Spatial Accessibility of Primary Care in the Dual Public–Private Health System in Rural Areas, Malaysia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Enhanced Two-Step Floating Catchment Area (E2SFCA)
2.4. Spatial Pattern and Spatial Statistics
2.5. Assessing Ecological Factors That Associates to the Spatial Accessibility
2.5.1. Theoretical Approach and Studied Variables
2.5.2. Hierarchical Regression and Geographical Weight Regression
3. Results
3.1. Spatial Accessibility to Primary Care in Rural Areas
3.2. Factors Associated to the Spatial Accessibility
4. Discussion
4.1. Spatial Pattern and Equality of E2SFCA Scores
4.2. Factors Associated to the E2SFCA Scores
4.3. Summary
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peters, D.H.; Garg, A.; Bloom, G.; Walker, D.G.; Brieger, W.R.; Hafizur Rahman, M. Poverty and access to health care in developing countries. Ann. N. Y. Acad. Sci. 2008, 1136, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Deepa, M.; Pradeepa, R.; Anjana, R.M.; Mohan, V. Noncommunicable Diseases Risk Factor Surveillance: Experience and Challenge from India. Indian J. Community Med. 2011, 36, S50–S56. [Google Scholar] [CrossRef] [PubMed]
- Apparicio, P.; Gelb, J.; Dubé, A.S.; Kingham, S.; Gauvin, L.; Robitaille, É. The approaches to measuring the potential spatial access to urban health services revisited: Distance types and aggregation-error issues. Int. J. Health Geogr. 2017, 16, 32. [Google Scholar] [CrossRef] [PubMed]
- Gulliford, M.; Figueroa-Munoz, J.; Morgan, M.; Hughes, D.; Gibson, B.; Beech, R.; Hudson, M. What does “access to health care” mean? J. Health Serv. Res. Policy 2002, 7, 186–188. [Google Scholar] [CrossRef]
- Luo, J.; Zhang, X.; Jin, C.; Wang, D. Inequality of access to health care among the urban elderly in northwestern China. Health Policy 2009, 93, 111–117. [Google Scholar] [CrossRef]
- Marmot, M. Social determinants of health inequalities. Lancet 2005, 365, 1099–1104. [Google Scholar] [CrossRef]
- WHO. Human Resources for Health Country Profiles: Malaysia; WHO Western Pacific Regional Publications: Manila, Philippines, 2014; Available online: https://www.who.int/publications/i/item/9789290616375 (accessed on 3 February 2023).
- Hazrin, H.; Fadhli, Y.; Tahir, A.; Safurah, J.; Kamaliah, M.N.; Noraini, M.Y. Spatial patterns of health clinic in Malaysia. Health 2013, 5, 2104–2109. [Google Scholar] [CrossRef]
- World Health Organization. Malaysia Health System Review; Asia Pacific Observatory on Health Systems and Policies: Geneva, Switzerland, 2012. [Google Scholar]
- Delamater, P.L. Spatial accessibility in suboptimally configured health care systems: A modified two-step floating catchment area (M2SFCA) metric. Health Place 2013, 24, 30–43. [Google Scholar] [CrossRef]
- Donohoe, J.; Marshall, V.; Tan, X.; Camacho, F.T.; Anderson, R.T.; Balkrishnan, R. Spatial access to primary care providers in appalachia: Evaluating current methodology. J. Prim. Care Community Health 2016, 7, 149–158. [Google Scholar] [CrossRef]
- Shah, T.I.; Bell, S.; Wilson, K. Spatial Accessibility to Health Care Services: Identifying under-Serviced Neighbourhoods in Canadian Urban Areas. PLoS ONE 2016, 11, e0168208. [Google Scholar] [CrossRef] [Green Version]
- Guagliardo, M.F. Spatial accessibility of primary care: Concepts, methods and challenges. Int. J. Health Geogr. 2004, 3, 3. [Google Scholar] [CrossRef]
- Andersen, R.M. Revisiting the Behaviour Model and Access to Medical Care: Does It Matter? J. Health Soc. Behav. 1995, 36, 1–10. [Google Scholar] [CrossRef]
