Response of Ecosystem Services to Land Use Change in Madagascar Island, Africa: A Multi-Scale Perspective
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Ecosystem Service Assigned Values
2.3.2. Calculation of ESV
2.3.3. Sensitivity Analysis
3. Outcomes
3.1. Land-Use/Land-Cover(LULC) Pattern in Madagascar Island
3.2. Land-Use/Land Cover(LULC) Change in Madagascar Island from 2000 to 2019
3.3. Estimated Changes in Ecosystem Services on Madagascar Island
3.3.1. Change in total ESV from 2000 to 2019
3.3.2. Changes in Values of Ecosystem Functions in Madagascar Island from 2000 to 2019
3.3.3. Sensitivity Analysis of Ecosystem Services Value in Madagascar island from 2000 to 2019
4. Discussion
4.1. Influences of LULC Transformation on Ecosystem Services in Madagascar Island from 2000 to 2019
4.2. Policy Implications
4.3. Limitations and Potential Future Research Areas
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’neill, R.V.; Paruelo, J. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Reid, W.V.; Mooney, H.A.; Cropper, A.; Capistrano, D.; Carpenter, S.R.; Chopra, K.; Dasgupta, P.; Dietz, T.; Duraiappah, A.K.; Hassan, R.; et al. Ecosystems and Human Well-Being-Synthesis: A Report of the Millennium Ecosystem Assessment; Island Press: Washington DC, USA, 2005. [Google Scholar]
- Zabala, J.A.; Martínez-Paz, J.M.; Alcon, F. A comprehensive approach for agroecosystem services and disservices valuation. Sci. Total Environ. 2021, 768, 144859. [Google Scholar] [CrossRef]
- de Groot, R.; Brander, L.; van der Ploeg, S.; Costanza, R.; Bernard, F.; Braat, L.; Christie, M.; Crossman, N.; Ghermandi, A.; Hein, L.; et al. Global estimates of the value of ecosystems and their services in monetary units. Ecosyst. Serv. 2012, 1, 50–61. [Google Scholar] [CrossRef]
- Steensland, A.; Zeigler, M. Productivity in agriculture for a sustainable future. In The Innovation Revolution in Agriculture; Springer: Cham, Switzerland, 2021; pp. 33–69. [Google Scholar]
- Chen, W.; Chi, G.; Li, J. The spatial association of ecosystem services with land use and land cover change at the county level in China, 1995–2015. Sci. Total Environ. 2019, 669, 459–470. [Google Scholar] [CrossRef]
- Chen, J.; Sun, B.M.; Chen, D.; Wu, X.; Guo, L.Z.; Wang, G. Land use changes and their effects on the value of ecosystem services in the small Sanjiang plain in China. Sci. World J. 2014, 2014, 752846. [Google Scholar] [CrossRef]
- Foley, J.A.; Defries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef]
- Balvanera, P.; Pfisterer, A.B.; Buchmann, N.; He, J.S.; Nakashizuka, T.; Raffaelli, D.; Schmid, B.J.E.l. Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol. Lett. 2006, 9, 1146–1156. [Google Scholar] [CrossRef] [PubMed]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Biodiversity Synthesis; World Resources Institute: Washington, DC, USA, 2005; Available online: http://wwwmillenniumassessment.org/documents/document.354.aspx.pdf (accessed on 22 November 2022).
