Exploring Cyberaggression and Mental Health Consequences among Adults: An Italian Nationwide Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Recruitment
2.2. The Questionnaire
2.3. Statistical Analysis
3. Results
3.1. Characteristics of the Sample
3.2. Relationships between the Outcomes and Participants’ Characteristics
3.3. Multivariable Models
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nocentini, A.; Calmaestra, J.; Schultze-Krumbholz, A.; Scheithauer, H.; Ortega, R. Menesini Cyberbullying: Labels, Behaviours and Definition in Three European Countries. Aust. J. Guid. Couns. 2010, 20, 129–142. [Google Scholar] [CrossRef]
- De Marsico, D.; Bounoua, N.; Miglin, R.; Sadeh, N. Aggression in the Digital Era: Assessing the Validity of the Cyber Motivations for Aggression and Deviance Scale. Assessment 2022, 29, 764–781. [Google Scholar] [CrossRef]
- Convention on Cybercrime (ETS No. 185); Council of Europe: Budapest, Hungary, 2001; p. 22.
- LEGGE 29 Maggio 2017, n. 71. (GU Serie Generale n.127 del 03-06-2017); Gazzetta Ufficiale: Rome, Italy, 2017; pp. 1–6.
- Mapping Study on Cyberviolence. 2018. Available online: www.coe.int/cybercrime (accessed on 11 April 2021).
- Wang, M.J.; Yogeeswaran, K.; Andrews, N.P.; Hawi, D.R.; Sibley, C.G. How Common Is Cyberbullying among Adults? Exploring Gender, Ethnic, and Age Differences in the Prevalence of Cyberbullying. Cyberpsychol. Behav. Soc. Netw. 2019, 22, 736–741. [Google Scholar] [CrossRef] [PubMed]
- Stevens, F.; Nurse, J.R.C.; Arief, B. Cyber Stalking, Cyber Harassment, and Adult Mental Health: A Systematic Review. Cyberpsychol. Behav. Soc. Netw. 2021, 24, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Srabstein, J.C.; Leventhal, B.L. Prevention of bullying-related morbidity and mortality: A call for public health policies. Bull. World Health Organ. 2010, 88, 403. [Google Scholar] [CrossRef] [PubMed]
- Ybarra, M.L.; Mitchell, K.J. Online aggressor/targets, aggressors, and targets: A comparison of associated youth characteristics. J. Child Psychol. Psychiatry 2004, 45, 1308–1316. [Google Scholar] [CrossRef]
- Kim, S.; Boyle, M.H.; Georgiades, K. Cyberbullying victimization and its association with health across the life course: A canadian population study. Can. J. Public Health 2017, 108, e468–e474. [Google Scholar] [CrossRef]
- Bottino, S.M.B.; Bottino, C.M.C.; Regina, C.G.; Correia, A.V.L.; Ribeiro, W.S. Cyberbullying and adolescent mental health: Systematic review. Cad Saude Publica. 2015, 31, 463–475. [Google Scholar] [CrossRef]
- Sevcikova, A.; Šmahel, D. Online harassment and cyberbullying in the Czech Republic: Comparison across age groups. J. Psychol. 2009, 217, 227–229. [Google Scholar]
- Musharraf, S.; Anis-ul-Haque, M. Impact of cyber aggression and cyber victimization on mental health and well-being of Pakistani young adults: The moderating role of gender. J. Aggress. Maltreatment Trauma 2018, 27, 924–958. [Google Scholar] [CrossRef]
- Amnesty International Sezione Italiana. Barometro dell’odio: Intolleranza Pandemica; Amnesty International Sezione Italiana: Roma, Italy, 2021. [Google Scholar]
- Kopecký, K.; Szotkowski, R. Cyberbullying, cyber aggression and their impact on the victim—The teacher. Telemat. Inform. 2017, 34, 506–517. [Google Scholar] [CrossRef]
- Geschke, D.; Klassen, A.; Quent, M.; Richter, C. Hass im Netz: Der schleichende Angriff auf Unsere Demokratie; Institut für Demokratie und Zivilgesellschaft: Jena, Germany, 2021; p. 45. [Google Scholar]
- Costello, M.; Hawdon, J.; Ratliff, T.N. Confronting Online Extremism: The Effect of Self-Help, Collective Efficacy, and Guardianship on Being a Target for Hate Speech. Soc. Sci. Comput. Rev. 2017, 35, 587–605. [Google Scholar] [CrossRef]
