Acute Responses to High-Intensity Back Squats with Bilateral Blood Flow Restriction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design Overview
2.2. Participants
2.3. Procedures
2.3.1. Baseline Characteristics
2.3.2. Perceptual Measures
2.3.3. RM Testing
2.3.4. Resistance Exercise Protocols
2.3.5. Blood Sample Collection and Plasma Protein Analysis
2.3.6. Performance and Perceived Exertion and Limb Pain
2.3.7. Maximal Voluntary Isometric Contraction
2.3.8. Mean Propulsive Velocity
2.3.9. Countermovement Jump
2.3.10. Surface Electromyography
2.4. Statistical Analyses
3. Results
3.1. Baseline Characteristics
3.2. Repetitions
3.3. Ratings of Perceived Exertion and Perceived Pain
3.4. MVIC and Electromyography
3.5. Countermovement Jump
3.6. MPV and Electromyography
3.7. Blood Lactate
3.8. Interleukin 6
3.9. Vascular Endothelial Growth Factor
3.10. Myoglobin
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Folland, J.P.; Williams, A.G. The adaptations to strength training: Morphological and neurological contributions to increased strength. Sports Med. 2007, 37, 145–168. [Google Scholar] [CrossRef] [PubMed]
- Cureton, K.J.; Collins, M.A.; Hill, D.W.; McElhannon, F.M., Jr. Muscle hypertrophy in men and women. Med. Sci. Sports Exerc. 1988, 20, 338–344. [Google Scholar] [CrossRef] [PubMed]
- American College of Sports Medicine. Progression models in resistance training for healthy adults. Med. Sci. Sports. Exerc. 2009, 41, 687–708. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, B.J. The Mechanisms of Muscle Hypertrophy and Their Application to Resistance Training. J. Strength Cond. Res. 2010, 24, 2857–2872. [Google Scholar] [CrossRef] [Green Version]
- Sandri, M. Signaling in muscle atrophy and hypertrophy. Physiology 2008, 23, 160–170. [Google Scholar] [CrossRef] [Green Version]
- Takarada, Y.; Takazawa, H.; Sato, Y.; Takebayashi, S.; Tanaka, Y.; Ishii, N. Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. J. Appl. Physiol. 2000, 88, 2097–2106. [Google Scholar] [CrossRef] [Green Version]
- Takarada, Y.; Sato, Y.; Ishii, N. Effects of resistance exercise combined with vascular occlusion on muscle function in athletes. Eur. J. Appl. Physiol. 2002, 86, 308–314. [Google Scholar] [CrossRef]
- Vechin, F.C.; Libardi, C.A.; Conceição, M.S.; Damas, F.R.; Lixandrão, M.E.; Berton, R.P.; Tricoli, V.A.; Roschel, H.A.; Cavaglieri, C.R.; Chacon-Mikahil, M.P.; et al. Comparisons between low-intensity resistance training with blood flow restriction and high-intensity resistance training on quadriceps muscle mass and strength in elderly. J. Strength Cond. Res. 2015, 29, 1071–1076. [Google Scholar] [CrossRef] [Green Version]
- Lowery, R.P.; Joy, J.M.; Loenneke, J.P.; de Souza, E.O.; Machado, M.; Dudeck, J.E.; Wilson, J.M. Practical blood flow restriction training increases muscle hypertrophy during a periodized resistance training programme. Clin. Physiol. Funct. Imaging 2014, 34, 317–321. [Google Scholar] [CrossRef]
- Winchester, L.J.; Morris, C.E.; Allen, P.; Wiczynski, T.; Arnett, S.W.; Lyons, T.S. Effects of Varying Load Intensity on Skeletal Muscle Damage Between Two Isovolumic Resistance Exercise Bouts. Int. J. Exerc. Sci. 2022, 15, 1212–1221. [Google Scholar]
- Thiebaud, R.S.; Yasuda, T.; Loenneke, J.P.; Abe, T. Effects of low-intensity concentric and eccentric exercise combined with blood flow restriction on indices of exercise-induced muscle damage. Interv. Med. Appl. Sci. 2013, 5, 53–59. [Google Scholar] [CrossRef]