- Derose, K.P.; Gresenz, C.R.; Ringel, J.S. Understanding Disparities In Health Care Access—And Reducing Them—Through A Focus On Public Health. Health Aff. 2011, 30, 1844–1851. [Google Scholar] [CrossRef]
- Khan, A.A.; Bhardwaj, S.M. Access to Health Care. Eval. Health Prof. 1994, 17, 60–76. [Google Scholar] [CrossRef]
- Penchansky, R.; Thomas, J.W. The concept of access: Definition and relationship to consumer satisfaction. Med. Care 1981, 19, 127–140. [Google Scholar] [CrossRef]
- Radke, J.; Mu, L. Spatial decompositions, modeling and mapping service regions to predict access to social programs. Geogr. Inf. Sci. 2000, 6, 105–112. [Google Scholar] [CrossRef]
- Wang, F.; Luo, W. Assessing spatial and nonspatial factors for healthcare access: Towards an integrated approach to defining health professional shortage areas. Health Place 2005, 11, 131–146. [Google Scholar] [CrossRef]
- Donohoe, J.; Marshall, V.; Tan, X.; Camacho, F.T.; Anderson, R.; Balkrishnan, R. Evaluating and comparing methods for measuring spatial access to mammography centers in Appalachia. Health Serv. Outcomes Res. Methodol. 2016, 16, 22–40. [Google Scholar] [CrossRef]
- Luo, W.; Qi, Y. An enhanced two-step floating catchment area (E2SFCA) method for measuring spatial accessibility to primary care physicians. Health Place 2009, 15, 1100–1107. [Google Scholar] [CrossRef]
- McGrail, M.R.; Humphreys, J.S. Measuring spatial accessibility to primary care in rural areas: Improving the effectiveness of the two-step floating catchment area method. Appl. Geogr. 2009, 29, 533–541. [Google Scholar] [CrossRef]
- Shah, T.I.; Milosavljevic, S.; Bath, B. Determining geographic accessibility of family physician and nurse practitioner services in relation to the distribution of seniors within two Canadian Prairie Provinces. Soc. Sci. Med. 2017, 194, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Bauer, J.; Müller, R.; Brüggmann, D.; Groneberg, D.A. Spatial Accessibility of Primary Care in England: A Cross-Sectional Study Using a Floating Catchment Area Method. Health Serv. Res. 2018, 53, 1957–1978. [Google Scholar] [CrossRef] [PubMed]
- Jamtsho, S.; Corner, R.; Dewan, A. Spatio-Temporal Analysis of Spatial Accessibility to Primary Health Care in Bhutan. ISPRS Int. J. Geo-Inf. 2015, 4, 1584–1604. [Google Scholar] [CrossRef]
- McGrail, M.R.; Humphreys, J.S. Measuring spatial accessibility to primary health care services: Utilising dynamic catchment sizes. Appl. Geogr. 2014, 54, 182–188. [Google Scholar] [CrossRef]
- Rekha, R.S.; Wajid, S.; Radhakrishnan, N.; Mathew, S. Accessibility Analysis of Health care facility using Geospatial Techniques. Transp. Res. Procedia 2017, 27, 1163–1170. [Google Scholar] [CrossRef]
- Hu, R.; Dong, S.; Zhao, Y.; Hu, H.; Li, Z. Assessing potential spatial accessibility of health services in rural China: A case study of Donghai county. Int. J. Equity Health 2013, 12, 35. [Google Scholar] [CrossRef]
- Wan, N.; Zou, B.; Sternberg, T. A three-step floating catchment area method for analyzing spatial access to health services. Int. J. Geogr. Inf. Sci. 2012, 26, 1073–1089. [Google Scholar] [CrossRef]
- Dewulf, B.; Neutens, T.; De Weerdt, Y.; Van De Weghe, N. Accessibility to primary health care in Belgium: An evaluation of policies awarding financial assistance in shortage areas. BMC Fam. Pract. 2013, 14, 122. [Google Scholar] [CrossRef]
- Gao, F.; Kihal, W.; Le Meur, N.; Souris, M.; Deguen, S. Assessment of the spatial accessibility to health professionals at French census block level. Int. J. Equity Health 2016, 15, 125. [Google Scholar] [CrossRef]