- Chen, W.; Gu, T.; Zeng, J. Urbanisation and ecosystem health in the Middle Reaches of the Yangtze River urban agglomerations, China: A U-curve relationship. J. Environ. Manag. 2022, 318, 115565. [Google Scholar] [CrossRef] [PubMed]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Change 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Chen, W.; Chi, G.; Li, J. The spatial aspect of ecosystem services balance and its determinants. Land Use Policy 2020, 90, 104263. [Google Scholar] [CrossRef]
- Laurance, W.F. Emerging Threats to Tropical Forests1,2. Ann. Mo. Bot. Gard. 2015, 100, 159–169. [Google Scholar] [CrossRef]
- Carr, D.L.; Suter, L.; Barbieri, A. Population Dynamics and Tropical Deforestation: State of the Debate and Conceptual Challenges. Popul. Environ. 2005, 27, 89–113. [Google Scholar] [CrossRef]
- de Sherbinin, A.; Carr, D.; Cassels, S.; Jiang, L. Population and Environment. Annu. Rev. Environ. Resour. 2007, 32, 345–373. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Chi, G.; Li, J. Ecosystem services and their driving forces in the Middle Reaches of the Yangtze River Urban Agglomerations, China. Int. J. Environ. Res. Public Health 2020, 17, 3717. [Google Scholar] [CrossRef] [PubMed]
- Arizpe, L.; Stone, M.P.; Major, D.; Stone, P. Population and Environment: Rethinking the Debate; Routledge: Oxfordshire, UK, 2019. [Google Scholar]
- Harrison, P.; Pearce, F. AAAS Atlas of Population and the Environment; University of California Press: Berkeley, CA, USA, 2000; p. 215. [Google Scholar]
- Whitham, C.E.; Shi, K.; Riordan, P. Ecosystem service valuation assessments for protected area management: A case study comparing methods using different land cover classification and valuation approaches. PLoS ONE 2015, 10, e0129748. [Google Scholar] [CrossRef]
- Wainger, L.A.; Boyd, J.W. Valuing ecosystem services. In Ecosystem-Based Management for the Oceans; Island Press: Washington, DC, USA, 2009; pp. 92–114. [Google Scholar]
- Costanza, R.; Wilson, M.A.; Troy, A.; Voinov, A.; Liu, S.; D’Agostino, J. The value of New Jersey’s ecosystem services and natural capital. University of Vermont: Burlington, VT, USA, 2006. [Google Scholar]
- Gregory, R.; Failing, L.; Harstone, M.; Long, G.; McDaniels, T.; Ohlson, D. Structured Decision Making: A Practical Guide to Environmental Management Choices; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Talberth, J. Economic Benefits of Baltimore’s Stormwater Management Plan; Center for Sustainable Economy: Lake Oswego, OR, USA, 2015. [Google Scholar]
- Noel, J.E.; Qenani-Petrela, E.; Mastin, T. A benefit transfer estimation of agro-ecosystems services. West. Econ. Forum 2009, 8, 18–28. [Google Scholar]
- Plummer, M.L. Assessing benefit transfer for the valuation of ecosystem services. Front. Ecol. Environ. 2009, 7, 38–45. [Google Scholar] [CrossRef]
- Brisson, I.; Pearce, D. Benefits Transfer for Disamenity from Waste Disposal; Centre for Social and Economic Research on the Global Environment: Norwich, UK, 1995. [Google Scholar]
- Bateman, I.J.; Brainard, J.S.; Lovett, A.A. Modelling Woodland Recreation Demand Using Geographical Information Systems: A Benefit Transfer Study; Centre for Social and Economic Research on the Global Environment: Norwich, UK, 1995. [Google Scholar]
- Vitousek, P.M.; Mooney, H.A.; Lubchenco, J.; Melillo, J.M. Human Domination of Earth’s Ecosystems. In Renewable Energy; Routledge: Oxfordshire, UK, 2018; pp. 153–166. [Google Scholar]
- Lambin, E.F.; Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. USA 2011, 108, 3465–3472. [Google Scholar] [CrossRef]
- Geist, H.J.; Lambin, F.E. What drives tropical deforestation. LUCC Rep. Ser. 2001, 4, 116. [Google Scholar]
- Til, J.V.; Simons, G. Madagascar: Land Use Planning for Enhanced Resilience of Landscapes; ISRIC: Wageningen, The Netherlands, 2018. [Google Scholar]
- Rakotomahazo, C.; Razanoelisoa, J.; Ranivoarivelo, N.L.; Todinanahary, G.G.B.; Ranaivoson, E.; Remanevy, M.E.; Ravaoarinorotsihoarana, L.A.; Lavitra, T.J.L. Community Perceptions of a Payment for Ecosystem Services Project in Southwest Madagascar: A Preliminary Study. Land 2021, 10, 597. [Google Scholar] [CrossRef]
- Obiahu, O.H.; Elias, E. Effect of land use land cover changes on the rate of soil erosion in the Upper Eyiohia river catchment of Afikpo North Area, Nigeria. Environ. Chall. 2020, 1, 100002. [Google Scholar] [CrossRef]
- Eka Prasetya, T.A.; Devi, R.M.; Fitrahanjani, C.; Wahyuningtyas, T.; Muna, S. Systematic assessment of the warming trend in Madagascar’s mainland daytime land surface temperature from 2000 to 2019. J. Afr. Earth Sci. 2022, 189, 104502. [Google Scholar] [CrossRef]
- World-Bank. Population Growth (Annual %) in Madagascar. Available online: https://data.worldbank.org/indicator/SP.POP.GROW?end=2021&locations=MG&start=1961&view=chart (accessed on 19 January 2023).