- Suga, T.; Okita, K.; Morita, N.; Yokota, T.; Hirabayashi, K.; Horiuchi, M.; Takada, S.; Takahashi, T.; Omokawa, M.; Kinugawa, S.; et al. Intramuscular metabolism during low-intensity resistance exercise with blood flow restriction. J. Appl. Physiol. 2009, 106, 1119–1124. [Google Scholar] [CrossRef] [Green Version]
- Pope, Z.K.; Willardson, J.M.; Schoenfeld, B.J. Exercise and blood flow restriction. J. Strength Cond. Res. 2013, 27, 2914–2926. [Google Scholar] [CrossRef] [Green Version]
- Suga, T.; Okita, K.; Takada, S.; Omokawa, M.; Kadoguchi, T.; Yokota, T.; Hirabayashi, K.; Takahashi, M.; Morita, N.; Horiuchi, M.; et al. Effect of multiple set on intramuscular metabolic stress during low-intensity resistance exercise with blood flow restriction. Eur. J. Appl. Physiol. 2012, 112, 3915–3920. [Google Scholar] [CrossRef] [Green Version]
- Moritani, T.; Sherman, W.M.; Shibata, M.; Matsumoto, T.; Shinohara, M. Oxygen availability and motor unit activity in humans. Eur. J. Appl. Physiol. Occup. Physiol. 1992, 64, 552–556. [Google Scholar] [CrossRef]
- Wernbom, M.; Jarrebring, R.; Andreasson, M.A.; Augustsson, J. Acute effects of blood flow restriction on muscle activity and endurance during fatiguing dynamic knee extensions at low load. J. Strength Cond. Res. 2009, 23, 2389–2395. [Google Scholar] [CrossRef] [Green Version]
- Yasuda, T.; Brechue, W.F.; Fujita, T.; Shirakawa, J.; Sato, Y.; Abe, T. Muscle activation during low-intensity muscle contractions with restricted blood flow. J. Sports Sci. 2009, 27, 479–489. [Google Scholar] [CrossRef]
- Doessing, S.; Heinemeier, K.M.; Holm, L.; Mackey, A.L.; Schjerling, P.; Rennie, M.; Smith, K.; Reitelseder, S.; Kappelgaard, A.M.; Rasmussen, M.H.; et al. Growth hormone stimulates the collagen synthesis in human tendon and skeletal muscle without affecting myofibrillar protein synthesis. J. Physiol. 2010, 588, 341–351. [Google Scholar] [CrossRef]
- Martineau, L.C.; Gardiner, P.F. Insight into skeletal muscle mechanotransduction: MAPK activation is quantitatively related to tension. J. Appl. Physiol. 2001, 91, 693–702. [Google Scholar] [CrossRef]
- Winchester, L.J.; Morris, C.E.; Badinger, J.; Wiczynski, T.L.; VanWye, W.R. Blood Flow Restriction at High Resistance Loads Increases the Rate of Muscular Fatigue, but Does Not Increase Plasma Markers of Myotrauma or Inflammation. J. Strength Cond. Res. 2020, 34, 2419–2426. [Google Scholar] [CrossRef]
- Teixeira, E.L.; Barroso, R.; Silva-Batista, C.; Laurentino, G.C.; Loenneke, J.P.; Roschel, H.; Ugrinowitsch, C.; Tricoli, V. Blood flow restriction increases metabolic stress but decreases muscle activation during high-load resistance exercise. Muscle Nerve. 2018, 57, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Winchester, L.J.; Blake, M.T.; Fleming, A.R.; Aguiar, E.J.; Fedewa, M.V.; Esco, M.R.; Earley, R.L. Hemodynamic Responses to Resistance Exercise with Blood Flow Restriction Using a Practical Method Versus a Traditional Cuff-Inflation System. Int. J. Environ. Res. Public Health 2022, 19, 11548. [Google Scholar] [CrossRef] [PubMed]