- Lin, B.C.; Chen, C.W.; Chen, C.C.; Kuo, C.L.; Fan, I.C.; Ho, C.K.; Liu, I.; Chan, T.C. Spatial decision on allocating automated external defibrillators (AED) in communities by multi-criterion two-step floating catchment area (MC2SFCA). Int. J. Health Geogr. 2016, 15, 17. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.; Chen, G.; Li, C.; Xia, B.; Sun, X.; Chen, S. Use of an E2SFCA method to measure and analyse spatial accessibility to medical services for elderly people in wuhan, China. Int. J. Environ. Res. Public Health 2018, 15, 1503. [Google Scholar] [CrossRef]
- Pan, J.; Zhao, H.; Wang, X.; Shi, X. Assessing spatial access to public and private hospitals in Sichuan, China: The influence of the private sector on the healthcare geography in China. Soc. Sci. Med. 2016, 170, 35–45. [Google Scholar] [CrossRef]
- Vadrevu, L.; Kanjilal, B. Measuring spatial equity and access to maternal health services using enhanced two step floating catchment area method (E2SFCA)-A case study of the Indian Sundarbans. Int. J. Equity Health 2016, 15, 87. [Google Scholar] [CrossRef]
- Wang Yang, H.; Duan, Z.; Pan, J. Spatial accessibility of primary health care in China: A case study in Sichuan Province. Soc. Sci. Med. 2018, 209, 14–24. [Google Scholar] [CrossRef]
- DOSM. Malaysia Economic Statistics-Time Series 2011; Department of Statistics Malaysia: Putrajaya, Malaysia, 2011. [Google Scholar]
- Department of Statistics Malaysia. Household Income and Basic Amenities Survey Report 2016; Department of Statistics Malaysia: Putrajaya, Malaysia, 2017. [Google Scholar]
- MOH. Malaysia Health Indicators 2018; Ministry of Health Malaysia: Putrajaya, Malaysia, 2018. Available online: https://www.moh.gov.my/moh/resources/Penerbitan/PenerbitanUtama/Petunjuk_Kesihatan_2018new.pdf (accessed on 5 August 2019).
- Hwong, W.; Sivasampu, S.; Aisyah, A.; Kumar, C.S.; Goh, P.; Hisham, A. National Healthcare Establishment & Workforce Statistics (Primary Care) 2012; National Clinical Research Centre: Kuala Lumpur, Malaysia, 2014. Available online: http://www.crc.gov.my/nhsi/ (accessed on 25 February 2020).
- MOH. Service Scope of 1Malaysia Mobile Clinic. (21 November 2014). 2015. Available online: http://fh.moh.gov.my/v3/index.php/skop-perkhidmatan-pb (accessed on 1 December 2019).
- Public Works Department Malaysia. Statistik Jalan Edisi 2018. Kuala Lumpur. 2018. Available online: https://www.jkr.gov.my/my/page/dokumen-teknikal (accessed on 24 February 2020).
- Institute for Public Health. National Health and Morbidity Survey (NHMS) 2015. Vol III: Health Care Demand; Institute for Public Health, Ministry of Health Malaysia: Kuala Lumpur, Malaysia, 2015. Available online: https://iku.gov.my/images/IKU/Document/REPORT/NHMS2015-VolumeIII.pdf (accessed on 24 February 2020).
- Luo, W.; Wang, F. Measures of spatial accessibility to health care in a GIS environment: Synthesis and a case study in the Chicago region. Environ. Plan. B Plan Des. 2003, 30, 865–884. [Google Scholar] [CrossRef]
- DeCatanzaro, R.; Cvetkovic, M.; Chow-fraser, P. The Relative Importance of Road Density and Physical Watershed Features in Determining Coastal Marsh Water Quality in Georgian Bay. Environ. Manag. 2009, 44, 456–467. [Google Scholar] [CrossRef]
- Selangor Town and Rural Planning Department. Program of the Selangor 2035 State Structural Plan Survey Report. Shah Alam. 2014. Available online: https://mphs.gov.my/program-publisiti-laporan-tinjauan-kajian-rancangan-struktur-negeri-selangor-2035/ (accessed on 24 February 2020).