- Tanteliniaina, M.F.R.; Chen, J.; Adyel, T.M.; Zhai, J. Elevation Dependence of the Impact of Global Warming on Rainfall Variations in a Tropical Island. Water 2020, 12, 3582. [Google Scholar] [CrossRef]
- World Map Blank. Blank Map of Africa-Outline Map of Africa. Available online: https://worldmapblank.com/blank-map-of-africa/ (accessed on 30 January 2023).
- Mapline. Learn the Impacts of Climate Change from Studying a Madagascar Map Showing Provinces. Available online: https://mapline.com/territories/africa/madagascar/madagascar-map-showing-provinces/ (accessed on 30 January 2023).
- ESA. European Space Agency Climate Change Initiative Land Cover CCI Product User Guide v.2.0. Available online: http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf (accessed on 16 January 2023).
- Di Gregorio, A. Land Cover Classification System: Classification Concepts and User Manual: LCCS; Food & Agriculture Org: Rome, Italy, 2005; Volume 2. [Google Scholar]
- Li, W.; Ciais, P.; MacBean, N.; Peng, S.; Defourny, P.; Bontemps, S. Major forest changes and land cover transitions based on plant functional types derived from the ESA CCI Land Cover product. Int. J. Appl. Earth Obs. Geoinf. 2016, 47, 30–39. [Google Scholar] [CrossRef]
- Liu, X.; Yu, L.; Si, Y.; Zhang, C.; Lu, H.; Yu, C.; Gong, P. Identifying patterns and hotspots of global land cover transitions using the ESA CCI Land Cover dataset. Remote Sens. Lett. 2018, 9, 972–981. [Google Scholar] [CrossRef]
- ESA CCI. European Space Agency Climate Change Initiative Landcover; ESA CCI: Paris, France, 2017. [Google Scholar]
- Bouvet, A.; Mermoz, S.; Le Toan, T.; Villard, L.; Mathieu, R.; Naidoo, L.; Asner, G.P. An above-ground biomass map of African savannahs and woodlands at 25 m resolution derived from Alos Palsar. Remote Sens. Environ. 2018, 206, 156–173. [Google Scholar] [CrossRef]
- Nabil, M.; Zhang, M.; Bofana, J.; Wu, B.; Stein, A.; Dong, T.; Zeng, H.; Shang, J. Assessing factors impacting the spatial discrepancy of remote sensing based cropland products: A case study in Africa. Int. J. Appl. Earth Obs. Geoinf. 2020, 85, 102010. [Google Scholar] [CrossRef]
- Arowolo, A.O. Assessing changes in the value of ecosystem services in response to land-use/land-cover dynamics in Nigeria. Sci. Total Environ. 2018, 636, 597–609. [Google Scholar] [CrossRef] [PubMed]
- Anthony, A.; Edem, E.E. Effects of Flood on Infrastructural Development in Uyo Metropolis, Akwa Ibom State, Nigeria. Glob. J. Sci. Front. Res. Environ. Earth Sci. 2015, 15, 36–46. [Google Scholar]
- Neugarten, R.A.; Honzak, M.; Carret, P.; Koenig, K.; Andriamaro, L.; Cano, C.A.; Grantham, H.S.; Hole, D.; Juhn, D.; McKinnon, M.; et al. Rapid Assessment of Ecosystem Service Co-Benefits of Biodiversity Priority Areas in Madagascar. PLoS ONE 2016, 11, e0168575. [Google Scholar] [CrossRef] [PubMed]
- Yi, H.; Güneralp, B.; Filippi, A.M.; Kreuter, U.P.; Güneralp, İ. Impacts of land change on ecosystem services in the San Antonio River Basin, Texas, from 1984 to 2010. Ecol. Econ. 2017, 135, 125–135. [Google Scholar] [CrossRef]
- Li, C.; Wu, Y.; Gao, B.; Zheng, K.; Wu, Y.; Li, C. Multi-scenario simulation of ecosystem service value for optimization of land use in the Sichuan-Yunnan ecological barrier, China. Ecol. Indic. 2021, 132, 108328. [Google Scholar] [CrossRef]
- Kreuter, U.P.; Harris, H.G.; Matlock, M.D.; Lacey, R.E. Change in ecosystem service values in the San Antonio area, Texas. Ecol. Econ. 2001, 39, 333–346. [Google Scholar] [CrossRef]
- Abulizi, A.; Yang, Y.; Mamat, Z.; Luo, J.; Abdulslam, D.; Xu, Z.; Zayiti, A.; Ahat, A.; Halik, W. Land-use change and its effects in Charchan Oasis, Xinjiang, China. Land Degrad. 2017, 28, 106–115. [Google Scholar] [CrossRef]
