Exploratory Study on the Associations between Lifetime Post-Traumatic Stress Spectrum, Sleep, and Circadian Rhythm Parameters in Patients with Bipolar Disorder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Instruments Description
2.2.1. Socio-Demographic Data and Lifestyle
2.2.2. The Trauma and Loss Spectrum (TALS-SR)
2.2.3. The Reduced Morningness–Eveningness Questionnaire (rMEQ)
2.2.4. The Pittsburgh Sleep Quality Index (PSQI)
2.2.5. Actigraphic Registration
- Total sleep time (TST): the total amount of time spent asleep. Calculation: sum of all asleep time within a sleep period (in hours). Wakefulness duration after initial sleep onset (WASO): the amount of time spent awake during a sleep period. Calculation: the amount of time spent awake from initial sleep onset until final awakening (in minutes). Sleep efficiency (SE): total sleep time as a percentage of the total amount of time there was an intention to sleep. Calculation: TST/Time when individual is attempting to sleep (TATS)*100. Based on the technical publication of Definitions and Characteristics for Wearable Sleep Monitors [40].
- Sleep regularity index: measures the likelihood of the same sleep–wake state occurring in epochs that are 24 h apart, thereby measuring the similarity of sleep–wake patterns between consecutive days [41].
- Mid-sleep point: the middle of the sleep period between the sleep onset and final awakening, measured by actigraphy. Calculated by adding to the average sleep onset half of the average total sleep time (average sleep onset + average TST/2).
- Mesor: a rhythm-adjusted mean. It represents the mean activity level;
- Amplitude: the peak-to-nadir difference, a measure of half the extent of predictable variation within a cycle. More robust rhythms have a higher amplitude;
- Acrophase: timing of peak activity or the point in the cycle with highest activity;
- Interdaily stability (IS): estimates the variability in rest–activity patterns across all days. It is a measure of rest–activity rhythms regularity. In this study, it is expressed as values ranging from 0 to 1. Higher values indicate greater stability between days;
- Intradaily variability (IV): quantifies the fragmentation and magnitude of rest–activity transitions within each day. In this study, it is expressed as values ranging from 0 to approximately 2. Higher values indicate frequent transitions between rest and activity (i.e., frequent naps, increased night-time awakenings);
- Relative amplitude: measures the robustness of the 24 h rest–activity rhythm by calculating the normalized mean difference in activity between the most active 10 h and the least active 5 h, ranging from 0 to 1. Higher values indicate lower activity during the night and high activity during the day, i.e., increased robustness of rest–activity rhythm.
2.3. Statistical Analyses
3. Results
3.1. Sample Description
3.2. Comparisons between Chronotypes
3.3. Correlations between TALS-SR Symptomatic Domains and Circadian and Sleep-Related Parameters
3.4. Associations between Sleep/Circadian Parameters and TALS-SR Symptomatic Domains Adjusting for Potentially Confounding Factors and Chronotype
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Harvey, A.G. Sleep and Circadian Rhythms in Bipolar Disorder: Seeking Synchrony, Harmony, and Regulation. Am. J. Psychiatry 2008, 165, 820–829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, T.H.; Chung, K.F.; Ho, F.Y.Y.; Yeung, W.F.; Yung, K.P.; Lam, T.H. Sleep-wake disturbance in interepisode bipolar disorder and high-risk individuals: A systematic review and meta-analysis. Sleep Med. Rev. 2015, 20, 46–58. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.H.; Hare, D.J.; Evershed, K. Actigraphic assessment of circadian activity and sleep patterns in bipolar disorder. Bipolar Disord. 2005, 7, 176–186. [Google Scholar] [CrossRef] [PubMed]
