1 |
Maximum | 193.0 | 121.1 | 41.7 | 51.1 | 54.0 | 2726 | 56.4 | 83.2 | 49.5 |
Effect | Value | F | Hypothesis df | Error df | Sig. | |
---|---|---|---|---|---|---|
Intercept | Pillai’s Trace | 0.998 | 11,345.775 b | 10.000 | 197.000 | 0.000 |
Wilks’ Lambda | 0.002 | 11,345.775 b | 10.000 | 197.000 | 0.000 | |
Hotelling’s Trace | 575.928 | 11,345.775 b | 10.000 | 197.000 | 0.000 | |
Roy’s Largest Root | 575.928 | 11,345.775 b | 10.000 | 197.000 | 0.000 | |
Disability type | Pillai’s Trace | 0.662 | 9.792 | 20.000 | 396.000 | 0.000 |
Wilks’ Lambda | 0.407 | 11.169 b | 20.000 | 394.000 | 0.000 | |
Hotelling’s Trace | 1.286 | 12.600 | 20.000 | 392.000 | 0.000 | |
Roy’s Largest Root | 1.136 | 22.500 c | 10.000 | 198.000 | 0.000 | |
Gender | Pillai’s Trace | 0.582 | 27.391 b | 10.000 | 197.000 | 0.000 |
Wilks’ Lambda | 0.418 | 27.391 b | 10.000 | 197.000 | 0.000 | |
Hotelling’s Trace | 1.390 | 27.391 b | 10.000 | 197.000 | 0.000 | |
Roy’s Largest Root | 1.390 | 27.391 b | 10.000 | 197.000 | 0.000 | |
Disability type * Gender | Pillai’s Trace | 0.181 | 1.975 | 20.000 | 396.000 | 0.008 |
Wilks’ Lambda | 0.825 | 1.989 b | 20.000 | 394.000 | 0.007 | |
Hotelling’s Trace | 0.204 | 2.003 | 20.000 | 392.000 | 0.007 | |
Roy’s Largest Root | 0.154 | 3.057 c | 10.000 | 198.000 | 0.001 |
Box’s M | 866.442 |
F | 10.459 |
df1 | 75 |
df2 | 11470.924 |
Sig. | 0.000 |
Dependent Variable | Height | BMR Kcal | SMM | Body Fat % | Muscle Mass—kg |
---|---|---|---|---|---|
Group | M ± Std. Dev. | M ± Std. Dev. | M ± Std. Dev. | M ± Std. Dev. | M ± Std. Dev. |
Sign. Thres. | Sign. Thres. | Sign. Thres. | Sign. Thres. | Sign. Thres. | |
BWID | 176.38 ± 8.86 | 1865.4 ± 280.02 | 34.32 ± 6.03 | 15.8 ± 6.49 | 56.8 ± 9.3 |
BMID | 168.59 ± 7.89 | 1717.2 ± 228.5 | 28.75 ± 4.3 | 18.96 ± 8.88 | 48.18 ± 7.26 |
p = 0.013* | p = 0.009* | p = 0.001* | p = 0.124 | p = 0.001* | |
BWID | 176.38 ± 8.86 | 1865.4 ± 280.02 | 34.32 ± 6.03 | 15.8 ± 6.49 | 56.8 ± 9.3 |
BSID | 170.1 ± 9.04 | 1664.3 ± 206.9 | 27.62 ± 4.77 | 17.37 ± 8.19 | 47.75 ± 7.85 |
p = 0.013* | p = 0.005* | p = 0.001* | p = 0.726 | p = 0.001* | |
BMID | 168.59 ± 7.89 | 1717.2 ± 228.5 | 28.75 ± 4.3 | 18.96 ± 8.88 | 48.18 ± 7.26 |
BSID | 170.1 ± 9.04 | 1664.3 ± 206.9 | 27.62 ± 4.77 | 17.37 ± 8.19 | 47.75 ± 7.85 |
p = 0.745 | p = 0.657 | p = 0.638 | p = 0.701 | p = 0.975 |
Dependent Variable | Height | BMR Kcal | SMM | Body Fat % | Muscle Mass—kg |
---|---|---|---|---|---|
Group | M ± Std. Dev. | M ± Std. Dev. | M ± Std. Dev. | M ± Std. Dev. | M ± Std. Dev. |
Sign. Thres. | Sign. Thres. | Sign. Thres. | Sign. Thres. | Sign. Thres. | |
GWID | 163.16 ± 6.49 | 1395 ± 160.7 | 24.12 ± 3.09 | 23.98 ± 5.78 | 40.45 ± 5.19 |
GMID | 159.17 ± 6.28 | 1412.4 ± 151.7 | 23.12 ± 3.19 | 27.8 ± 8.4 | 39.08 ± 5.48 |
p = 0.036* | p = 0.911 | p = 0.460 | p = 0.084 | p = 0.595 | |
GWID | 163.16 ± 6.49 | 1395 ± 160.7 | 24.12 ± 3.09 | 23.98 ± 5.78 | 40.45 ± 5.19 |
GSID | 157.61 ± 4.86 | 1431.9 ± 223.7 | 23.6 ± 4.45 | 26.7 ± 9.33 | 39.52 ± 7.46 |
p = 0.024* | p = 0.783 | p = 0.885 | p = 0.455 | p = 0.870 | |
GMID | 159.17 ± 6.28 | 1412.4 ± 151.7 | 23.12 ± 3.19 | 27.8 ± 8.4 | 39.08 ± 5.48 |