- Zhang, Z.; Xia, F.; Yang, D.; Huo, J.; Wang, G.; Chen, H. Spatiotemporal characteristics in ecosystem service value and its interaction with human activities in Xinjiang, China. Ecol. Indic. 2020, 110, 105826. [Google Scholar] [CrossRef]
- Adeyemi, A.A.; Ayinde, M.O. Evaluation of Land-Use and Land-Cover Changes in Oba Hills Forest Reserve, Osun State, Nigeria. Forestist 2022, 72, 137–148. [Google Scholar] [CrossRef]
- Lakshumanan, C.; Kishore, P.; Viveganandan, S.; Krishnakumar, K.; Muthusankar, G. Landuse/land cover dynamics study in Nilgiris district part of Western Ghats, Tamilnadu. Int. J. Geomat. Geosci. 2012, 2, 911–923. [Google Scholar]
- Chen, W.; Zhao, H.; Li, J.; Zhu, L.; Wang, Z.; Zeng, J. Land use transitions and the associated impacts on ecosystem services in the Middle Reaches of the Yangtze River Economic Belt in China based on the geo-informatic Tupu method. Sci. Total Env. 2020, 701, 134690. [Google Scholar] [CrossRef]
- Li, R.-Q.; Dong, M.; Cui, J.-Y.; Zhang, L.-L.; Cui, Q.-G.; He, W.-M. Quantification of the impact of land-use changes on ecosystem services: A case study in Pingbian County, China. Environ. Monit. Assess. 2007, 128, 503–510. [Google Scholar] [CrossRef]
- Zhao, B.; Kreuter, U.; Li, B.; Ma, Z.; Chen, J.; Nakagoshi, N. An ecosystem service value assessment of land-use change on Chongming Island, China. Land Use Policy 2004, 21, 139–148. [Google Scholar] [CrossRef]
- Smaling, E.M.; Nandwa, S.M.; Janssen, B.H. Soil fertility in Africa is at stake. Replenishing Soil Fertil. Afr. 1997, 51, 47–61. [Google Scholar]
- Aubry, C.; Ramamonjisoa, J.; Dabat, M.-H.; Rakotoarisoa, J.; Rakotondraibe, J.; Rabeharisoa, L. Urban agriculture and land use in cities: An approach with the multi-functionality and sustainability concepts in the case of Antananarivo (Madagascar). Land Use Policy 2012, 29, 429–439. [Google Scholar] [CrossRef]
- Wu, C.; Maurer, C.; Wang, Y.; Xue, S.; Davis, D.L. Water pollution and human health in China. Environ. Health Perspect. 1999, 107, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Darkoh, M.B.K. The nature, causes and consequences of desertification in the drylands of Africa. Land Degrad. Dev. 1998, 9, 1–20. [Google Scholar] [CrossRef]
- Zhang, X.; Xie, H.; Shi, J.; Lv, T.; Zhou, C.; Liu, W. Assessing Changes in Ecosystem Service Values in Response to Land Cover Dynamics in Jiangxi Province, China. Int. J. Env. Res. Public Health 2020, 17, 3018. [Google Scholar] [CrossRef]
- Robaina, K.A.; Martin, K.S. Food insecurity, poor diet quality, and obesity among food pantry participants in Hartford, CT. J. Nutr. Educ. Behav. 2013, 45, 159–164. [Google Scholar] [CrossRef]
- Herrera, J.P.; Rabezara, J.Y.; Ravelomanantsoa, N.A.F.; Metz, M.; France, C.; Owens, A.; Pender, M.; Nunn, C.L.; Kramer, R.A. Food insecurity related to agricultural practices and household characteristics in rural communities of northeast Madagascar. Food Secur. 2021, 13, 1393–1405. [Google Scholar] [CrossRef]
- Harvey, C.A.; Rakotobe, Z.L.; Rao, N.S.; Dave, R.; Razafimahatratra, H.; Rabarijohn, R.H.; Rajaofara, H.; MacKinnon, J.L. Extreme vulnerability of smallholder farmers to agricultural risks and climate change in Madagascar. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20130089. [Google Scholar] [CrossRef] [PubMed]
- World-Bank. Helping the Madagascar Government to Fight Poverty and Improve the Living Standards. 2022. Available online: https://www.worldbank.org/en/country/madagascar/overview (accessed on 22 November 2022).