- Harvey, A.G.; Talbot, L.S.; Gershon, A. Sleep disturbance in bipolar disorder across the lifespan. Clin. Psychol. Sci. Pract. 2009, 16, 256–277. [Google Scholar] [CrossRef] [Green Version]
- Sylvia, L.G.; Chang, W.C.; Kamali, M.; Tohen, M.; Kinrys, G.; Deckersbach, T.; Calabrese, J.R.; Thase, M.E.; Reilly-Harrington, N.; Bobo, W.V.; et al. Sleep disturbance may impact treatment outcome in bipolar disorder: A preliminary investigation in the context of a large comparative effectiveness trial. J. Affect. Disord. 2018, 225, 563–568. [Google Scholar] [CrossRef]
- Adan, A.; Archer, S.N.; Hidalgo, M.P.; Di Milia, L.; Natale, V.; Randler, C. Circadian typology: A comprehensive review. Chronobiol. Int. 2012, 29, 1153–1175. [Google Scholar] [CrossRef] [Green Version]
- Wood, J.; Birmaher, B.; Axelson, D.; Ehmann, M.; Kalas, C.; Monk, K.; Turkin, S.; Kupfer, D.J.; Brent, D.; Monk, T.H.; et al. Replicable differences in preferred circadian phase between bipolar disorder patients and control individuals. Psychiatry Res. 2009, 166, 201–209. [Google Scholar] [CrossRef] [Green Version]
- Romo-Nava, F.; Blom, T.J.; Cuellar-Barboza, A.B.; Winham, S.J.; Colby, C.L.; Nunez, N.A.; Biernacka, J.M.; Frye, M.A.; McElroy, S.L. Evening chronotype as a discrete clinical subphenotype in bipolar disorder. J. Affect. Disord. 2020, 266, 556–562. [Google Scholar] [CrossRef]
- Ahn, Y.M.; Chang, J.; Joo, Y.H.; Kim, S.C.; Lee, K.Y.; Kim, Y.S. Chronotype distribution in bipolar I disorder and schizophrenia in a Korean sample. Bipolar Disord. 2008, 10, 271–275. [Google Scholar] [CrossRef]
- Mansour, H.A.; Wood, J.; Chowdari, K.V.; Dayal, M.; Thase, M.E.; Kupfer, D.J.; Monk, T.H.; Devlin, B.; Nimgaonkar, V.L. Circadian phase variation in bipolar I disorder. Chronobiol. Int. 2005, 22, 571–584. [Google Scholar] [CrossRef]
- Taylor, B.J.; Hasler, B.P. Chronotype and Mental Health: Recent Advances. Curr. Psychiatry Rep. 2018, 20, 59. [Google Scholar] [CrossRef] [PubMed]
- Kanagarajan, K.; Gou, K.; Antinora, C.; Buyukkurt, A.; Crescenzi, O.; Beaulieu, S.; Storch, K.F.; Mantere, O. Morningness–Eveningness questionnaire in bipolar disorder. Psychiatry Res. 2018, 262, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Giglio, L.M.F.; Magalhães, P.V.S.; Andersen, M.L.; Walz, J.C.; Jakobson, L.; Kapczinski, F. Circadian preference in bipolar disorder. Sleep Breath. 2010, 14, 153–155. [Google Scholar] [CrossRef] [PubMed]
- Gershon, A.; Kaufmann, C.N.; Depp, C.A.; Miller, S.; Do, D.; Zeitzer, J.M.; Ketter, T.A. Subjective versus objective evening chronotypes in bipolar disorder. J. Affect. Disord. 2018, 225, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Vieta, E.; Reinares, M.; Rosa, A.R. Staging bipolar disorder. Neurotox. Res. 2011, 19, 279–285. [Google Scholar] [CrossRef] [Green Version]
- Kessler, R.C.; Sonnega, A.; Bromet, E.; Hughes, M.; Nelson, C.B. Posttraumatic stress disorder in the National Comorbidity Survey. Arch. Gen. Psychiatry 1995, 52, 1048–1060. [Google Scholar] [CrossRef] [PubMed]
- Mueser, K.T.; Goodman, L.B.; Trumbetta, S.L.; Rosenberg, S.D.; Osher, F.C.; Vidaver, R.; Auciello, P.; Foy, D.W. Trauma and posttraumatic stress disorder in severe mental illness. J. Consult. Clin. Psychol. 1998, 66, 493–499. [Google Scholar] [CrossRef]
- Freeman, M.P.; Freeman, S.A.; McElroy, S.L. The comorbidity of bipolar and anxiety disorders: Prevalence, psychobiology, and treatment issues. J. Affect. Disord. 2002, 68, 1–23. [Google Scholar] [CrossRef]
