Spatial Distribution, Contamination Assessment and Origin of Soil Heavy Metals in the Danjiangkou Reservoir, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Collecting Soil Samples and Physico-Chemical Property Analysis
2.3. Assessment of Heavy Metal Pollution
2.3.1. Contamination Factor (CF)
2.3.2. Geo-Accumulation Index (Igeo)
2.3.3. Positive Matrix Factorization (PMF) Model
2.4. Data Analysis
3. Results and Discussion
3.1. The Descriptive Statistical Parameters of Heavy Metal Concentrations in Topsoil
3.2. Space Distribution Pattern of Heavy Metals
3.3. Assessment of Heavy Metal Pollution
3.4. Source Identification of Heavy Metals
3.4.1. Source Identification Using PCA
3.4.2. Quantitative Source Apportionment Using the PMF Model
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fei, X.; Lou, Z.; Xiao, R.; Ren, Z.; Lv, X. Contamination assessment and source apportionment of heavy metals in agricultural soil through the synthesis of PMF and GeogDetector models. Sci. Total Environ. 2020, 747, 141293. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Yang, Y.; Christakos, G.; Liu, Y.; Yang, X. Assessment of soil heavy metal pollution using stochastic site indicators. Geoderma 2019, 337, 359–367. [Google Scholar] [CrossRef]
- Xue, P.; Zhao, Q.; Sun, H.; Geng, L.; Yang, Z.; Liu, W. Characteristics of heavy metals in soils and grains of wheat and maize from farmland irrigated with sewage. Environ. Sci. Pollut. Res. 2019, 26, 5554–5563. [Google Scholar] [CrossRef] [PubMed]
- Yadav, I.C.; Devi, N.L.; Singh, V.K.; Li, J.; Zhang, G. Spatial distribution, source analysis, and health risk assessment of heavy metals contamination in house dust and surface soil from four major cities of Nepal. Chemosphere 2019, 218, 1100–1113. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, J.; Wang, L.; Zhao, Y.; Ou, P.; Shi, W. Establishing a health risk assessment for metal speciation in soil—A case study in an industrial area in China. Ecotoxicol. Environ. Saf. 2018, 166, 488–497. [Google Scholar] [CrossRef]
- Khan, Z.I.; Ahmad, K.; Ashraf, M.; Parveen, R.; Bibi, Z.; Mustafa, I.; Noorka, I.R.; Tahir, H.M.; Akram, N.A.; Ullah, M.F.; et al. Risk assessment of heavy metal and metalloid toxicity through a contaminated vegetable (Cucurbita maxima) from wastewater irrigated area: A case study for a site-specific risk assessment in Jhang, Pakistan. Hum. Ecol. Risk Assess. Int. J. 2016, 22, 86–98. [Google Scholar] [CrossRef]
- Jiang, Y.; Chao, S.; Liu, J.; Yang, Y.; Chen, Y.; Zhang, A.; Cao, H. Source apportionment and health risk assessment of heavy metals in soil for a township in Jiangsu Province, China. Chemosphere 2017, 168, 1658–1668. [Google Scholar] [CrossRef]
- Liao, S.; Jin, G.; Khan, M.A.; Zhu, Y.; Duan, L.; Luo, W.; Jia, J.; Zhong, B.; Ma, J.; Ye, Z.; et al. The quantitative source apportionment of heavy metals in peri-urban agricultural soils with UNMIX and input fluxes analysis. Environ. Technol. Innov. 2021, 21, 101232. [Google Scholar] [CrossRef]
- Qin, G.; Niu, Z.; Yu, J.; Li, Z.; Ma, J.; Xiang, P. Soil heavy metal pollution and food safety in China: Effects, sources and removing technology. Chemosphere 2021, 267, 129205. [Google Scholar] [CrossRef]
- Duan, X.-C.; Yu, H.-H.; Ye, T.-R.; Huang, Y.; Li, J.; Yuan, G.-L.; Albanese, S. Geostatistical mapping and quantitative source apportionment of potentially toxic elements in top- and sub-soils: A case of suburban area in Beijing, China. Ecol. Indic. 2020, 112, 106085. [Google Scholar] [CrossRef]