- Wassie, S.B. Natural resource degradation tendencies in Ethiopia: A review. Environ. Syst. Res. 2020, 9, 1–29. [Google Scholar] [CrossRef]
- Rakotomahazo, C.; Ranivoarivelo, N.L.; Razanoelisoa, J.; Todinanahary, G.G.B.; Ranaivoson, E.; Remanevy, M.E.; Ravaoarinorotsihoarana, L.A.; Lavitra, T. Exploring the policy and institutional context of a Payment for Ecosystem Services (PES) scheme for mangroves in southwestern Madagascar. Mar. Policy 2023, 148, 105450. [Google Scholar] [CrossRef]
- Onofri, L.; Lange, G.M.; Portela, R.; Nunes, P.A.L.D. Valuing ecosystem services for improved national accounting: A pilot study from Madagascar. Ecosyst. Serv. 2017, 23, 116–126. [Google Scholar] [CrossRef]
- Chen, W.; Zeng, J.; Zhong, M.; Pan, S. Coupling analysis of ecosystem services value and economic development in the Yangtze River Economic Belt: A case study in Hunan Province, China. Remote Sens. 2021, 13, 1552. [Google Scholar] [CrossRef]
- Kuo, L.; Chang, B.-G. The affecting factors of circular economy information and its impact on corporate economic sustainability-Evidence from China. Sustain. Prod. Consum. 2021, 27, 986–997. [Google Scholar] [CrossRef]
- Chen, W.; Zeng, Y.; Zeng, J. Impacts of traffic accessibility on ecosystem services: An integrated spatial approach. J. Geogr. Sci. 2021, 31, 1816–1836. [Google Scholar] [CrossRef]
- Ziaul Hoque, M.; Islam, I.; Ahmed, M.; Shamim Hasan, S.; Ahmed Prodhan, F. Spatio-temporal changes of land use land cover and ecosystem service values in coastal Bangladesh. Egypt. J. Remote Sens. Space Sci. 2022, 25, 173–180. [Google Scholar] [CrossRef]
- Kubiszewski, I.; Costanza, R.; Anderson, S.; Sutton, P. The future value of ecosystem services: Global scenarios and national implications. In Environmental Assessments; Edward Elgar Publishing: Cheltenham, UK, 2020. [Google Scholar]
- Berrou, J.-P.; Piveteau, A.; Deguilhem, T.; Delpy, L.; Gondard-Delcroix, C.; Long, K. Who Drives if No-one Governs? A Social Network Analysis of Social Protection Policy in Madagascar. In LAM CNRS 5115-Sciences Po Bordeaux; IRD-Institute of Research: Paris, France, 2021. [Google Scholar]
- Song, W.; Deng, X. Land-use/land-cover change and ecosystem service provision in China. Sci. Total Environ. 2017, 576, 705–719. [Google Scholar] [CrossRef]
- Gregor, L.; Gruber, N. Global carbon budget 2020. Earth Syst. Sci. Data 2020, 12, 3269–3340. [Google Scholar]
Land-Cover Types | The E.S.A. C.C.I. Land Cover Maps’ Codes and Types | |
---|---|---|
Cultivated land | 10 | Land to grow harvested crops, non-irrigated land |
11 | Herbs favorable areas | |
30 | Mosaic cropland (>50%)/natural vegetation (tree, shrub, herbaceous cover) (<50%) | |