- Carmassi, C.; Bertelloni, C.A.; Dell’Oste, V.; Foghi, C.; Diadema, E.; Cordone, A.; Pedrinelli, V.; Dell’Osso, L. Post-traumatic stress burden in a sample of hospitalized patients with Bipolar Disorder: Which impact on clinical correlates and suicidal risk? J. Affect. Disord. 2020, 262, 267–272. [Google Scholar] [CrossRef]
- Garno, J.L.; Goldberg, J.F.; Ramirez, P.M.; Ritzler, B.A. Impact of childhood abuse on the clinical course of bipolar disorder. Br. J. Psychiatry 2005, 186, 121–125. [Google Scholar] [CrossRef] [Green Version]
- Germain, A.; Buysse, D.J.; Shear, M.K.; Fayyad, R.; Austin, C. Clinical correlates of poor sleep quality in posttraumatic stress disorder. J. Trauma. Stress 2004, 17, 477–484. [Google Scholar] [CrossRef]
- Koren, D.; Arnon, I.; Lavie, P.; Klein, E. Sleep complaints as early predictors of posttraumatic stress disorder: A 1-year prospective study of injured survivors of motor vehicle accidents. Am. J. Psychiatry 2002, 159, 855–857. [Google Scholar] [CrossRef] [Green Version]
- Mellman, T.A.; Bustamante, V.; Fins, A.I.; Pigeon, W.R.; Nolan, B. REM sleep and the early development of posttraumatic stress disorder. Am. J. Psychiatry 2002, 159, 1696–1701. [Google Scholar] [CrossRef] [Green Version]
- Germain, A.; Buysse, D.J.; Nofzinger, E. Sleep-specific mechanisms underlying posttraumatic stress disorder: Integrative review and neurobiological hypotheses. Sleep Med. Rev. 2008, 12, 185–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsanas, A.; Woodward, E.; Ehlers, A. Objective Characterization of Activity, Sleep, and Circadian Rhythm Patterns Using a Wrist-Worn Actigraphy Sensor: Insights Into Posttraumatic Stress Disorder. JMIR mHealth uHealth 2020, 8, e14306. [Google Scholar] [CrossRef] [Green Version]
- Mascaro, L.; Phillips, A.J.K.; Clark, J.W.; Straus, L.D.; Drummond, S.P.A. Diurnal Rhythm Robustness in Individuals With PTSD and Insomnia and The Association With Sleep. J. Biol. Rhythms 2021, 36, 185–195. [Google Scholar] [CrossRef]
- Yun, J.A.; Ahn, Y.S.; Jeong, K.S.; Joo, E.J.; Choi, K.S. The Relationship between Chronotype and Sleep Quality in Korean Firefighters. Clin. Psychopharmacol. Neurosci. 2015, 13, 201–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasler, B.P.; Insana, S.P.; James, J.A.; Germain, A. Evening-type military veterans report worse lifetime posttraumatic stress symptoms and greater brainstem activity across wakefulness and REM sleep. Biol. Psychol. 2013, 94, 255–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- First, M.B.; Williams, J.B.W.; Karg, R.S.; Spitzer, R.L. User’s Guide for the SCID-5-CV Structured Clinical Interview for DSM-5® Disorders: Clinical Version; American Psychiatric Publishing, Inc.: Arlington, VA, USA, 2016. [Google Scholar]
- Hamilton, M. A Rating Scale for Depression. J. Neurol. Neurosurg. Psychiatry 1960, 23, 56–62. [Google Scholar] [CrossRef] [Green Version]
- Young, R.C.; Biggs, J.T.; Ziegler, V.E.; Meyer, D.A. A Rating Scale for Mania: Reliability, Validity and Sensitivity. Br. J. Psychiatry 1978, 133, 429–435. [Google Scholar] [CrossRef]
- Dell’Osso, L.; Carmassi, C.; Rucci, P.; Conversano, C.; Shear, M.K.; Calugi, S.; Maser, J.D.; Endicott, J.; Fagiolini, A.; Cassano, G.B. A multidimensional spectrum approach to post-traumatic stress disorder: Comparison between the Structured Clinical Interview for Trauma and Loss Spectrum (SCI-TALS) and the Self-Report instrument (TALS-SR). Compr. Psychiatry 2009, 50, 485–490. [Google Scholar] [CrossRef]
- Adan, A.; Almirall, H. Horne & Östberg morningness–eveningness questionnaire: A reduced scale. Personal. Individ. Differ. 1991, 12, 241–253. [Google Scholar] [CrossRef]