- Mcgrail, M.R. Spatial accessibility of primary health care utilising the two step floating catchment area method: An assessment of recent improvements. Int. J. Health Geogr. 2012, 11, 50. [Google Scholar] [CrossRef]
- Pan, J.; Liu, H.; Wang, X.; Xie, H.; Delamater, P.L. Assessing the spatial accessibility of hospital care in Sichuan Province, China. Geospat. Health 2015, 10, 261–270. [Google Scholar] [CrossRef]
- McGrail, M.R.; Humphreys, J.S. The index of rural access: An innovative integrated approach for measuring primary care access. BMC Health Serv. Res. 2009, 9, 124. [Google Scholar] [CrossRef]
- North, M.A. A Method for Implementing a Statistically Significant Number of Data Classes in the Jenks Algorithm. In Proceedings of the 2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery, Tianjin, China, 14–16 August 2009; pp. 35–38. [Google Scholar] [CrossRef]
- Moran, P.A.P. The Interpretation of Statistical Maps. J. R. Stat. Soc. Ser. B 1948, 10, 243–251. [Google Scholar] [CrossRef]
- Ord, J.; Getis, A. Local spatial autocorrelation statistics: Distributional issues and an application. Geogr. Anal. 1995, 27, 286–306. [Google Scholar] [CrossRef]
- Lu, B.; Zhang, C.; Chen, T.M. Study on changes in job accessibility for the urban low-income: A case study of Beijing. City Plan. Rev. 2013, 37, 56–63. [Google Scholar]
- Institute for Health Systems Research. National Health and Morbidity Survey (NHMS) 2019, Vol. II: Healthcare Demand. Shah Alam. 2020. Available online: https://iku.gov.my/images/IKU/Document/REPORT/NHMS2019/Report_NHMS2019-HCD-eBook_p.pdf (accessed on 25 August 2020).
- MOH. Ministry of Health Annual Report 2018; Ministry of Health Malaysia: Putrajaya, Malaysia, 2019. Available online: https://www.moh.gov.my/moh/resources/Penerbitan/Penerbitan%20Utama/ANNUAL%20REPORT/ANNUAL%20REPORT%202018.pdf (accessed on 12 April 2020).
- Ahmed, J.; Selvaganapathi, G.; Dinesh, M.; Azra, N.; Harikrishnan, T. Perception of Peduli Sihat Scheme among Peduli Sihat Users. Arts Soc. Sci. J. 2018, 9, 1–5. [Google Scholar] [CrossRef]
- Chen, R.; Zhao, Y.; Du, J.; Wu, T.; Huang, Y.; Guo, A. Health workforce equity in urban community health service of China. PLoS ONE 2014, 9, e115988. [Google Scholar] [CrossRef] [PubMed]
- DOSM. Household Income and Basic Amenities Survey Report-By State and Administrative District-Selangor 2019; Department of Statistics Malaysia: Putrajaya, Malaysia, 2020. [Google Scholar]
- Fotheringham, A.S.; Charlton, M.E.; Brunsdon, C. Geographically weighted regression: A natural evolution of the expansion method for spatial data analysis. Environ. Plan. A 1998, 30, 1905–1927. [Google Scholar] [CrossRef]
- Brunsdon, C.; Fotheringham, S.; Charlton, M. Geographically weighted regression-modelling spatial non-stationarity. Statistician 1998, 47, 431–443. [Google Scholar] [CrossRef]
- Chiou, Y.C.; Jou, R.C.; Yang, C.H. Factors affecting public transportation usage rate: Geographically weighted regression. Transp. Res. A Policy Pract. 2015, 78, 161–177. [Google Scholar] [CrossRef]
- Comber, A.J.; Brunsdon, C.; Radburn, R. A spatial analysis of variations in health access: Linking geography, socio-economic status and access perceptions. Int. J. Health Geogr. 2011, 10, 44. [Google Scholar] [CrossRef]
- Liu, S.; Qin, Y.; Xu, Y. Inequality and influencing factors of spatial accessibility of medical facilities in rural areas of China: A case study of Henan province. Int. J. Environ. Res. Public Health 2019, 16, 1833. [Google Scholar] [CrossRef]
- Subal, J.; Paal, P.; Krisp, J.M. Quantifying spatial accessibility of general practitioners by applying a modified huff three-step floating catchment area (MH3SFCA) method. Int. J. Health Geogr. 2021, 20, 9. [Google Scholar] [CrossRef]