40 | Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%)/cropland (<50%) | |
Forest | 50 | Tree cover, broadleaved, evergreen, closed to open (>15%) |
60 | Tree cover, broadleaved, deciduous, closed to open (>15%) | |
61 | Tree cover, broadleaved, deciduous, closed (>40%) | |
62 | Tree cover, broadleaved, deciduous, open (15–40%) | |
100 | Mosaic tree and shrub (>50%)/herbaceous cover (<50%) | |
110 | Mosaic herbaceous cover (>50%) tree and shrub (<50%) | |
Shrub | 120 | Land covered by small bushes and trees |
122 | Deciduous shrubland | |
Grass | 130 | Meadow |
Wetland | 170 | Tree cover, flooded, saline water |
180 | Shrub or herbaceous cover, flooded, fresh/saline/brackish water | |
Built-up area | 190 | Urban regions |
Desert area | 150 | Scanty vegetation (<15%) |
200 | Deserts | |
Water area | 210 | Water bodies |
Service Type | Sub-Type | CuL | FoS | SaH | WeL | WaB | BiU | BaL |
---|---|---|---|---|---|---|---|---|
Provisioning | Food production | 2323 | 200 | 1192 | 952 | 106 | 0 | 0 |
Raw materials | 219 | 84 | 54 | 416 | 0 | 0 | 0 | |
Regulating | Gaz regulation | 0 | 12 | 9 | 0 | 0 | 0 | 0 |
Climate Regulation | 411 | 2044 | 40 | 200 | 0 | 905 | 0 | |
Disturbance regulation | 0 | 66 | 0 | 4596 | 0 | 0 | 0 | |
Water regulation | 0 | 8 | 3 | 1789 | 7514 | 16 | 0 | |
Water supply | 400 | 27 | 60 | 959 | 1808 | 0 | 0 | |
Waste treatment | 397 | 120 | 75 | 111,345 | 918 | 0 | 0 | |
Supporting | Control of erosion | 107 | 337 | 44 | 3507 | 0 | 0 | 0 |
Formation of soil | 532 | 14 | 2 | 0 | 0 | 0 | 0 | |
Cycling of nutrient | 0 | 3 | 0 | 577 | 0 | 0 | 0 | |
Pollination | 22 | 30 | 35 | 0 | 0 | 0 | 0 | |
Control of the biology | 33 | 11 | 31 | 303 | 0 | 0 | 0 | |
Habitat/refugia | 0 | 39 | 1214 | 12,452 | 0 | 0 | 0 | |
Resources that are genetic | 1042 | 1517 | 1214 | 243 | 0 | 0 | 0 | |
Recreation | Recreation | 82 | 867 | 26 | 2199 | 2166 | 5740 | 0 |
and culture | Cultural | 0 | 2 | 167 | 636 | 0 | 0 | 0 |
Total Value of Ecosystem | 5568 | 5381 | 4166 | 140,174 | 12,512 | 6661 | 0 |
103 | Bare Land | Built-Up | Cultivated Land | Forest | Savannah | Water Bodies | Wet Land | Total 2019 | %Year 2019 | Direction Change |
---|---|---|---|---|---|---|---|---|---|---|
Bare land | 396.61 | 0.05 | 2.19 | 5.64 | 4.28 | 0.32 | 409.09 | (0.69) | ↑ | |
Built-up | 0.14 | 34.62 | 2.80 | 0.26 | 10.48 | 0.28 | 0.70 | 49.29 | (0.08) | ↑ |
Cultivated land | 0.07 | 0.00 | 7582.83 | 576.83 | 100.78 | 8.56 | 1.80 | 8270.89 | (13.92) | ↑ |
Forest | 0.06 | 0.00 | 165.97 | 14,102.27 | 564.44 | 10.61 | 1.39 | 14,844.74 | (24.98) | ↓ |
Savannah | 0.63 | 0.00 | 197.86 | 648.18 | 33,890.31 | 7.33 | 3.30 | 34,747.61 | (58.46) | ↑ |