- Natale, V.; Esposito, M.J.; Martoni, M.; Fabbri, M. Validity of the reduced version of the Morningness–Eveningness Questionnaire. Sleep Biol. Rhythms 2006, 4, 72–74. [Google Scholar] [CrossRef]
- Natale, V. Validazione di una scala ridotta di Mattutinità (rMEQ) [Validation of a reduced version of the Morningness–Eveningness Questionnaire (rMEQ)]. Giunti Organ. Spec. 1999, 229, 19–26. [Google Scholar]
- Buysse, D.J.; Reynolds, C.F.; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh sleep quality index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef]
- Curcio, G.; Tempesta, D.; Scarlata, S.; Marzano, C.; Moroni, F.; Rossini, P.M.; Ferrara, M.; De Gennaro, L. Validity of the Italian Version of the Pittsburgh Sleep Quality Index (PSQI). Neurol. Sci. 2013, 34, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Banfi, T.; Valigi, N.; Galante, M.; Ascanio, P.; Ciuti, G.; Faraguna, U. Efficient embedded sleep wake classification for open-source actigraphy. Sci. Rep. 2021, 11, 345. [Google Scholar] [CrossRef] [PubMed]
- Guarnieri, B.; Maestri, M.; Cucchiara, F.; Lo Gerfo, A.; Schirru, A.; Arnaldi, D.; Mattioli, P.; Nobili, F.; Lombardi, G.; Cerroni, G.; et al. Multicenter Study on Sleep and Circadian Alterations as Objective Markers of Mild Cognitive Impairment and Alzheimer’s Disease Reveals Sex Differences. J. Alzheimer’s Dis. 2020, 78, 1707–1719. [Google Scholar] [CrossRef]
- American National Standards Institute, ANSI; Consumer Technology Association, CTA. Definitions and Characteristics for Wearable Sleep Monitors (NSF-2052.1-A); Consumer Technology Association: Arlington, VA, USA, 2022. [Google Scholar]
- Phillips, A.J.K.; Clerx, W.M.; O’Brien, C.S.; Sano, A.; Barger, L.K.; Picard, R.W.; Lockley, S.W.; Klerman, E.B.; Czeisler, C.A. Irregular sleep/wake patterns are associated with poorer academic performance and delayed circadian and sleep/wake timing. Sci. Rep. 2017, 7, 3216. [Google Scholar] [CrossRef] [PubMed]
- Cornelissen, G. Cosinor-based rhythmometry. Theor. Biol. Med. Model. 2014, 11, 1–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Junrui, D.; Zipunnikov, V. ActCR: Extract Circadian Rhythms Metrics from Actigraphy Data. 2021. Available online: https://cran.r-project.org/package=ActCR (accessed on 1 February 2022).
- Van Someren, E.J.W.; Swaab, D.F.; Colenda, C.C.; Cohen, W.; McCall, W.V.; Rosenquist, P.B. Bright light therapy: Improved sensitivity to its effects on rest- activity rhythms in Alzheimer patients by application of nonparametric methods. Chronobiol. Int. 1999, 16, 505–518. [Google Scholar] [CrossRef] [PubMed]
- Blume, C.; Santhi, N.; Schabus, M. “nparACT” package for R: A free software tool for the non-parametric analysis of actigraphy data. MethodsX 2016, 3, 430–435. [Google Scholar] [CrossRef] [PubMed]
- Christine, B.; Nayantara, S.; Schabus, M. nparACT: Non-Parametric Measures of Actigraphy Data. 2017. Available online: https://cran.r-project.org/package=nparACT (accessed on 1 February 2022).
- Harrison, E.M.; Easterling, A.P.; Schmied, E.A.; Hurtado, S.L.; Glickman, G.L. Chronotype and self-reported sleep, alertness, and mental health in U.S. sailors. Mil. Med. Res. 2021, 8, 4–6. [Google Scholar] [CrossRef]
- Adan, A. Chronotype and personality factors in the daily consumption of alcohol and psychostimulants. Addiction 1994, 89, 455–462. [Google Scholar] [CrossRef]
- Killgore, W.D.S. Effects of Sleep Deprivation and Morningness–Eveningness Traits on Risk-Taking. Psychol. Rep. 2007, 100, 613–626. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, T. Nightmares associated with the eveningness chronotype. J. Biol. Rhythms 2010, 25, 53–62. [Google Scholar] [CrossRef]