- Bell, S.; Wilson, K.; Bissonnette, L.; Shah, T. Access to Primary Health Care: Does Neighborhood of Residence Matter? Ann. Assoc. Am. Geogr. 2013, 103, 85–105. [Google Scholar] [CrossRef]
- MOH. Annual Report Ministry of Health Malaysia 2014; MOH: Putrajaya, Malaysia, 2014. [Google Scholar]
- MOH. Annual Report Ministry of Health Malaysia 2020; MOH: Putrajaya, Malaysia, 2020. [Google Scholar]
- Cournane, S.; Dalton, A.; Byrne, D.; Conway, R.; O’Riordan, D.; Coveney, S.; Silke, B. Social deprivation, population dependency ratio and an extended hospital episode-Insights from acute medicine. Eur. J. Intern. Med. 2015, 26, 714–719. [Google Scholar] [CrossRef]
- Hashtarkhani, S.; Kiani, B.; Bergquist, R.; Bagheri, N.; VafaeiNejad, R.; Tara, M. An age-integrated approach to improve measurement of potential spatial accessibility to emergency medical services for urban areas. Int. J. Health Plan. Manag. 2020, 35, 788–798. [Google Scholar] [CrossRef]
- Xia, T.; Song, X.; Zhang, H.; Song, X.; Kanasugi, H.; Shibasaki, R. Measuring spatio-temporal accessibility to emergency medical services through big GPS data. Health Place 2019, 56, 53–62. [Google Scholar] [CrossRef]
- Mohamad Shukor, M.L. Evolution of Migration for Urban and Rural: The News Letter; Department of Statistics Malaysia: Putrajaya, Malaysia, 2020. Available online: https://www.dosm.gov.my/v1/uploads/files/6_Newsletter/Newsletter%202020/DOSM_BPPD_4-2020_Series-62.pdf (accessed on 16 March 2022).
- Loh, L.; Brieger, W. Suburban sprawl in the developing world: Duplicating past mistakes? the case of kuala lumpur, Malaysia. Int. Q. Community Health Educ. 2013, 34, 199–211. [Google Scholar] [CrossRef]
- Cao, Y.; Stewart, K.; Wish, E.; Artigiani, E.; Sorg, M. Determining spatial access to opioid use disorder treatment and emergency medical services in New Hampshire. J. Subst. Abus. Treat. 2019, 101, 55–66. [Google Scholar] [CrossRef]
- Saleh, Y.; Hashim, M.; Mahat, H.; Nayan, N. Issues of Rural-Urban Transformation on the Fringe of Metropolitan Region: Several Findings from the Selangor Northern Corridor, Malaysia. Int. J. Acad. Res. Bus. Soc. Sci. 2017, 7, 913–924. [Google Scholar] [CrossRef]
- Ho, C. Urban governance and rapid urbanization issues in Malaysia. J. Alam Bina 2008, 13, 1–24. [Google Scholar]
- Gu, X.; Zhang, L.; Tao, S.; Xie, B. Spatial accessibility to healthcare services in metropolitan suburbs: The case of qingpu, Shanghai. Int. J. Environ. Res. Public Health 2019, 16, 225. [Google Scholar] [CrossRef]
- Shah, T.I.; Milosavljevic, S.; Bath, B. Measuring geographical accessibility to rural and remote health care services: Challenges and Considerations. Spat. Spatiotemporal Epidemiol. 2017, 21, 87–96. [Google Scholar] [CrossRef]
- Bozorgi, P.; Eberth, J.; Eidson, J.; Porter, D. Facility attractiveness and social vulnerability impacts on spatial accessibility to opioid treatment programs in Sough Carolina. Int. J. Environ. Res. Public Health 2021, 18, 4246. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, B.; Ir, P.; Bigdeli, M.; Annear, P.L.; Van Damme, W. Addressing access barriers to health services: An analytical framework for selectingappropriate interventions in low-income Asian countries. Health Policy Plan. 2012, 27, 288–300. [Google Scholar] [CrossRef] [PubMed]
- OECD. Focus on: Better Ways to Pay for Health Care; OECD: Paris, France, 2016; pp. 1–8. Available online: https://www.oecd.org/els/health-systems/Better-ways-to-pay-for-health-care-FOCUS.pdf (accessed on 17 March 2022).