- Huang, J.; Guo, S.; Zeng, G.-m.; Li, F.; Gu, Y.; Shi, Y.; Shi, L.; Liu, W.; Peng, S. A new exploration of health risk assessment quantification from sources of soil heavy metals under different land use. Environ. Pollut. 2018, 243, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Cai, L.-M.; Wen, H.-H.; Luo, J.; Wang, Q.-S.; Liu, X. Spatial distribution and source apportionment of heavy metals in soil from a typical county-level city of Guangdong Province, China. Sci. Total Environ. 2019, 655, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Lin, B.; Yuan, M.; Lao, Z.; Wu, K.; Zeng, Y.; Liang, Z.; Li, H.; Li, Y.; Zhu, D.; et al. Trace metal pollution and ecological risk assessment in agricultural soil in Dexing Pb/Zn mining area, China. Environ. Geochem. Health 2019, 41, 967–980. [Google Scholar] [CrossRef] [PubMed]
- Marrugo-Negrete, J.; Pinedo-Hernández, J.; Díez, S. Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environ. Res. 2017, 154, 380–388. [Google Scholar] [CrossRef]
- Khadhar, S.; Sdiri, A.; Chekirben, A.; Azouzi, R.; Charef, A. Integration of sequential extraction, chemical analysis and statistical tools for the availability risk assessment of heavy metals in sludge amended soils. Environ. Pollut. 2020, 263, 114543. [Google Scholar] [CrossRef]
- Khademi, H.; Gabarrón, M.; Abbaspour, A.; Martínez-Martínez, S.; Faz, A.; Acosta, J.A. Environmental impact assessment of industrial activities on heavy metals distribution in street dust and soil. Chemosphere 2019, 217, 695–705. [Google Scholar] [CrossRef]
- Mapani, B.; Ellmies, R.; Kamona, F.; Kříbek, B.; Majer, V.; Knésl, I.; Pašava, J.; Mufenda, M.; Mbingeneeko, F. Potential human health risks associated with historic ore processing at Berg Aukas, Grootfontein area, Namibia. J. Afr. Earth Sci. 2010, 58, 634–647. [Google Scholar] [CrossRef]
- Huang, J.; Peng, S.; Mao, X.; Li, F.; Guo, S.; Shi, L.; Shi, Y.; Yu, H.; Zeng, G.-M. Source apportionment and spatial and quantitative ecological risk assessment of heavy metals in soils from a typical Chinese agricultural county. Process Saf. Environ. Prot. 2019, 126, 339–347. [Google Scholar] [CrossRef]
- Liu, P.; Hu, W.; Tian, K.; Huang, B.; Zhao, Y.; Wang, X.; Zhou, Y.; Shi, B.; Kwon, B.-O.; Choi, K.; et al. Accumulation and ecological risk of heavy metals in soils along the coastal areas of the Bohai Sea and the Yellow Sea: A comparative study of China and South Korea. Environ. Int. 2020, 137, 105519. [Google Scholar] [CrossRef]
- Wang, J.; Liu, G.; Wu, H.; Zhang, T.; Liu, X.; Li, W. Temporal-spatial variation and partitioning of dissolved and particulate heavy metal(loid)s in a river affected by mining activities in Southern China. Environ. Sci. Pollut. Res. 2018, 25, 9828–9839. [Google Scholar] [CrossRef]
- Wang, H.; Wu, Q.; Hu, W.; Huang, B.; Dong, L.; Liu, G. Using multi-medium factors analysis to assess heavy metal health risks along the Yangtze River in Nanjing, Southeast China. Environ. Pollut. 2018, 243, 1047–1056. [Google Scholar] [CrossRef] [PubMed]
- Goovaerts, P. Geostatistical modelling of uncertainty in soil science. Geoderma 2001, 103, 3–26. [Google Scholar] [CrossRef]
- Ran, J.; Wang, D.; Wang, C.; Zhang, G.; Yao, L. Using portable X-ray fluorescence spectrometry and GIS to assess environmental risk and identify sources of trace metals in soils of peri-urban areas in the Yangtze Delta region, China. Environ. Sci. Process. Impacts 2014, 168, 1870–1877. [Google Scholar] [CrossRef]