- Peterson, J.; Densley, J. Cyber violence: What do we know and where do we go from here? Aggress Violent Behav. 2017, 34, 193–200. [Google Scholar] [CrossRef]
- Zurcher, J.D.; Holmgren, H.G.; Coyne, S.M.; Barlett, C.P.; Yang, C. Parenting and Cyberbullying Across Adolescence. Cyberpsychol. Behav. Soc. Netw. 2018, 21, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Crane, C.A.; Wiernik, B.M.; Berbary, C.M.; Crawford, M.; Schlauch, R.C.; Easton, C.J. A meta-analytic review of the relationship between cyber aggression and substance use. Drug Alcohol Depend. 2021, 221, 108510. [Google Scholar] [CrossRef]
- Chan, S.F.; La Greca, A.M.; Peugh, J.L. Cyber victimization, cyber aggression, and adolescent alcohol use: Short-term prospective and reciprocal associations. J. Adolesc. 2019, 74, 13–23. [Google Scholar] [CrossRef]
- Brown, R.L.; Rounds, L.A. Conjoint screening questionnaires for alcohol and other drug abuse: Criterion validity in a primary care practice. Wis. Med. J. 1995, 94, 135–140. [Google Scholar]
- Hinkin, C.H.; Castellon, S.A.; Dickson-Fuhrman, E.; Daum, G.; Jaffe, J.; Jarvik, L. Screening for drug and alcohol abuse among older adults using a modified version of the CAGE. Am. J. Addict. 2001, 10, 319–326. [Google Scholar] [CrossRef]
- Valdez, D.; Thij, M.T.; Bathina, K.; Rutter, L.A.; Bollen, J. Social media insights into US mental health during the COVID-19 pandemic: Longitudinal analysis of twitter data. J. Med. Internet Res. 2020, 22, e21418. [Google Scholar] [CrossRef]
- Barlett, C.P.; Simmers, M.M.; Roth, B.; Gentile, D. Comparing cyberbullying prevalence and process before and during the COVID-19 pandemic. J. Soc. Psychol. 2021, 161, 408–418. [Google Scholar] [CrossRef]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B.W. The Patient Health Questionnaire-2: Validity of a Two-Item Depression Screener. Med. Care 2003, 41, 1284–1292. [Google Scholar] [CrossRef]
- Sapra, A.; Bhandari, P.; Sharma, S.; Chanpura, T.; Lopp, L. Using Generalized Anxiety Disorder-2 (GAD-2) and GAD-7 in a Primary Care Setting. Cureus 2020, 12, e8224. [Google Scholar] [CrossRef] [PubMed]
- Patient Health Questionnaire (PHQ) Screeners Official Website. Pfizer Inc. 2010. Available online: https://www.phqscreeners.com/select-screener (accessed on 21 June 2022).
- Feinstein, B.A.; Bhatia, V.; Davila, J. Rumination Mediates the Association Between Cyber-Victimization and Depressive Symptoms. J. Interpers Violence 2014, 29, 1732–1746. [Google Scholar] [CrossRef]
- Celuch, M.; Oksanen, A.; Räsänen, P.; Costello, M.; Blaya, C.; Zych, I.; Llorent, V.J.; Reichelmann, A.; Hawdon, J. Factors Associated with Online Hate Acceptance: A Cross-National Six-Country Study among Young Adults. Int. J. Enviton. Res. Public Health 2022, 19, 534. [Google Scholar] [CrossRef]
- League, A.D. Online Hate and Harassment: The American Experience 2021; Center for Technology and Society: New York, NY, USA, 2021; pp. 10–23. [Google Scholar]
- Dreßing, H.; Bailer, J.; Anders, A.; Wagner, H.; Gallas, C. Cyberstalking in a Large Sample of Social Network Users: Prevalence, Characteristics, and Impact Upon Victims. Cyberpsychol. Behav. Soc. Netw. 2014, 17, 61–67. [Google Scholar] [CrossRef]
- Cassidy, W.; Faucher, C.; Jackson, M. The dark side of the ivory tower: Cyberbullying of University Faculty and Teaching Personnel. Alta. J. Educ. Res. 2014, 60, 279–299. [Google Scholar]
- Istat. Censimento Della Popolazione E Dinamica Demografica-ANNO 2020. ISTAT-Istituto Nazionale di Statistica. 2021, p. 19. Available online: https://www.istat.it/it/archivio/264511 (accessed on 4 March 2022).