- Neto, G.R.; Santos, H.H.; Sousa, J.B.; Júnior, A.T.; Araújo, J.P.; Aniceto, R.R.; Sousa, M.S. Effects of high-intensity blood flow restriction exercise on muscle fatigue. J. Hum. Kinet. 2014, 41, 163–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American College of Sports, M.; Riebe, D.; Ehrman, J.K.; Liguori, G.; Magal, M. ACSM’s Guidelines for Exercise Testing and Prescription; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2018. [Google Scholar]
- Friedman, K. Essentials of Strength Training and Conditioning, 4th Edition. Med. Sci. Sports Exerc. 2016, 48, 2073. [Google Scholar]
- Beck, T.W. The importance of a priori sample size estimation in strength and conditioning research. J. Strength Cond. Res. 2013, 27, 2323–2337. [Google Scholar] [CrossRef]
- Whelton, P.K.; Carey, R.M.; Aronow, W.S.; Casey, D.E.; Collins, K.J.; Dennison Himmelfarb, C.; DePalma, S.M.; Gidding, S.; Jamerson, K.A.; Jones, D.W. Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults. J. Am. Coll. Cardiol. 2017, 71, e127. [Google Scholar] [CrossRef]
- Jackson, A.S.; Pollock, M.L. Practical Assessment of Body Composition. Phys. Sportsmed. 1985, 13, 76–90. [Google Scholar] [CrossRef]
- Siri, W.E. The gross composition of the body. Adv. Biol. Med. Phys. 1956, 4, 239–280. [Google Scholar] [CrossRef]
- Waterfield, M.J.; Sim, J. Clinical assessment of pain by the visual analogue scale. Br. J. Ther. Rehabil. 1996, 3, 94–97. [Google Scholar] [CrossRef]
- Laurent, C.M.; Green, J.M.; Bishop, P.A.; Sjökvist, J.; Schumacker, R.E.; Richardson, M.T.; Curtner-Smith, M. A practical approach to monitoring recovery: Development of a perceived recovery status scale. J. Strength Cond. Res. 2011, 25, 620–628. [Google Scholar] [CrossRef]
- Haff, G.G.; Triplett, N.T. Essentials of Strength Training and Conditioning, 4th ed.; Human Kinetics: Champaign, IL, USA, 2015. [Google Scholar]
- Borg, G. Borg’s Perceived Exertion and Pain Scales; Human Kinetics: Champaign, IL, USA, 1998. [Google Scholar]
- Murray, M.P.; Gardner, G.M.; Mollinger, L.A.; Sepic, S.B. Strength of isometric and isokinetic contractions: Knee muscles of men aged 20 to 86. Phys. Ther. 1980, 60, 412–419. [Google Scholar] [CrossRef]
- Claudino, J.G.; Cronin, J.; Mezencio, B.; McMaster, D.T.; McGuigan, M.; Tricoli, V.; Amadio, A.C.; Serrao, J.C. The countermovement jump to monitor neuromuscular status: A meta-analysis. J. Sci. Med. Sports 2017, 20, 397–402. [Google Scholar] [CrossRef]
- Hermens, H.J.; Commission des Communautés Européennes, Biomedical and Health Research Programme. SENIAM: European recommendations for surface electromyography: Results of the SENIAM project. Roessingh Res. Dev. 1999, 8, 13–54. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988; p. 567. [Google Scholar]
- Sugaya, M.; Yasuda, T.; Suga, T.; Okita, K.; Abe, T. Change in intramuscular inorganic phosphate during multiple sets of blood flow-restricted low-intensity exercise. Clin. Physiol. Funct. Imaging 2011, 31, 411–413. [Google Scholar] [CrossRef]
- Favero, T.G.; Zable, A.C.; Colter, D.; Abramson, J.J. Lactate inhibits Ca(2+) -activated Ca(2+)-channel activity from skeletal muscle sarcoplasmic reticulum. J. Appl. Physiol. 1997, 82, 447–452. [Google Scholar] [CrossRef]
- Sahlin, K.; Harris, R.C.; Hultman, E. Resynthesis of creatine phosphate in human muscle after exercise in relation to intramuscular pH and availability of oxygen. Scand. J. Clin. Lab. Investig. 1979, 39, 551–558. [Google Scholar] [CrossRef]