- Selvi, Y.; Aydin, A.; Gulec, M.; Boysan, M.; Besiroglu, L.; Ozdemir, P.G.; Kilic, S. Comparison of dream anxiety and subjective sleep quality between chronotypes. Sleep Biol. Rhythms 2012, 10, 14–22. [Google Scholar] [CrossRef]
- Bazzani, A.; Bruno, S.; Frumento, P.; Cruz-Sanabria, F.; Turchetti, G.; Faraguna, U. Sleep quality mediates the effect of chronotype on resilience in the time of COVID-19. Chronobiol. Int. 2021, 38, 883–892. [Google Scholar] [CrossRef]
- Carmassi, C.; Cruz-Sanabria, F.; Bruno, S.; Bazzani, A.; Bonelli, C.; Violi, M.; Frumento, P.; Dell’Osso, L.; Faraguna, U. Associations between post-traumatic stress symptoms and sleep/circadian parameters: Exploring the effect of chronotype as a moderator variable. 2023; under review. [Google Scholar]
- Vitale, J.A.; Roveda, E.; Montaruli, A.; Galasso, L.; Weydahl, A.; Caumo, A.; Carandente, F. Chronotype influences activity circadian rhythm and sleep: Differences in sleep quality between weekdays and weekend. Chronobiol. Int. 2015, 32, 405–415. [Google Scholar] [CrossRef]
- Bei, B.; Manber, R.; Allen, N.B.; Trinder, J.; Wiley, J.F. Too long, too short, or too variable? sleep intraindividual variability and its associations with perceived sleep quality and mood in adolescents during naturalistically unconstrained sleep. Sleep 2017, 40, zsw067. [Google Scholar] [CrossRef]
- Lunsford-Avery, J.R.; Engelhard, M.M.; Navar, A.M.; Kollins, S.H. Validation of the Sleep Regularity Index in Older Adults and Associations with Cardiometabolic Risk. Sci. Rep. 2018, 8, 14158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brooks, A.T.; Raju, S.; Barb, J.J.; Kazmi, N.; Chakravorty, S.; Krumlauf, M.; Wallen, G.R. Sleep regularity index in patients with alcohol dependence: Daytime napping and mood disorders as correlates of interest. Int. J. Environ. Res. Public Health 2020, 17, 331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, W.J.; Wilkerson, A.K.; Milanak, M.E.; Tuerk, P.W.; Uhde, T.W.; Cortese, B.M.; Grubaugh, A.L. An examination of sleep quality in veterans with a dual diagnosis of PTSD and severe mental illness. Psychiatry Res. 2017, 247, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Babson, K.A.; Feldner, M.T. Temporal relations between sleep problems and both traumatic event exposure and PTSD: A critical review of the empirical literature. J. Anxiety Disord. 2010, 24, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Koffel, E.; Khawaja, I.S.; Germain, A. Sleep disturbances in posttraumatic stress disorder: Updated review and implications for treatment. Psychiatr. Ann. 2016, 46, 173–176. [Google Scholar] [CrossRef] [Green Version]
- Pillar, G.; Malhotra, A.; Lavie, P. Post-traumatic stress disorder and sleep—What a nightmare! Sleep Med. Rev. 2000, 4, 183–200. [Google Scholar] [CrossRef]
- Lind, M.J.; Baylor, A.; Overstreet, C.M.; Hawn, S.E.; Rybarczyk, B.D.; Kendler, K.S.; Dick, D.M.; Amstadter, A.B. Relationships between potentially traumatic events, sleep disturbances, and symptoms of PTSD and alcohol use disorder in a young adult sample. Sleep Med. 2017, 34, 141–147. [Google Scholar] [CrossRef]
- Cohen, S.; Murphy, M.L.M.; Prather, A.A. Ten Surprising Facts about Stressful Life Events and Disease Risk. Annu. Rev. Psychol. 2019, 70, 577–597. [Google Scholar] [CrossRef]
- Buysse, D.J.; Hall, M.L.; Strollo, P.J.; Kamarck, T.W.; Owens, J.; Lee, L.; Reis, S.E.; Matthews, K.A. Relationships between the Pittsburgh Sleep Quality Index (PSQI), Epworth Sleepiness Scale (ESS), and clinical/polysomnographic measures in a community sample. J. Clin. Sleep Med. 2008, 4, 563–571. [Google Scholar] [CrossRef] [Green Version]