- Reichelmann, A.; Hawdon, J.; Costello, M.; Ryan, J.; Blaya, C.; Llorent, V.; Oksanen, A.; Räsänen, P.; Zych, I. Hate Knows No Boundaries: Online Hate in Six Nations. Deviant Behav. 2021, 42, 1100–1111. [Google Scholar] [CrossRef]
- ISTAT-Istituto Nazionale di Statistica. La Violenza Contro le Donne Dentro e Fuori la Famiglia; ISTAT-Istituto Nazionale di Statistica: Roma, Italy, 2015; pp. 1–17. [Google Scholar]
- Jo Cox Commission. Jo Cox Committee on Intolerance, Xenophobia, Racism and Hate Issues; Final Report; Jo Cox Committee 6 July 2017. Available online: https://www.camera.it/leg17/1264 (accessed on 4 March 2022).
- Lingiardi, V.; Carone, N.; Semeraro, G.; Musto, C.; D’Amico, M.; Brena, S. Mapping Twitter hate speech towards social and sexual minorities: A lexicon-based approach to semantic content analysis. Behav. Inf. Technol. 2020, 39, 711–721. [Google Scholar] [CrossRef]
- Jones, L.M.; Mitchell, K.J. Online Harassment. Wiley Handb. Psychol. Violence 2016, 8, 571–587. [Google Scholar]
- Wright, M.F.; Li, Y. The Association Between Cyber Victimization and Subsequent Cyber Aggression: The Moderating Effect of Peer Rejection. J. Youth Adolesc. 2013, 42, 662–674. Available online: http://link.springer.com/10.1007/s10964-012-9903-3 (accessed on 4 March 2022). [CrossRef]
Characteristic | Overall Sample | Being Perpetrator of CyA | Being Victim of CyA | ||||
---|---|---|---|---|---|---|---|
N (%) (n = 446) | No N (%) 383 (85.9) | Yes N (%) 60 (13.5) | p-Value | No N (%) 239 (53.7) | Yes N (%) 206 (46.2) | p-Value | |
Age | Median 32 | Median 33 | Median 29 | 0.004 | Median 35 | Median 31 | 0.019 |
IQR (26–44) | IQR (26–45) | IQR (25–36) | IQR (26–49) | IQR (25–38) | |||
Gender | |||||||
Men | 167 (37.4) | 133 (81.1) | 31 (18.9) | 0.002 | 87 (52.1) | 80 (47.9) | 0.192 |
Women | 275 (61.7) | 248 (90.2) | 27 (9.8) | 151 (55.1) | 123 (44.9) | ||
Female-to-male ratio | 1 (0.2) | 1 (0.2) | 0 (0) | (100) | 0 (0) | ||
Queer | 3 (0.7) | 1 (33.3) | 2 (66.7) | 0 (0) | 3 (100) | ||
Sexual Orientation | |||||||
Cis (i.e., heterosexual) | 390 (87.4) | 342 (88.4) | 45 (11.6) | 0.002 | 126 (58.1) | 163 (41.9) | <0.001 |
LGBTQA+ | 56 (12.6) | 41 (73.2) | 15 (26.8) | 13 (23.2) | 43 (76.8) | ||
Education | |||||||
High-school diploma or lower level | 248 (55.6) | 216 (87.7) | 30 (12.2) | 0.354 | 132 (53.4) | 115 (46.6) | 0.001 |
College or Master/PhD | 198 (44.4) | 167 (84.8) | 30 (15.2) | 198 (44.5) | 91 (46.0) | ||
Employment | |||||||
Employed | 254 (57.0) | 215 (85.3) | 37 (14.7) | 0.073 | 125 (49.2) | 129 (50.8) | 0.001 |
Student | 145 (32.5) | 122 (84.7) | 22 (15.3) | 77 (53.1) | 68 (46.9) | ||
Retired, homemaker, unemployed | 43 (9.6) | 42 (97.7) | 1 (2.3) | 34 (81.0) | 8 (19.0) | ||
Own + parents’ birthplace | |||||||
Italy | 425 (95.3) | 365 (86.5) | 57 (13.5) | 0.919 | 228 (53.8) | 196 (46.2) | 0.901 |