GSID | 157.61 ± 4.86 | 1431.9 ± 223.7 | 23.6 ± 4.45 | 26.7 ± 9.33 | 39.52 ± 7.46 |
p = 0.780 | p = 0.947 | p = 0.918 | p = 0.915 | p = 0.975 |
Dependent Variable | Height | BMR kcal | SMM | Body Fat % | Muscle Mass—kg |
---|---|---|---|---|---|
Group | M ± Std. Dev. | M ± Std. Dev. | M ± Std. Dev. | M ± Std. Dev. | M ± Std. Dev. |
Sign. Thres. | Sign. Thres. | Sign. Thres. | Sign. Thres. | Sign. Thres. | |
BWID | 176.38 ± 8.86 | 1865.4 ± 280.02 | 34.32 ± 6.03 | 15.8 ± 6.49 | 56.8 ± 9.3 |
GWID | 163.16 ± 6.49 | 1395 ± 160.7 | 24.12 ± 3.09 | 23.98 ± 5.78 | 40.45 ± 5.19 |
p < 0.001* | p < 0.001* | p < 0.001* | p < 0.001* | p < 0.001* | |
BMID | 168.59 ± 7.89 | 1717.2 ± 228.5 | 28.75 ± 4.3 | 18.96 ± 8.88 | 48.18 ± 7.26 |
GMID | 159.17 ± 6.28 | 1412.4 ± 151.7 | 23.12 ± 3.19 | 27.8 ± 8.4 | 39.08 ± 5.48 |
p < 0.001* | p < 0.001* | p < 0.001* | p < 0.001* | p < 0.001* | |
BSID | 170.1 ± 9.04 | 1664.3 ± 206.9 | 27.62 ± 4.77 | 17.37 ± 8.19 | 47.75 ± 7.85 |
GSID | 157.61 ± 4.86 | 1431.9 ± 223.7 | 23.6 ± 4.45 | 26.7 ± 9.33 | 39.52 ± 7.46 |
p < 0.001* | p = 0.043* | p = 0.137 | p = 0.011* | p = 0.025* |
Dependent Variable | Body Mass—Kg | BMI (kg/m2) | Muscle Mass %. | Body Fat Kg |
---|---|---|---|---|
Group | M ± Std. Dev. | M ± Std. Dev. | M ± Std. Dev. | M ± Std. Dev. |
Sign. Thres. | Sign. Thres. | Sign. Thres. | Sign. Thres. | |
Group 1 | 71.76 ± 15.1 | 22.95 ± 3.91 | 47.6 ± 4.12 | 11.95 ± 6.9 |
Group 2 | 56.65 ± 10.64 | 21.26 ± 3.61 | 43.02 ± 3.27 | 14.45 ± 6.17 |
p = 0.021* | p = 0.207 | p < 0.001* | p = 0.021* | |
Group 3 | 63.61 ± 14.96 | 22.43 ± 5.08 | 45.11 ± 6.66 | 12.92 ± 9.26 |
Group 4 | 58.06 ± 14.68 | 22.33 ± 4.86 | 40 ± 6.18 | 17.13 ± 10.11 |
p = 0.005* | p = 0.207 | p < 0.001* | p = 0.005* | |
Group 5 | 60.88 ± 10.68 | 20.99 ± 3.44 | 46.8 ± 4.63 | 10.99 ± 6.75 |
Group 6 | 59.1 ± 18.31 | 23.4 ± 6.6 | 41.45 ± 5.29 | 17 ± 12.45 |
p = 0.079 | p = 0.207 | p = 0.003* | p = 0.079 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ungurean, B.C.; Cojocariu, A.; Abalașei, B.A.; Popescu, L. Analysis of Morphological Parameters and Body Composition in Adolescents with and without Intellectual Disability. Int. J. Environ. Res. Public Health 2023, 20, 3019. https://doi.org/10.3390/ijerph20043019
Ungurean BC, Cojocariu A, Abalașei BA, Popescu L. Analysis of Morphological Parameters and Body Composition in Adolescents with and without Intellectual Disability. International Journal of Environmental Research and Public Health. 2023; 20(4):3019. https://doi.org/10.3390/ijerph20043019
Chicago/Turabian StyleUngurean, Bogdan Constantin, Adrian Cojocariu, Beatrice Aurelia Abalașei, and Lucian Popescu. 2023. "Analysis of Morphological Parameters and Body Composition in Adolescents with and without Intellectual Disability" International Journal of Environmental Research and Public Health 20, no. 4: 3019. https://doi.org/10.3390/ijerph20043019
APA StyleUngurean, B. C., Cojocariu, A., Abalașei, B. A., & Popescu, L. (2023). Analysis of Morphological Parameters and Body Composition in Adolescents with and without Intellectual Disability. International Journal of Environmental Research and Public Health, 20(4), 3019. https://doi.org/10.3390/ijerph20043019