- Zhang, C. Using multivariate analyses and GIS to identify pollutants and their spatial patterns in urban soils in Galway, Ireland. Environ. Pollut. 2006, 142, 501–511. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Zou, B.; Feng, H.; Tang, J.; Tu, Y.; Zhao, X. Spatial distribution mapping of Hg contamination in subclass agricultural soils using GIS enhanced multiple linear regression. J. Geochem. Explor. 2019, 196, 1–7. [Google Scholar] [CrossRef]
- Schwarz, J.; Pokorná, P.; Rychlík, Š.; Škáchová, H.; Vlček, O.; Smolík, J.; Ždímal, V.; Hůnová, I. Assessment of air pollution origin based on year-long parallel measurement of PM2.5 and PM10 at two suburban sites in Prague, Czech Republic. Sci. Total Environ. 2019, 664, 1107–1116. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, L.; Lv, J. Spatial assessment models to evaluate human health risk associated to soil potentially toxic elements. Environ. Pollut. 2021, 268, 115699. [Google Scholar] [CrossRef] [PubMed]
- Han, G.; Liu, M.; Li, X.; Zhang, Q. Sources and geochemical behaviors of rare earth elements in suspended particulate matter in a wet-dry tropical river. Environ. Res. 2023, 218, 115044. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, Z.; Shen, Z.; Li, S.; Wang, S. The Han River watershed management initiative for the South-to-North Water Transfer project (Middle Route) of China. Environ. Monit. Assess. 2009, 148, 369–377. [Google Scholar] [CrossRef]
- Dong, Q.; Wen, H.; Song, C.; Yang, Z.; Yan, M. Comprehensive Evaluation and Influencing Factors of Surface Soil Nutrient Chemistry in Southeastern Cultivated Area of the Nanyang Basin, Henan Province. Geoscience 2022, 36, 449–461. [Google Scholar]
- Han, G.; Tang, Y.; Liu, M.; Van Zwieten, L.; Yang, X.; Yu, C.; Wang, H.; Song, Z. Carbon-nitrogen isotope coupling of soil organic matter in a karst region under land use change, Southwest China. Agric. Ecosyst. Environ. 2020, 301, 107027. [Google Scholar] [CrossRef]
- Qu, R.; Han, G. Potassium Isotopes in Herbaceous Plants: A Potential New Tool for C-3 and C-4 Plant Research. J. Geophys. Res. Biogeosci. 2022, 127, e2021JG006682. [Google Scholar] [CrossRef]
- Hardaway, C.J.; Sneddon, J.; Sneddon, E.J.; Kiran, B.; Lambert, B.J.; McCray, T.C.; Bowser, D.Q.; Douvris, C. Study of selected metal concentrations in sediments by inductively coupled plasma-optical emission spectrometry from a metropolitan and more pristine bayou in Southwest Louisiana, United States. Microchem. J. 2016, 127, 213–219. [Google Scholar] [CrossRef]
- Ren, B.; Zhou, Y.; Tao, Z.; Cheng, L.J. Spatial Structure Features and Distributing Rules of Soil Heavy Metal Concentrations of Antimony Mining Area. Appl. Mech. Mater. 2012, 253–255, 1063–1068. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control.a sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Hans Wedepohl, K. The composition of the continental crust. Geochim. Cosmochim. Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- Müller, G. Schwermetalle in den Sedimenten des Rheins-Veränderungen seit 1971. Umsch. Wissensch Tech. 1979, 79, 778–783. [Google Scholar]
- Paatero, P. Least squares formulation of robust non-negative factor analysis. Chemom. Intell. Lab. Syst. 1997, 37, 23–35. [Google Scholar] [CrossRef]
- Chan, Y.-C.; Hawas, O.; Hawker, D.; Vowles, P.; Cohen, D.D.; Stelcer, E.; Simpson, R.; Golding, G.; Christensen, E. Using multiple type composition data and wind data in PMF analysis to apportion and locate sources of air pollutants. Atmos. Environ. 2011, 45, 439–449. [Google Scholar] [CrossRef]
- Norris, G.; Duvall, R.; Brown, S.; Bai, S. EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide; EPA/600/R-14/108; U.S. Environmental Protection Agency Office of Research and Development: Washington, DC, USA, 2014; pp. 1–136.