- Carmassi, C.; Akiskal, H.S.; Yong, S.S.; Stratta, P.; Calderani, E.; Massimetti, E.; Akiskal, K.K.; Rossi, A.; Dell’Osso, L. Post-traumatic stress disorder in DSM-5: Estimates of prevalence and criteria comparison versus DSM-IV-TR in a non-clinical sample of earthquake survivors. J. Affect. Disord. 2013, 151, 843–848. [Google Scholar] [CrossRef]
- Bender, R.; Lange, S. Adjusting for multiple testing—When and how? J. Clin. Epidemiol. 2001, 54, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Carmassi, C.; Stratta, P.; Massimetti, G.; Bertelloni, A.A.; Conversano, C.; Cremone, M.M.; Miccoli, M.; Baggiani, A.; Rossi, A.; Dell’Osso, L. New DSM-5 maladaptive symptoms in PTSD: Gender differences and correlations with mood spectrum symptoms in a sample of high school students following survival of an earthquake. Ann. Gen. Psychiatry 2014, 13, 28. [Google Scholar] [CrossRef] [PubMed]
- Dell’Osso, L.; Stratta, P.; Conversano, C.; Massimetti, E.; Akiskal, K.K.; Akiskal, H.S.; Rossi, A.; Carmassi, C. Lifetime mania is related to post-traumatic stress symptoms in high school students exposed to the 2009 L’Aquila earthquake. Compr. Psychiatry 2014, 55, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Dell’Osso, L.; Carmassi, C.; Musetti, L.; Socci, C.; Shear, M.K.; Conversano, C.; Maremmani, I.; Perugi, G. Lifetime mood symptoms and adult separation anxiety in patients with complicated grief and/or post-traumatic stress disorder: A preliminary report. Psychiatry Res. 2012, 198, 436–440. [Google Scholar] [CrossRef] [PubMed]
- Dell’osso, L.; Carpita, B.; Cremone, I.M.; Muti, D.; Diadema, E.; Barberi, F.M.; Massimetti, G.; Brondino, N.; Petrosino, B.; Politi, P.; et al. The mediating effect of trauma and stressor related symptoms and ruminations on the relationship between autistic traits and mood spectrum. Psychiatry Res. 2019, 279, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Buselli, R.; Carmassi, C.; Corsi, M.; Baldanzi, S.; Battistini, G.; Chiumiento, M.; Massimetti, G.; Dell’osso, L.; Cristaudo, A. Post-traumatic stress symptoms in an Italian cohort of subjects complaining occupational stress. CNS Spectr. 2021, 26, 513–520. [Google Scholar] [CrossRef]
- Buselli, R.; Veltri, A.; Corsi, M.; Marino, R.; Baldanzi, S.; Chiumiento, M.; Caldi, F.; Foddis, R.; Guglielmi, G.; Cristaudo, A.; et al. Affective temperament and mood spectrum symptoms in workers suffering from work-related stress disorders. J. Affect. Disord. 2022, 317, 354–359. [Google Scholar] [CrossRef]
- Dell’Osso, L.; Carmassi, C.; Rucci, P.; Ciapparelli, A.; Paggini, R.; Ramacciotti, C.E.; Conversano, C.; Balestrieri, M.; Marazziti, D. Lifetime subthreshold mania is related to suicidality in posttraumatic stress disorder. CNS Spectr. 2009, 14, 262–266. [Google Scholar] [CrossRef]
- Wang, L.; Chartrand, T.L. Morningness–Eveningness and Risk Taking. J. Psychol. 2015, 149, 394–411. [Google Scholar] [CrossRef]
- Hasler, B.P.; Clark, D.B. Circadian Misalignment, Reward-Related Brain Function, and Adolescent Alcohol Involvement. Alcohol. Clin. Exp. Res. 2013, 37, 558–565. [Google Scholar] [CrossRef] [Green Version]