- Wang, X.; Pan, J. Assessing the disparity in spatial access to hospital care in ethnic minority region in Sichuan Province, China. BMC Health Serv Res. 2016, 16, 399. [Google Scholar] [CrossRef] [PubMed]
- Azizah Kassim Too, T.; Wong, S.; Zainal Abidin, M. The Management of Foreign Workers in Malaysia: Institutions and Governance Regime. In Managing International Migration for Development in East Asia; Adams, R., Ahsan, A., Eds.; World Bank Group: Washington, DC, USA, 2014; pp. 241–262. [Google Scholar]
- Abdullah, N.; Ahmad, S.A.; Ayob, M.A. Labour force participation of rural youth in plantation sector of northern peninsular Malaysia. J. Ekon. Malaysia 2016, 50, 83–92. [Google Scholar]
- Button, K.S.; Ioannidis, J.P.A.; Mokrysz, C.; Nosek, B.A.; Flint, J.; Robinson, E.S.J.; Munafò, M.R. Power failure: Why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci. 2013, 14, 365–376. [Google Scholar] [CrossRef]
- Institute for Public Health. National Health and Morbidity Survey (NHMS) 2015. Vol I: Methodology & General Findings; Institute for Public Health, Ministry of Health Malaysia: Kuala Lumpur, Malaysia, 2015. [Google Scholar]
- Kaur Khakh, A.K.; Fast, V.; Shahid, R. Spatial Accessibility to Primary Healthcare Services by Multimodal Means of Travel: Synthesis and Case Study in the City of Calgary. Int. J. Environ. Res. Public Health 2019, 16, 170. [Google Scholar] [CrossRef]
- Paul, J.; Edwards, E. Temporal availability of public health care in developing countries of the Caribbean: An improved two-step floating catchment area method for estimating spatial accessibility to health care. Int. J. Health Plan. Manag. 2019, 34, e536–e556. [Google Scholar] [CrossRef] [Green Version]
- Department of Statistics Malaysia. Current Population Estimates; Department of Statistics Malaysia: Putrajaya, Malaysia, 2019. [Google Scholar]
- DOSM. Current Population Estimates, Administrative District, 2022: Selangor; DOSM: Putrajaya, Malaysia, 2022. [Google Scholar]
- DOSM. Population Distribution and Basic Demographic Characteristics 2010; Department of Statistics Malaysia: Putrajaya, Malaysia, 2011. [Google Scholar]
- Yaakob, U.; Masron, T.; Masami, F. Ninety Years of Urbanization in Malaysia: A Geographical Investigation of Its Trends and Characteristics. J. Ritsumeikan Soc. Sci. Humanit. 2012, 4, 79–101. Available online: http://www.ritsumei.ac.jp/acd/re/k-rsc/hss/book/pdf/vol04_05.pdf (accessed on 23 February 2020).
Variables, Unit | Definition | Mean ± SD | |
---|---|---|---|
District | |||
Gombak | Residents of Gombak (GBK) district | 0.01 | ±0.10 |
Hulu Langat | Residents of Hulu Langat (HUL) district | 0.05 | ±0.22 |
Hulu Selangor | Residents of Hulu Selangor (HUS) district | 0.15 | ±0.36 |
Klang | Residents of Klang (KLG) district | 0.04 | ±0.18 |
Kuala Langat | Residents of Kuala Langat (KUL) district | 0.26 | ±0.44 |
Kuala Selangor | Residents of Kuala Selangor (KUS) district | 0.18 | ±0.38 |
Sabak Bernam | Residents of Sabak Bernam (SBK) district | 0.15 | ±0.36 |
Sepang | Residents of Sepang (SPG) district | 0.17 | ±0.37 |
Locality/stratum | |||
Small Urban | EB with 1000–9999 person | 0.22 | ±0.41 |
Rural | EB with <1000 persons and non-gazetted areas | 0.78 | ±0.41 |