- Wei, F.S.; Chen, J.S.; Wu, Y. Background Values of Soil Elements in China; China Environmental Science Press: Beijing, China, 1990. [Google Scholar]
- Men, C.; Liu, R.; Wang, Q.; Guo, L.; Shen, Z. The impact of seasonal varied human activity on characteristics and sources of heavy metals in metropolitan road dusts. Sci. Total Environ. 2018, 637–638, 844–854. [Google Scholar] [CrossRef]
- Manta, D.S.; Angelone, M.; Bellanca, A.; Neri, R.; Sprovieri, M. Heavy metals in urban soils: A case study from the city of Palermo (Sicily), Italy. Sci. Total Environ. 2002, 300, 229–243. [Google Scholar] [CrossRef] [PubMed]
- Wilding, L.P. Spatial variability: Its documentation, accommodation and implication to soil surveys. In Proceedings of the Soil Spatial Variability, Las Vegas, NV, USA, 30 November–1 December 1984; pp. 166–194. [Google Scholar]
- Huang, Y.; Duan, X.; Yuan, G.; Li, H.; Zhang, Q. Geochemistry and Source Identification of Heavy Metals in the Top and Subsoil of Yanqing District in Beijing. Geoscience 2022, 36, 634–644. [Google Scholar]
- Shao, D.; Zhan, Y.; Zhou, W.; Zhu, L. Current status and temporal trend of heavy metals in farmland soil of the Yangtze River Delta Region: Field survey and meta-analysis. Environ. Pollut. 2016, 219, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Tepanosyan, G.; Sahakyan, L.; Belyaeva, O.; Saghatelyan, A. Origin identification and potential ecological risk assessment of potentially toxic inorganic elements in the topsoil of the city of Yerevan, Armenia. J. Geochem. Explor. 2016, 167, 1–11. [Google Scholar] [CrossRef]
- Ma, Z.; Chen, K.; Li, Z.; Bi, J.; Huang, L. Heavy metals in soils and road dusts in the mining areas of Western Suzhou, China: A preliminary identification of contaminated sites. J. Soils Sediments 2016, 16, 204–214. [Google Scholar] [CrossRef]
- Guan, Q.; Zhao, R.; Pan, N.; Wang, F.; Yang, Y.; Luo, H. Source apportionment of heavy metals in farmland soil of Wuwei, China: Comparison of three receptor models. J. Clean. Prod. 2019, 237, 117792. [Google Scholar] [CrossRef]
- Xia, F.; Zhang, C.; Qu, L.; Song, Q.; Ji, X.; Mei, K.; Dahlgren, R.A.; Zhang, M. A comprehensive analysis and source apportionment of metals in riverine sediments of a rural-urban watershed. J. Hazard. Mater. 2020, 381, 121230. [Google Scholar] [CrossRef]
- Qu, R.; Han, G. Potassium isotopes of fertilizers as potential markers of anthropogenic input in ecosystems. Environ. Chem. Lett. 2022, 21, 41–45. [Google Scholar] [CrossRef]
- Huang, B.; Kuo, S.; Bembenek, R. Cadmium uptake by lettuce from soil amended with phosphorus and trace element fertilizers. Water Air Soil Pollut. 2003, 147, 109–127. [Google Scholar] [CrossRef]
- Kuo, S.; Huang, B.; Bembenek, R. The availability to lettuce of zinc and cadmium in a zinc fertilizer. Soil Sci. 2004, 169, 363–373. [Google Scholar] [CrossRef]
- Greger, M.; Malm, T.; Kautsky, L. Heavy metal transfer from composted macroalgae to crops. Eur. J. Agron. 2007, 26, 257–265. [Google Scholar] [CrossRef]