- Fitschen, P.J.; Kistler, B.M.; Jeong, J.H.; Chung, H.R.; Wu, P.T.; Walsh, M.J.; Wilund, K.R. Perceptual effects and efficacy of intermittent or continuous blood flow restriction resistance training. Clin. Physiol. Funct. Imaging 2014, 34, 356–363. [Google Scholar] [CrossRef]
- Loenneke, J.P.; Kim, D.; Mouser, J.G.; Allen, K.M.; Thiebaud, R.S.; Abe, T.; Bemben, M.G. Are there perceptual differences to varying levels of blood flow restriction? Physiol. Behavior. 2016, 157, 277–280. [Google Scholar] [CrossRef]
- Manini, T.M.; Clark, B.C. Blood flow restricted exercise and skeletal muscle health. Exerc. Sport Sci. Rev. 2009, 37, 78–85. [Google Scholar] [CrossRef]
- Takarada, Y.; Nakamura, Y.; Aruga, S.; Onda, T.; Miyazaki, S.; Ishii, N. Rapid increase in plasma growth hormone after low-intensity resistance exercise with vascular occlusion. J. Appl. Physiol. 2000, 88, 61–65. [Google Scholar] [CrossRef] [Green Version]
- Almada, C.; Cataldo, L.R.; Smalley, S.V.; Diaz, E.; Serrano, A.; Hodgson, M.I.; Santos, J.L. Plasma levels of interleukin-6 and interleukin-18 after an acute physical exercise: Relation with post-exercise energy intake in twins. J. Physiol. Biochem. 2013, 69, 85–95. [Google Scholar] [CrossRef]
- Pedersen, B.K.; Steensberg, A.; Fischer, C.; Keller, C.; Ostrowski, K.; Schjerling, P. Exercise and cytokines with particular focus on muscle derived IL-6. Exerc. Immunol. Rev. 2001, 7, 18–31. [Google Scholar] [PubMed]
- Fujita, T.; Brechue, W.F.; Kurita, K.; Sato, Y.; Abe, T. Increased muscle volume and strength following six days of low-intensity resistance training with restricted muscle blood flow. Int. J. KAATSU Train. Res. 2008, 4, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Wernbom, M.; Schoenfeld, B.J.; Paulsen, G.; Bjørnsen, T.; Cumming, K.T.; Aagaard, P.; Clark, B.C.; Raastad, T. Commentary: Can Blood Flow Restricted Exercise Cause Muscle Damage? Commentary on Blood Flow Restriction Exercise: Considerations of Methodology, Application, and Safety. Front. Physiol. 2020, 11, 243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patterson, S.D.; Leggate, M.; Nimmo, M.A.; Ferguson, R.A. Circulating hormone and cytokine response to low-load resistance training with blood flow restriction in older men. Eur. J. Appl. Physiol. 2013, 113, 713–719. [Google Scholar] [CrossRef]
- Jones, M.T.; Aguiar, E.J.; Winchester, L.J. Proposed mechanisms of blood flow restriction exercise for the improvement of Type 1 diabetes pathologies. Diabetology 2021, 2, 176–189. [Google Scholar] [CrossRef]
- Takano, H.; Morita, T.; Iida, H.; Asada, K.; Kato, M.; Uno, K.; Hirose, K.; Matsumoto, A.; Takenaka, K.; Hirata, Y.; et al. Hemodynamic and hormonal responses to a short-term low-intensity resistance exercise with the reduction of muscle blood flow. Eur. J. Appl. Physiol. 2005, 95, 65–73. [Google Scholar] [CrossRef]
- Minchenko, A.; Bauer, T.; Salceda, S.; Caro, J. Hypoxic stimulation of vascular endothelial growth factor expression in vitro and in vivo. Lab. Investig. 1994, 71, 374–379. [Google Scholar]
All (n = 13) | Female (n = 4) | Male (n = 9) | |
---|---|---|---|
Age (yrs) | 24.8 ± 4.7 | 23.8 ± 4.6 | 25.2 ± 4.9 |
Height (cm) | 177.8 ± 11.8 | 164.1 ± 5.5 | 184.0 ± 7.6 |
Body Mass (kg) | 84.3 ± 16.7 | 65.6 ± 3.6 | 92.5 ± 12.9 |
BMI (kg∙m−2) | 26.4 ± 3.1 | 24.5 ± 2.0 | 27.3 ± 3.2 |
BF% | 16.6 ± 8.2 | 24.0 ± 6.7 | 13.2 ± 6.6 |
Right LOP (mmHg) | 219.6 ± 18.2 | 214.0 ± 10.7 | 222.1 ± 20.7 |