Born abroad or at least one parent born abroad | 21 (4.7) | 18 (85.7) | 3 (14.3) | 11 (52.4) | 10 (47.6) |
Characteristic | Overall Sample | Being Perpetrator of CyA | Being Victim of CyA | ||||
---|---|---|---|---|---|---|---|
N (%) (n = 446) | No N (%) 383 (85.9) | Yes N (%) 60 (13.5) | p-Value | No N (%) 239 (53.7) | Yes N (%) 206 (46.2) | p-Value | |
Family relationship | |||||||
Good/very good | 331 (74.2) | 293 (89.1) | 36 (10.9) | 0.007 | 189 (57.3) | 141 (42.7) | 0.011 |
Bad/very bad | 115 (25.8) | 90 (78.9) | 24 (21.1) | 50 (43.5) | 65 (36.5) | ||
Social life | |||||||
Many people | 126 (28.3) | 103 (83.1) | 21 (16.9) | 0.215 | 63 (50) | 63 (50) | 0.763 |
Some people | 293 65.7) | 259 (88.7) | 33 (11.3) | 162 (55.5) | 130 (44.5) | ||
No contact | 16 (3.6) | 12 (75) | 4 (25) | 8 (50) | 8 (50) | ||
Social isolation | 11 (2.5) | 9 (81.8) | 2 (18.2) | 6 (54.5) | 5 (45.5) | ||
Economic status | |||||||
High/medium | 400 (89.7) | 342 (86.1) | 55 (13.9) | 0.576 | 217 (54.4) | 182 (45.6) | 0.398 |
Low/very low | 46 (26.5) | 41 (89.1) | 5 (10.9) | 22 (47.8) | 24 (52.2) | ||
CAGE-AID | |||||||
Negative | 328 (73.5) | 295 (90.5) | 31 (9.5) | <0.001 | 197 (60.2) | 130 (39.8) | <0.001 |
Positive | 118 (26.5) | 88 (75.2) | 29 (24.8) | 42 (35.6) | 76 (64.4) | ||
Social network frequency use | |||||||
Very often/often | 324 (72.6) | 271 (83.6) | 51 (15.7) | 0.002 | 156 (48.1) | 167 (51.9) | <0.001 |
Rarely/never | 122 (37.4) | 112 (91.8 | 9 (7.4) | 42 (35.6) | 76 (64.4) | ||
Messaging apps frequency use | |||||||
Very often/often | 413 (92.6) | 354 (85.7) | 56 (13.5) | 0.053 | 217 (52.5) | 195 (47.2) | 0.010 |
Rarely/never | 33 (7.4) | 29 (87.9) | 4 (12.1) | 22 (66.6) | 11 (33.4) | ||
Video platforms frequency use | |||||||
Very often/often | 178 (39.9) | 143 (80.3) | 33 (18.5) | 0.001 | 78 (43.8) | 100 (56.2) | 0.008 |
Rarely/never | 268 (60.1) | 240 (89.5) | 27 (10.1) | 161 (60.1) | 106 (39.9) | ||
Forums/blogs frequency use | |||||||
Very often/often | 111 (24.9) | 95 (85.6) | 16 (14.4) | 0.034 | 55 (49.5) | 56 (50.5) | 0.548 |
Rarely/never | 335 (75.1) | 288 (86.0) | 44 (13.1) | 184 (54.9 | 150 (44.7) | ||
Dating apps frequency use | |||||||
Very often/often | 34 (7.6) | 24 (70.6) | 10 (29.4) | 0.002 | 11 (32.3) | 23 (67.6) | 0.007 |
Rarely/never | 412 (92.4) | 359 (87.1) | 50 (12.1) | 228 (55.3) | 183 (44.4) | ||
Changes during pandemic | |||||||
Increased | 186 (41.7) | 159(85.9) | 26(14.1%) | <0.001 | 87 (46.8) | 99 (53.2) | 0.002 |
Decreased | 6 (1.3) | 5 (83.3) | 1(16.7%) | 2 (33.3) | 4 (66.7) | ||
Unchanged | 75 (16.8) | 54 (72.0) | 21(28.0%) | 35 (46.7) | 40 (53.3) | ||
No idea | 179 (40.1) | 165(93.2) | 12(6.8%) | 115(64.6) | 63 (35.4) | ||
Being victim of FtF violence | |||||||
Never | 207 (46.9) | 191 (92.3) | 16 (7.7) | 0.002 | 138 (66.7) | 69 (33.3) | <0.001 |
During childhood, adulthood, or both | 234 (53.1) | 191(82.3) | 41 (17.7) | 100 (42.9) | 133 (57.1) | ||