- Huang, B.; Kuo, S.; Bembenek, R. Availability to lettuce of arsenic and lead from trace element fertilizers in soil. Water Air Soil Pollut. 2005, 164, 223–239. [Google Scholar] [CrossRef]
- Hu, W.; Wang, H.; Dong, L.; Huang, B.; Borggaard, O.K.; Bruun Hansen, H.C.; He, Y.; Holm, P.E. Source identification of heavy metals in peri-urban agricultural soils of southeast China: An integrated approach. Environ. Pollut. 2018, 237, 650–661. [Google Scholar] [CrossRef]
- Turer, D.; Maynard, J.B.; Sansalone, J.J. Heavy metal contamination in soils of urban highways: Comparison between runoff and soil concentrations at Cincinnati, Ohio. Water Air Soil Pollut. 2001, 132, 293–314. [Google Scholar] [CrossRef]
- Duzgoren-Aydin, N.S.; Li, X.D.; Wong, S.C. Lead contamination and isotope signatures in the urban environment of Hong Kong. Environ. Int. 2004, 30, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.; Liu, Y. An integrated approach to identify quantitative sources and hazardous areas of heavy metals in soils. Sci. Total Environ. 2019, 646, 19–28. [Google Scholar] [CrossRef]
- Karim, Z.; Qureshi, B.A.; Mumtaz, M. Geochemical baseline determination and pollution assessment of heavy metals in urban soils of Karachi, Pakistan. Ecol. Indic. 2015, 48, 358–364. [Google Scholar] [CrossRef]
- Chen, T.; Chang, Q.; Liu, J.; Clevers, J.G.P.W.; Kooistra, L. Identification of soil heavy metal sources and improvement in spatial mapping based on soil spectral information: A case study in northwest China. Sci. Total Environ. 2016, 565, 155–164. [Google Scholar] [CrossRef]
- Wang, Q.R.; Cui, Y.S.; Liu, X.M.; Dong, Y.T.; Christie, P. Soil contamination and plant uptake of heavy metals at polluted sites in China. J. Environ. Sci. Health A Tox Hazard Subst. Environ. Eng. 2003, 38, 823–838. [Google Scholar] [CrossRef] [Green Version]
- Dong, B.; Zhang, R.; Gan, Y.; Cai, L.; Freidenreich, A.; Wang, K.; Guo, T.; Wang, H. Multiple methods for the identification of heavy metal sources in cropland soils from a resource-based region. Sci. Total Environ. 2019, 651, 3127–3138. [Google Scholar] [CrossRef]
- Hu, Y.; Cheng, H.; Tao, S. The Challenges and Solutions for Cadmium-contaminated Rice in China: A Critical Review. Environ. Int. 2016, 92–93, 515–532. [Google Scholar] [CrossRef] [PubMed]
- Micó, C.; Recatalá, L.; Peris, M.; Sánchez, J. Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere 2006, 65, 863–872. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Wu, J.; Luo, Y.; Zhang, H.; Teng, Y. Statistical and geoestatistical characterization of heavy metal concentrations in a contaminated area taking into account soil map units. Geoderma 2008, 144, 171–179. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, W.; Wang, M.; Peng, C. Regional accumulation characteristics of cadmium in vegetables: Influencing factors, transfer model and indication of soil threshold content. Environ. Pollut 2016, 219, 1036–1043. [Google Scholar] [CrossRef]
- Cai, L.-M.; Wang, Q.-S.; Wen, H.-H.; Luo, J.; Wang, S. Heavy metals in agricultural soils from a typical township in Guangdong Province, China: Occurrences and spatial distribution. Ecotoxicol. Environ. Saf. 2019, 168, 184–191. [Google Scholar] [CrossRef]