Water bodies | 2.04 | 0.95 | 2.04 | 9.64 | 415.15 | 2.57 | 432.39 | (0.73) | ↓ | |
Wetland | 0.39 | 0.00 | 2.47 | 13.43 | 7.66 | 41.81 | 614.86 | 680.63 | (1.15) | ↑ |
total2000 | 399.95 | 34.62 | 7952.95 | 15,345.21 | 34,588.95 | 488.01 | 624.94 | 59,434.64 | ||
% year 2000 | 0.67 | 0.06 | 13.38 | 25.82 | 58.20 | 0.82 | 1.05 |
The Year 2000 (109 $) | Provinces | Bare Land | Built-Up | Cultivated Land | Forest | Savannah | Water Bodies | Wetland | Grand Total |
---|---|---|---|---|---|---|---|---|---|
1 | Antananarivo | 0 | 0.05 | 1.36 | 3.62 | 21.11 | 0.19 | 0.25 | 26.59 |
2 | Antsiranana | 0 | 0.03 | 5.73 | 9.97 | 5.76 | 0.31 | 10.61 | 32.42 |
3 | Fianarantsoa | 0 | 0.03 | 11.53 | 11.48 | 24.36 | 0.31 | 4.11 | 51.82 |
4 | Mahajanga | 0 | 0.04 | 4.63 | 18.62 | 42.95 | 2.49 | 44.62 | 113.35 |
5 | Toamasina | 0 | 0.03 | 13.45 | 18.07 | 5.04 | 0.81 | 9.77 | 47.17 |
6 | Toliary | 0 | 0.06 | 7.57 | 20.81 | 44.86 | 1.74 | 17.09 | 92.12 |
The Year 2019 (109 $) | Provinces | Bare Land | Built-Up | Cultivated Land | Forest | Savannah | Water Bodies | Wetland | Grand Total |
---|---|---|---|---|---|---|---|---|---|
1 | Antananarivo | 0 | 0.13 | 1.32 | 3.84 | 20.92 | 0.21 | 0.22 | 26.64 |
2 | Antsiranana | 0 | 0.00 | 5.94 | 9.50 | 5.97 | 0.27 | 10.97 | 32.65 |
3 | Fianarantsoa | 0 | 0.00 | 11.58 | 10.97 | 24.70 | 0.31 | 4.51 | 52.08 |
4 | Mahajanga | 0 | 0.00 | 4.82 | 17.93 | 43.35 | 2.13 | 48.43 | 116.65 |
5 | Toamasina | 0 | 0.00 | 14.45 | 17.02 | 5.09 | 0.73 | 10.80 | 48.10 |
6 | Toliary | 0 | 0.00 | 7.92 | 20.61 | 44.72 | 1.53 | 19.18 | 93.97 |
ESV | Cultivated Land | Forest | Savannah | Wetland | Built-Up | Bare Land | Water Bodies | Total |
---|---|---|---|---|---|---|---|---|
2000($) ×109 | 44.28 | 82.57 | 144.09 | 87.60 | 0.23 | 0.00 | 6.11 | 364.88 |
2000 (%) | 12.14 | 22.63 | 39.49 | 24.01 | 0.06 | 0.00 | 1.67 | 100.00 |
2019($) ×109 | 46.05 | 79.88 | 144.80 | 95.41 | 0.33 | 0.00 | 5.40 | 371.87 |
2019 (%) | 12.38 | 21.48 | 38.94 | 25.66 | 0.09 | 0.00 | 1.45 | 100.00 |
Change 2000–2019 ($) | 1.77 | −2.69 | 0.71 | 7.81 | 0.10 | 0.00 | −0.71 | 6.99 |
Change 2000–2019 (%) | 4.00 | −3.26 | 0.49 | 8.92 | 42.74 | 0.00 | −11.56 | 41.32 |
2000 | 2019 | 2000–2019 | |||||
---|---|---|---|---|---|---|---|
(109 USD) | % | (109 USD) | % | (109 USD) | % | ||
Provisioning | PRODUCT | 63.42 | 17.38 | 64.30 | 17.29 | 0.87 | 1.38 |
Raw materials | 5.16 | 1.41 | 5.22 | 1.40 | 0.06 | 1.15 | |
Regulating | Regulation of gas | 0.50 | 0.14 | 0.49 | 0.13 | 0.00 | −0.92 |
Regulation of climate | 36.17 | 9.91 | 35.31 | 9.50 | −0.86 | −2.38 | |
Regulation of disturbance | 3.89 | 1.06 | 4.11 | 1.10 | 0.22 | 5.74 | |
Regulation of water | 5.01 | 1.37 | 4.69 | 1.26 | −0.32 | −6.42 | |