Right 80% LOP (mmHg) | 175.6 ± 14.6 | 171.3 ± 8.6 | 177.6 ± 16.7 |
Left LOP (mmHg) | 206.8 ± 25.8 | 204.8 ± 28.3 | 207.8 ± 21.1 |
Left 80% LOP (mmHg) | 165.4 ± 20.7 | 163.8 ± 22.8 | 166.1 ± 21.1 |
1RM (kg) | 143.7 ± 50.4 | 85.8 ± 15.2 | 169.4 ± 36.1 |
Variable | Condition | Set 1 | Set 2 | Set 3 | Set 4 |
---|---|---|---|---|---|
Repetitions | BFR | 11.69 ± 4.19 † | 4.08 ± 2.30 †,* | 6.92 ± 3.16 | 3.15 ± 2.08 †,* |
CTRL | 13.54 ± 4.39 | 10.77 ± 3.49 * | 9.15 ± 3.36 * | 8.69 ± 3.60 | |
Pain | BFR | 6.58 ± 2.11 † | 8.00 ± 1.28 †,* | 7.33 ± 2.10 † | 9.17 ± 0.94 †,* |
CTRL | 5.25 ± 2.14 | 5.33 ± 2.15 | 5.75 ± 2.30 | 6.25 ± 2.53 * | |
RPE | BFR | 8.46 ± 1.39 | 9.31 ± 0.85 | 9.15 ± 0.69 * | 9.61 ± 0.51 |
CTRL | 8.54 ± 1.05 | 8.77 ± 0.83 | 9.23 ± 0.60 | 9.62 ± 0.60 |
Variable | Condition | Pre | Post | MD (95% CI) | Cohen’s d |
---|---|---|---|---|---|
MVIC Extension (Nm) | BFR | 274.40 ± 81.81 | 267.25 ± 90.68 | 5.28 (−17.57, 28.14) | 0.15 |
CTRL | 274.47 ± 89.95 | 267.02 ± 88.44 | 5.50 (−10.13, 21.14) | 0.22 | |
MVIC Flexion (Nm) | BFR | 166.78 ± 58.89 | 155.24 ± 53.37 * | 8.50 (0.44, 16.56) | 0.67 |
CTRL | 163.65 ± 52.79 | 154.31 ± 54.39 * | 6.89 (0.44, 13.33) | 0.68 | |
CMJ (m) | BFR | 0.35 ± 0.07 | 0.31 ± 0.06 * | 0.04 (0.03, 0.06) | 2.25 |
CTRL | 0.35 ± 0.06 | 0.30 ± 0.05 * | 0.06 (0.04, 0.07) | 2.34 | |
MPV (m·s−1) | BFR | 0.71 ± 0.12 | 0.65 ± 0.14 * | 0.07 (0.03, 0.10) | 1.01 |
CTRL | 0.72 ± 0.10 | 0.64 ± 0.12 * | 0.07 (0.05, 0.10) | 1.84 | |
MVIC sEMG RF (mV) | BFR | 0.15 ± 0.09 | 0.17 ± 0.09 | −0.11 (−0.03, 0.01) | −0.32 |
CTRL | 0.16 ± 0.07 | 0.19 ± 0.10 | −0.03 (−0.07, 0.01) | −0.47 | |
MVIC sEMG VL (mV) | BFR | 0.17 ± 0.08 | 0.18 ± 0.09 | −0.00 (−0.03, 0.01) | −0.09 |
CTRL | 0.19 ± 0.11 | 0.21 ± 0.14 | −0.02 (−0.52, 0.00) | −0.57 | |
MPV sEMG RF (mV) | BFR | 0.26 ± 0.10 | 0.25 ± 0.10 | 0.01 (−0.25, 0.05) | 0.19 |
CTRL | 0.25 ± 0.06 | 0.22 ± 0.06 * | 0.03 (0.01, 0.04) | 1.08 | |
MPV sEMG VL (mV) | BFR | 0.30 ± 0.13 | 0.27 ± 0.13 | 0.03 (−0.03, 0.10) | 0.30 |
CTRL | 0.31 ± 0.10 | 0.24 ± 0.07 * | 0.08 (−0.05, 0.10) | 1.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hornikel, B.; Saffold, K.S.; Esco, M.R.; Mota, J.A.; Fedewa, M.V.; Wind, S.A.; Adams, T.L.; Winchester, L.J. Acute Responses to High-Intensity Back Squats with Bilateral Blood Flow Restriction. Int. J. Environ. Res. Public Health 2023, 20, 3555. https://doi.org/10.3390/ijerph20043555
Hornikel B, Saffold KS, Esco MR, Mota JA, Fedewa MV, Wind SA, Adams TL, Winchester LJ. Acute Responses to High-Intensity Back Squats with Bilateral Blood Flow Restriction. International Journal of Environmental Research and Public Health. 2023; 20(4):3555. https://doi.org/10.3390/ijerph20043555
Chicago/Turabian StyleHornikel, Bjoern, Keith S. Saffold, Michael R. Esco, Jacob A. Mota, Michael V. Fedewa, Stefanie A. Wind, Tiffany L. Adams, and Lee J. Winchester. 2023. "Acute Responses to High-Intensity Back Squats with Bilateral Blood Flow Restriction" International Journal of Environmental Research and Public Health 20, no. 4: 3555. https://doi.org/10.3390/ijerph20043555
APA StyleHornikel, B., Saffold, K. S., Esco, M. R., Mota, J. A., Fedewa, M. V., Wind, S. A., Adams, T. L., & Winchester, L. J. (2023). Acute Responses to High-Intensity Back Squats with Bilateral Blood Flow Restriction. International Journal of Environmental Research and Public Health, 20(4), 3555. https://doi.org/10.3390/ijerph20043555