- Pan, L.-B.; Ma, J.; Wang, X.-L.; Hou, H. Heavy metals in soils from a typical county in Shanxi Province, China: Levels, sources and spatial distribution. Chemosphere 2016, 148, 248–254. [Google Scholar] [CrossRef]
As | Cd | Co | Cr | Hg | Mn | Ni | Pb | Zn | |
---|---|---|---|---|---|---|---|---|---|
Detection Limits (DL) | 0.3 | 0.03 | 1 | 3 | 0.0005 | 10 | 1 | 2 | 2 |
No. Class | Igeo Value | Contamination Level |
---|---|---|
0 | Igeo ≤ 0 | Practically uncontaminated |
1 | 0 < Igeo < 1 | Uncontaminated to moderately contaminated |
2 | 1 < Igeo < 2 | Moderately contaminated |
3 | 2 < Igeo < 3 | Moderately to strongly contaminated |
4 | 3 < Igeo < 4 | Strongly contaminated |
5 | 4 < Igeo < 5 | Strongly to extremely contaminated |
6 | 5 > Igeo | Extremely contaminated |
As | Cd | Co | Cr | Mn | Ni | Zn | Pb | Hg | |
---|---|---|---|---|---|---|---|---|---|
N(a) | 639 | 639 | 639 | 639 | 639 | 639 | 639 | 639 | 639 |
Mean | 14.45 | 0.21 | 18.69 | 81.69 | 898.41 | 39.37 | 79.50 | 28.11 | 0.04 |
Median | 14.6 | 0.186 | 17.9 | 81.9 | 873 | 39.3 | 77.1 | 27.8 | 0.033 |
Maximum | 38.9 | 1.153 | 52.9 | 202 | 1783 | 83.2 | 237 | 107 | 0.662 |
Minimum | 5.2 | 0.099 | 5.9 | 20.5 | 367 | 9.6 | 40.1 | 14.2 | 0.015 |
Standard deviation | 4.5 | 0.099 | 5.6 | 17.3 | 205 | 9.1 | 17.2 | 6 | 0.047 |
CV (%) | 31 | 48 | 30 | 21 | 23 | 23 | 22 | 21 | 113 |
Background values of Henan Province | 11.4 | 0.074 | 10 | 63.8 | 579 | 26.7 | 60.1 | 19.6 | 0.034 |
F1 | F2 | F3 | |
---|---|---|---|
As | 0.49 | 0.39 | 0.47 |
Cd | 0.28 | 0.77 | −0.16 |
Co | 0.86 | −0.31 | −0.02 |
Cr | 0.83 | −0.1 | −0.02 |
Mn | 0.79 | −0.27 | 0.21 |
Ni | 0.94 | −0.02 | 0.05 |
Pb | −0.15 | 0.46 | 0.69 |
Zn | 0.63 | 0.36 | −0.43 |
Hg | 0.04 | 0.42 | −0.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Q.; Song, C.; Yang, D.; Zhao, Y.; Yan, M. Spatial Distribution, Contamination Assessment and Origin of Soil Heavy Metals in the Danjiangkou Reservoir, China. Int. J. Environ. Res. Public Health 2023, 20, 3443. https://doi.org/10.3390/ijerph20043443
Dong Q, Song C, Yang D, Zhao Y, Yan M. Spatial Distribution, Contamination Assessment and Origin of Soil Heavy Metals in the Danjiangkou Reservoir, China. International Journal of Environmental Research and Public Health. 2023; 20(4):3443. https://doi.org/10.3390/ijerph20043443
Chicago/Turabian StyleDong, Qiuyao, Chao Song, Dongxue Yang, Yuqing Zhao, and Mingjiang Yan. 2023. "Spatial Distribution, Contamination Assessment and Origin of Soil Heavy Metals in the Danjiangkou Reservoir, China" International Journal of Environmental Research and Public Health 20, no. 4: 3443. https://doi.org/10.3390/ijerph20043443
APA StyleDong, Q., Song, C., Yang, D., Zhao, Y., & Yan, M. (2023). Spatial Distribution, Contamination Assessment and Origin of Soil Heavy Metals in the Danjiangkou Reservoir, China. International Journal of Environmental Research and Public Health, 20(4), 3443. https://doi.org/10.3390/ijerph20043443