Supply of water | 7.15 | 1.96 | 7.23 | 1.94 | 0.08 | 1.06 | |
Treatment of waste | 77.63 | 21.27 | 83.85 | 22.55 | 6.23 | 8.02 | |
Supporting | Control of erosion | 9.74 | 2.67 | 9.80 | 2.64 | 0.07 | 0.69 |
Formation of soil | 4.51 | 1.24 | 4.68 | 1.26 | 0.16 | 3.60 | |
Cycling Nutrient | 0.41 | 0.11 | 0.44 | 0.12 | 0.03 | 7.53 | |
Pollination | 1.85 | 0.51 | 1.84 | 0.50 | 0.00 | −0.13 | |
Biological control | 1.69 | 0.46 | 1.72 | 0.46 | 0.03 | 1.58 | |
Habitat/refugia | 50.37 | 13.80 | 51.24 | 13.78 | 0.87 | 1.72 | |
Genetic resources | 73.71 | 20.20 | 73.49 | 19.76 | −0.22 | −0.30 | |
Recreation and Culture | Recreation | 17.49 | 4.79 | 17.17 | 4.62 | −0.32 | −1.82 |
Cultural | 6.20 | 1.70 | 6.27 | 1.68 | 0.06 | 0.98 | |
TOTAL | 364.89 | 100 | 371.83 | 100 |
Land-Use Types | 2000 CS | 2005 CS | 2010 CS | 2015 CS | 2019 CS |
---|---|---|---|---|---|
Cultivated land VC ± 50% | 0.109 | 0.107 | 0.108 | 0.109 | 0.112 |
Forestland VC ± 50% | 0.649 | 0.635 | 0.634 | 0.631 | 0.643 |
Savannahs VC ± 50% | 0.010 | 0.004 | 0.001 | 0.001 | 0.002 |
Wetland VC ± 50% | 0.216 | 0.240 | 0.244 | 0.245 | 0.230 |
Built up VC ± 50% | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
Bare land VC ± 50% | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Water bodies VC ± 50% | 0.015 | 0.014 | 0.013 | 0.013 | 0.013 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tiandraza, F.; Qu, S.; Hu, S.; Mkono, C.N.; Tikhomirova, A.; Randrialahamady, S.N. Response of Ecosystem Services to Land Use Change in Madagascar Island, Africa: A Multi-Scale Perspective. Int. J. Environ. Res. Public Health 2023, 20, 3060. https://doi.org/10.3390/ijerph20043060
Tiandraza F, Qu S, Hu S, Mkono CN, Tikhomirova A, Randrialahamady SN. Response of Ecosystem Services to Land Use Change in Madagascar Island, Africa: A Multi-Scale Perspective. International Journal of Environmental Research and Public Health. 2023; 20(4):3060. https://doi.org/10.3390/ijerph20043060
Chicago/Turabian StyleTiandraza, Flaubert, Shijin Qu, Shougeng Hu, Christopher N. Mkono, Anna Tikhomirova, and Solo Nirina Randrialahamady. 2023. "Response of Ecosystem Services to Land Use Change in Madagascar Island, Africa: A Multi-Scale Perspective" International Journal of Environmental Research and Public Health 20, no. 4: 3060. https://doi.org/10.3390/ijerph20043060
APA StyleTiandraza, F., Qu, S., Hu, S., Mkono, C. N., Tikhomirova, A., & Randrialahamady, S. N. (2023). Response of Ecosystem Services to Land Use Change in Madagascar Island, Africa: A Multi-Scale Perspective. International Journal of Environmental Research and Public Health, 20(4), 3060. https://doi.org/10.3390/ijerph20043060