- Killgore, W.D.S.S.; Grugle, N.L.; Balkin, T.J. Gambling when sleep deprived: Don’t bet on stimulants. Chronobiol. Int. 2012, 29, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Steardo, L.; Luciano, M.; Sampogna, G.; Zinno, F.; Saviano, P.; Staltari, F.; Garcia, C.S.; de Fazio, P.; Fiorillo, A. Efficacy of the interpersonal and social rhythm therapy (IPSRT) in patients with bipolar disorder: Results from a real-world, controlled trial. Ann. Gen. Psychiatry 2020, 19, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, K.P.; McHill, A.W.; Birks, B.R.; Griffin, B.R.; Rusterholz, T.; Chinoy, E.D. Entrainment of the Human Circadian Clock to the Natural Light-Dark Cycle. Curr. Biol. 2013, 23, 1554–1558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harvey, A.G.; Hein, K.; Dolsen, M.R.; Dong, L.; Rabe-Hesketh, S.; Gumport, N.B.; Kanady, J.; Wyatt, J.K.; Hinshaw, S.P.; Silk, J.S.; et al. Modifying the Impact of Eveningness Chronotype (“Night-Owls”) in Youth: A Randomized Controlled Trial. J. Am. Acad. Child Adolesc. Psychiatry 2018, 57, 742–754. [Google Scholar] [CrossRef] [PubMed]
- Corruble, E.; Frank, E.; Gressier, F.; Courtet, P.; Bayle, F.; Llorca, P.M.; Vaiva, G.; Gorwood, P. Morningness–eveningness and treatment response in major depressive disorder. Chronobiol. Int. 2014, 31, 283–289. [Google Scholar] [CrossRef]
- Chan, J.W.Y.; Chan, N.Y.; Li, S.X.; Lam, S.P.; Chau, S.W.H.; Liu, Y.; Zhang, J.; Wing, Y.K. Change in circadian preference predicts sustained treatment outcomes in patients with unipolar depression and evening preference. J. Clin. Sleep Med. 2022, 18, 523–531. [Google Scholar] [CrossRef]
- Müller, M.J.; Cabanel, N.; Olschinski, C.; Jochim, D.; Kundermann, B. Chronotypes in patients with nonseasonal depressive disorder: Distribution, stability and association with clinical variables. Chronobiol. Int. 2015, 32, 1343–1351. [Google Scholar] [CrossRef]
- Cruz-Sanabria, F.; Carmassi, C.; Bruno, S.; Bazzani, A.; Carli, M.; Scarselli, M.; Faraguna, U. Melatonin as a Chronobiotic with Sleep-promoting Properties. Curr. Neuropharmacol. 2022, 20. [Google Scholar] [CrossRef]
Evening Type | Neither Type | Morning Type | |||
---|---|---|---|---|---|
n = 27 | n = 33 | n = 14 | p-Value | Post-Hoc | |
Age, years | 48.00 [34.50, 54.50] | 48.00 [38.00, 57.00] | 47.50 [39.25, 55.75] | 0.825 | |
Sex, male (%) | 12 (44%) | 19 (57.6%) | 9 (63.3%) | 0.420 | |
Education, years | 13.00 [13.00, 17.00] | 13.00 [13.00, 17.00] | 13.00 [13.00, 19.00] | 0.858 | |
Alcohol intake, u/w | 0.00 [0.00, 1.00] | 0.00 [0.00, 1.00] | 0.00 [0.00, 0.75] | 0.889 | |
Tobacco intake, u/w | 0.00 [0.00, 56.00] | 0.00 [0.00, 23.75] | 0.00 [0.00, 0.00] | 0.605 | |
BMI, kg/m2 | 25.16 [20.39, 28.77] | 25.81 [23.55, 28.92] | 27.71 [24.85, 30.66] | 0.191 | |
TALS-SR Loss events | 6.00 [4.00, 7.00] | 4.00 [4.00, 6.00] | 4.50 [3.00, 5.75] | 0.062 | |
TALS-SR Grief reactions | 14.00 [8.50, 17.50] | 11.00 [8.00, 13.00] | 11.50 [6.75, 12.75] | 0.151 | |
TALS-SR Potentially traumatic events | 7.00 [3.00, 9.00] | 4.00 [2.00, 6.00] | 3.50 [2.00, 6.75] | 0.070 | |
TALS-SR Reaction to losses and PTE | 10.00 [5.00, 14.50] | 6.00 [2.00, 11.00] | 6.00 [3.25, 8.00] | 0.037 * | ns |
TALS-SR Re-experiencing | 5.00 [3.50, 8.00] | 2.00 [0.00, 5.00] | 3.00 [1.00, 4.00] | 0.005 * | a,b |
TALS-SR Avoidance and numbing | 5.00 [4.00, 9.00] | 4.00 [0.00, 8.00] | 4.00 [1.25, 6.75] | 0.154 | |
TALS-SR Maladaptive coping | 3.00 [0.00, 4.50] | 0.00 [0.00, 3.00] | 0.50 [0.00, 1.00] | 0.043 * | b |
TALS-SR Arousal | 3.00 [1.00, 4.00] | 2.00 [1.00, 4.00] | 2.50 [0.25, 4.00] | 0.545 | |
TALS-SR Symptomatic domains | 27.00 [14.50, 39.00] | 16.00 [8.00, 27.00] | 17.50 [7.50, 24.50] | 0.038 * | ns |
PSQI Total score | 12.00 [9.00, 15.00] | 7.00 [5.00, 12.00] | 8.00 [4.50, 9.00] | 0.001 * | a,b |
SE, % | 88.00 [81.90, 91.50] | 90.50 [85.85, 96.90] | 93.15 [90.33, 95.82] | 0.010 * | a,b |
WASO, minutes | 58.00 [40.50, 94.50] | 45.50 [16.25, 56.50] | 33.00 [26.00, 42.75] | 0.013 * | a,b |
TST, hour | 7.20 [6.25, 8.80] | 7.50 [6.80, 8.10] | 8.55 [7.28, 9.47] | 0.096 | |
SRI | 61.30 [54.05, 73.70] | 71.35 [56.25, 81.92] | 76.50 [70.83, 81.12] | 0.014 * | b |