Being perpetrator of FtF violence | |||||||
Never | 385 (86.3) | 349 (90.9) | 35 (9.1) | <0.001 | 220 (57.3) | 164 (42.7) | <0.001 |
During childhood, adulthood, or both | 57 (12.8) | 33 (58.9) | 23(41.1) | 18 (31.6) | 39 (68.4) | ||
Mental health service access | |||||||
No | 340 (80.8) | 306 (90.3) | 33 (9.7) | <0.001 | 199 (58.5) | 141 (41.5) | <0.001 |
Yes | 81 (19.2) | 80 (19.1) | 21 (26.3) | 29 (36.3) | 51 (63.8) | ||
Risk of depression (PHQ-2) | |||||||
Negative | 333 (77.6) | 294 (88.8) | 37 (11.2) | 0.051 | 184 (55.4) | 148 (44.6) | 0.448 |
Positive | 96 (22.4) | 78 (81.3) | 18 (18.8) | 49 (51.0) | 47 (49.0) | ||
Risk of anxiety (GAD-2) | |||||||
Negative | 283 (66.0) | 251 (89.0) | 31 (11.0) | 0.104 | 165 (58.3) | 118 (41.7) | 0.025 |
Positive | 146 (34.0) | 121 (81.3) | 24 (16.6) | 68 (46.9) | 77 (53.1) |
Characteristic | Being Perpetrator of CyA | Being Victim of CyA | ||
---|---|---|---|---|
Adj OR (95% CI) | p-Value | Adj OR (95% CI) | p-Value | |
Age | 0.97(0.92–1.02) | 0.319 | 0.98 (0.95–1.01) | 0.128 |
Gender 1 | ||||
Men | Ref. | 0.013 | Ref. | 0.048 |
Women | 0.37 (0.17–0.81) | 1.68 (1.01–2.82) | ||
Sexual orientation | ||||
LGBTQA+ | 0.50 (0.19–1.32) | 0.164 | 4.31 (1.91–9.68) | ≤0.001 |
Education | ||||
High-school diploma or lower level | 0.99 (0.40–2.48) | 0.993 | 1.03 (0.57–1.89) | 0.910 |
Professional status | ||||
Employed | Ref. | Ref. | ||
Student | 1.70 (0.57–5.11) | 0.343 | 0.56 (0.27–1.19) | 0.133 |
Unemployed, retired, homemaker | 1.27 (0.14–3.58) | 0.842 | 0.55 (0.19–1.61) | 0.279 |
Nationality | ||||
Born abroad or parents born abroad (1 or 2) | 0.70 (0.14–3.58) | 0.665 | 1.29 (0.44–3.78) | 0.644 |
Family relationship | ||||
Conflictual-very conflictual | 1.52 (0.68–3.41) | 0.306 | 0.89 (0.50–1.60) | 0.705 |
Social life | ||||
Many people | Ref. | Ref. | ||
Some people | 0.51 (0.23–1.12) | 0.095 | 1.04 (0.62–1.75) | 0.889 |
No contact | 1.11 (0.18–6.90) | 0.908 | 0.86 (0.21–3.56) | 0.834 |
Social isolation | 0.96 (0.12–7.82) | 0.967 | 0.72 (0.14–3.81) | 0.701 |
Economic status | ||||
Low-very low | 0.60 (0.18–1.95) | 0.392 | 1.37 (0.63–2.97) | 0.421 |
CAGE-AID | ||||
Positive | 1.58 (0.75–3.30) | 0.224 | 2.08 (1.20–3.60) | 0.009 |
Being victim of CyA | 20.39 (6.39–65.11) | 0.001 | - | - |
Being perpetrator of CyA | - | - | 15.70 (5.18–47.58) | <0.001 |
Being victim of FtF violence 2 | 1.04 (0.47–2.30) | 0.917 | 1.67 (1.02–2.72) | 0.040 |
Being perpetrator of FtF violence 2 | 3.99 (1.70–9.40) | 0.002 | 0.85 (0.38–1.89) | 0.697 |
Access to mental health service | 2.42 (1.08–5.43) | 0.032 | 1.36 (0.74–2.52) | 0.321 |
Characteristic | Risk of Depressive Symptoms | Risk of Anxiety Disorders | ||
---|---|---|---|---|
Adj OR (95% CI) | p-Value | Adj OR (95% CI) | p-Value | |
Age | 0.99 (0.96–1.02) | 0.538 | 0.99 (0.97–1.02) | 0.835 |
Gender 1 | ||||
Men | Ref. | 0.940 | Ref. | 0.004 |
Women | 1.02 (0.58–1.78) | 2.13 (1.27–3.57) | ||