Distance to nearest urban area, minutes | Based on travelling via road network using motorized vehicle as mode of transport | 8.8 | ±8.7 |
Population density, person per acre | Total number of persons divided by total land area of the EB | 10.7 | ±25.1 |
Road density, km road per km2 of land area | Total length of road divided by total land area of the EB | 3.4 | ±2.5 |
Household size | Number of household member | 4.3 | ±0.58 |
Female, % | Proportion of female population in the EB | 0.48 | ±0.06 |
Vulnerable population, % | Proportion of vulnerable population (toddler aged <5, elder aged >64 and female aged 15–45) in the EB | 0.37 | ±0.05 |
Total dependency ratio (TDR) | Ratio of dependent population in relation to working age population (aged 15–64) in the EB. TDR is the sum of old-age and youth dependency ratios. | 0.57 | ±0.18 |
Old-age dependency ratio | Old-age dependent are population aged >64, in relation to working age group (aged 15–64) in the EB | 0.09 | ±0.07 |
Youth dependency ratio | Youth dependent are population aged <15, in relation to working age group (aged 15–64) in the EB | 0.48 | ±0.16 |
Malay, % | Proportion of Malay ethnic population in the EB | 0.72 | ±0.32 |
Marginalized, % | Proportion of marginalized population (aborigine and non-citizen) in the EB | 0.07 | ±0.13 |
Aspub | Aspri | Astot | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Crude β | Adj. β | Crude β | Adj. β | Crude β | Adj. β | |||||||||||||
Model I | Model II | Model I | Model II | Model I | Model II | |||||||||||||
Geographical factors | ||||||||||||||||||
District | ||||||||||||||||||
Gombak (GBK) | 0.764 | *** | 0.732 | *** | 0.736 | *** | 2.475 | *** | 1.703 | *** | 1.482 | *** | 3.239 | *** | 2.326 | *** | 2.174 | *** |
Hulu Langat (HUL) | 0.133 | 0.259 | ** | 0.268 | *** | 1.263 | *** | 0.810 | *** | 0.766 | *** | 1.395 | *** | 0.992 | *** | 1.026 | *** | |
Hulu Selangor (HUS) | 0.153 | ** | 0.219 | *** | 0.253 | *** | 0.597 | *** | 0.377 | *** | 0.356 | *** | 0.750 | *** | 0.557 | *** | 0.607 | *** |
Klang (KLG) | 0.665 | *** | 0.633 | *** | 0.547 | *** | 1.572 | *** | 1.634 | *** | 1.336 | *** | 2.237 | *** | 2.280 | *** | 1.881 | *** |
Kuala Langat (KUL) | 0.267 | *** | 0.271 | *** | 0.211 | *** | 1.243 | *** | 0.849 | *** | 0.648 | *** | 1.509 | *** | 1.063 | *** | 0.853 | *** |
Kuala Selangor (KUS) | −0.130 | ** | −0.119 | ** | −0.109 | * | 0.483 | *** | −0.039 | 0.055 | 0.353 | *** | −0.235 | * | −0.036 | |||
Sabak Bernam (SBK) | Ref | Ref | Ref | Ref | Ref | Ref | Ref | Ref | Ref | |||||||||
Sepang (SPG) | 0.499 | *** | 0.547 | *** | 0.415 | *** | 1.535 | *** | 1.114 | *** | 0.757 | *** | 2.034 | *** | 1.596 | *** | 1.168 | *** |
Locality/stratum | ||||||||||||||||||
Small urban | Ref | Ref | Ref | Ref | Ref | Ref | Ref | Ref | Ref | |||||||||
Rural | 0.223 | *** | 0.266 | *** | 0.270 | *** | 0.080 | 0.172 | *** | 0.160 | *** | 0.303 | ** | 0.439 | *** | 0.414 | *** | |
Distance to nearest urban area | −0.007 | *** | - | - | −0.059 | *** | −0.055 | *** | −0.038 | *** | −0.067 | *** | −0.063 | *** | −0.036 | *** | ||
Demographic factors | ||||||||||||||||||
Population density | 0.002 | ** | - | - | 0.010 | *** | - | 0.003 | *** | 0.012 | *** | - | 0.003 | * | ||||
Road density | 0.091 | *** | - | 0.071 | *** | 0.228 | *** | 0.104 | *** | 0.319 | *** | - | 0.178 | *** | ||||