Sexual orientation | ||||
LGBTQA+ | 1.57 (0.72–3.39) | 0.254 | 1.53 (0.74–3.14) | 0.250 |
Education | ||||
Secondary school or high-school diploma | 1.305 (0.697–2.441) | 0.405 | 1.099 (0.621–1.948) | 0.745 |
Professional status | ||||
Employed | Ref. | Ref. | ||
Student | 1.60 (0.73–3.50) | 0.242 | 2.29 (1.13–4.68) | 0.022 |
Unemployed, retired, homemaker | 0.49 (0.13–1.88) | 0.298 | 0.87 (0.30–2.57) | 0.809 |
Nationality | ||||
Born abroad or parents born abroad (1 or 2) | 0.49 (0.13–1.85) | 0.294 | 1.00 (0.36–2.78) | 0.995 |
Family relationship | ||||
Conflictual/very conflictual | 1.08 (0.58–2.00) | 0.807 | 1.21 (0.36–2.78) | 0.496 |
Social life | ||||
Many people | Ref. | Ref. | ||
Some people | 1.76 (0.93–3.32) | 0.080 | 1.34 (0.79–2.27) | 0.274 |
No contact | 7.21 (1.94–26.80) | 0.003 | 10.56 (2.64–42.26) | 0.001 |
Social isolation | 8.76 (1.99–38.44) | 0.004 | 2.52 (0.63–9.99) | 0.189 |
Economic status | ||||
Low/very low | 2.16 (1.00–4.65) | 0.050 | 0.84 (0.39–1.83) | 0.661 |
CAGE-AID | ||||
Positive | 2.14 (1.20–3.80) | 0.385 | 1.72 (1.02–2.92) | 0.043 |
Being victim of CyA | 0.77 (0.44–1.38) | 0.385 | 1.14 (0.69–1.88) | 0.620 |
Being perpetrator of CyA | 1.40 (0.64–3.11) | 0.397 | 1.04 (0.50–2.18) | 0.916 |
Being victim of FtF-A 2 | 0.89 (0.52–1.55) | 0.692 | 1.19 (0.73–1.88) | 0.476 |
Being perpetrator of FtF-A 2 | 0.57 (0.25–1.32) | 0.188 | 0.90 (0.43–1.88) | 0.778 |
Access to mental health service | 1.91 (1.03–3.55) | 0.040 | 2.42 (1.36–4.31) | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lo Moro, G.; Scaioli, G.; Martella, M.; Pagani, A.; Colli, G.; Bert, F.; Siliquini, R. Exploring Cyberaggression and Mental Health Consequences among Adults: An Italian Nationwide Cross-Sectional Study. Int. J. Environ. Res. Public Health 2023, 20, 3224. https://doi.org/10.3390/ijerph20043224
Lo Moro G, Scaioli G, Martella M, Pagani A, Colli G, Bert F, Siliquini R. Exploring Cyberaggression and Mental Health Consequences among Adults: An Italian Nationwide Cross-Sectional Study. International Journal of Environmental Research and Public Health. 2023; 20(4):3224. https://doi.org/10.3390/ijerph20043224
Chicago/Turabian StyleLo Moro, Giuseppina, Giacomo Scaioli, Manuela Martella, Alessio Pagani, Gianluca Colli, Fabrizio Bert, and Roberta Siliquini. 2023. "Exploring Cyberaggression and Mental Health Consequences among Adults: An Italian Nationwide Cross-Sectional Study" International Journal of Environmental Research and Public Health 20, no. 4: 3224. https://doi.org/10.3390/ijerph20043224
APA StyleLo Moro, G., Scaioli, G., Martella, M., Pagani, A., Colli, G., Bert, F., & Siliquini, R. (2023). Exploring Cyberaggression and Mental Health Consequences among Adults: An Italian Nationwide Cross-Sectional Study. International Journal of Environmental Research and Public Health, 20(4), 3224. https://doi.org/10.3390/ijerph20043224