Household size | 0.038 | - | - | 0.188 | *** | - | - | 0.226 | *** | - | - | |||||||
Female, % | −0.233 | - | - | −1.692 | *** | - | −1.876 | *** | −1.924 | ** | - | −2.066 | *** | |||||
Vulnerable population, % | 0.383 | - | - | 1.195 | ** | - | 1.918 | *** | 1.578 | ** | - | 2.152 | *** | |||||
Total dependency ratio | −0.002 | - | - | −0.005 | *** | - | - | −0.007 | ** | - | - | |||||||
Old-age dependency ratio | −0.012 | *** | - | - | −0.053 | *** | - | −0.013 | *** | −0.065 | *** | - | −0.012 | *** | ||||
Youth-age dependency ratio | 0.001 | - | −0.002 | * | 0.004 | ** | - | - | 0.005 | * | - | - | ||||||
Malay ethnic, % | 0.162 | ** | - | 0.177 | *** | 0.201 | ** | - | 0.218 | *** | 0.363 | ** | - | 0.392 | *** | |||
Marginalised population, % | 0.249 | * | - | - | 0.894 | *** | - | 0.012 | 1.143 | *** | - | 0.137 | ||||||
Malay * marginalised | - | - | - | - | - | 1.565 | *** | - | - | 1.967 | *** | |||||||
Statistics | ||||||||||||||||||
Constant/intercept | - | 0.388 | 0.151 | - | 0.995 | 0.700 | - | 1.504 | 0.723 | |||||||||
Adjusted R-square (R2) | - | 0.179 | 0.265 | - | 0.610 | 0.707 | - | 0.490 | 0.593 | |||||||||
AIC | - | 2129.8 | 1980.3 | - | 2374.8 | 1990.0 | - | 3731.1 | 3423.5 |
Adj. β | SE | 95% CI | p-Value | ||
---|---|---|---|---|---|
Lower | Upper | ||||
Explanatory variables in the model [1] | |||||
Distance to nearest urban area, minutes [2] | −0.030 | 0.003 | −0.037 | −0.024 | <0.001 |
Population density (person per acre) | 0.003 | 0.001 | 0.001 | 0.005 | 0.003 |
Road density (km road per km2 of land area) | 0.227 | 0.013 | 0.202 | 0.252 | <0.001 |
Vulnerable population (elder and toddler), % [3] | 1.549 | 0.459 | 0.648 | 2.450 | 0.001 |
Old-age dependency ratio [4] | −0.031 | 0.004 | −0.039 | −0.023 | <0.001 |
Malay, % | 0.102 | 0.083 | −0.061 | 0.265 | 0.221 |
Statistics | |||||
Constant/intercept | 0.932 | 0.179 | 0.581 | 1.282 | <0.001 |
Adjusted R-square | 0.459 | ||||
Akaike Information Criterion (AIC) | 3796.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ab Hamid, J.; Juni, M.H.; Abdul Manaf, R.; Syed Ismail, S.N.; Lim, P.Y. Spatial Accessibility of Primary Care in the Dual Public–Private Health System in Rural Areas, Malaysia. Int. J. Environ. Res. Public Health 2023, 20, 3147. https://doi.org/10.3390/ijerph20043147
Ab Hamid J, Juni MH, Abdul Manaf R, Syed Ismail SN, Lim PY. Spatial Accessibility of Primary Care in the Dual Public–Private Health System in Rural Areas, Malaysia. International Journal of Environmental Research and Public Health. 2023; 20(4):3147. https://doi.org/10.3390/ijerph20043147
Chicago/Turabian StyleAb Hamid, Jabrullah, Muhamad Hanafiah Juni, Rosliza Abdul Manaf, Sharifah Norkhadijah Syed Ismail, and Poh Ying Lim. 2023. "Spatial Accessibility of Primary Care in the Dual Public–Private Health System in Rural Areas, Malaysia" International Journal of Environmental Research and Public Health 20, no. 4: 3147. https://doi.org/10.3390/ijerph20043147
APA StyleAb Hamid, J., Juni, M. H., Abdul Manaf, R., Syed Ismail, S. N., & Lim, P. Y. (2023). Spatial Accessibility of Primary Care in the Dual Public–Private Health System in Rural Areas, Malaysia. International Journal of Environmental Research and Public Health, 20(4), 3147. https://doi.org/10.3390/ijerph20043147