Acrophase, hh:mm | 16:34 [15:58, 17:24] | 15:54 [15:14, 16:54] | 14:52 [14:34, 15:28] | <0.001 * | b,c |
Amplitude | 0.37 [0.34, 0.42] | 0.38 [0.34, 0.42] | 0.40 [0.37, 0.46] | 0.195 | |
Mesor | 0.58 [0.54, 0.64] | 0.60 [0.55, 0.65] | 0.53 [0.50, 0.57] | 0.034 * | c |
Interdaily stability | 0.78 [0.70, 0.82] | 0.82 [0.74, 0.87] | 0.86 [0.82, 0.92] | 0.020 * | b |
Intradaily variability | 0.33 [0.28, 0.40] | 0.32 [0.28, 0.42] | 0.34 [0.30, 0.39] | 0.889 | |
Relative amplitude | 0.76 [0.62, 0.84] | 0.78 [0.69, 0.83] | 0.88 [0.84, 0.91] | 0.004 * | b,c |
Mid-sleep point, hour | 4.65 [4.20, 5.16] | 3.94 [3.31, 4.35] | 2.33 [2.02, 2.80] | <0.001 * | a,b,c |
PSQI | WASO | TST | SE | SRI | |
---|---|---|---|---|---|
rho | rho | rho | rho | rho | |
(p-Value) | (p-Value) | (p-Value) | (p-Value) | (p-Value) | |
TALS-SR Symptomatic domains | 0.46 | 0.20 | 0.04 | −0.22 | 0.01 |
0.005 * | 0.751 | >0.999 | 0.543 | >0.999 |
rMEQ | Mesor | Amplitude | Acrophase | IV | IS | RA | Mid-Sleep Point | |
---|---|---|---|---|---|---|---|---|
rho | rho | rho | rho | rho | rho | rho | rho | |
(p-Value) | (p-Value) | (p-Value) | (p-Value) | (p-Value) | (p-Value) | (p-Value) | (p-Value) | |
TALS-SR Symptomatic domains | −0.25 | −0.06 | −0.17 | −0.17 | 0.34 | −0.23 | 0.07 | −0.11 |
0.341 | >0.999 | >0.999 | 0.061 | 0.538 | >0.999 | >0.999 | >0.999 |
Outcome: TALS Symptomatic Domains | |||
---|---|---|---|
β | p-Value | 95% CI | |
Age | −0.294 | 0.005 * | −0.50 −0.08 |
Sex (male) | 0.008 | 0.997 * | −4.45 5.47 |
PSQI | 1.442 | <0.001 * | 0.85 2.03 |
R2 | 0.28 |
Outcome: TALS Symptomatic Domains | |||
---|---|---|---|
β | p-Value | 95% CI | |
Age | −0.293 | 0.007 | −0.50 −0.08 |
Sex (male) | −0.258 | 0.926 | −5.28 5.80 |
PSQI | 1.320 | 0.011 * | 0.30 2.33 |
Chronotype (ET vs. NT) | −5.573 | 0.481 | −21.28 10.13 |
Chronotype (ET vs. MT) | 6.154 | 0.533 | −13.48 25.79 |
global p-value of Chronotype | 0.797 | ||
PSQI * Chronotype (ET vs. NT) | 0.435 | 0.203 | −0.99 1.86 |
PSQI * Chronotype (ET vs. MT) | −1.125 | 0.271 | −3.15 0.90 |
global p-value of interaction | 0.312 | ||
R2 | 0.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carmassi, C.; Cruz-Sanabria, F.; Gravina, D.; Violi, M.; Bonelli, C.; Dell’Oste, V.; Pedrinelli, V.; Frumento, P.; Faraguna, U.; Dell’Osso, L. Exploratory Study on the Associations between Lifetime Post-Traumatic Stress Spectrum, Sleep, and Circadian Rhythm Parameters in Patients with Bipolar Disorder. Int. J. Environ. Res. Public Health 2023, 20, 3566. https://doi.org/10.3390/ijerph20043566
Carmassi C, Cruz-Sanabria F, Gravina D, Violi M, Bonelli C, Dell’Oste V, Pedrinelli V, Frumento P, Faraguna U, Dell’Osso L. Exploratory Study on the Associations between Lifetime Post-Traumatic Stress Spectrum, Sleep, and Circadian Rhythm Parameters in Patients with Bipolar Disorder. International Journal of Environmental Research and Public Health. 2023; 20(4):3566. https://doi.org/10.3390/ijerph20043566
Chicago/Turabian StyleCarmassi, Claudia, Francy Cruz-Sanabria, Davide Gravina, Miriam Violi, Chiara Bonelli, Valerio Dell’Oste, Virginia Pedrinelli, Paolo Frumento, Ugo Faraguna, and Liliana Dell’Osso. 2023. "Exploratory Study on the Associations between Lifetime Post-Traumatic Stress Spectrum, Sleep, and Circadian Rhythm Parameters in Patients with Bipolar Disorder" International Journal of Environmental Research and Public Health 20, no. 4: 3566. https://doi.org/10.3390/ijerph20043566
APA StyleCarmassi, C., Cruz-Sanabria, F., Gravina, D., Violi, M., Bonelli, C., Dell’Oste, V., Pedrinelli, V., Frumento, P., Faraguna, U., & Dell’Osso, L. (2023). Exploratory Study on the Associations between Lifetime Post-Traumatic Stress Spectrum, Sleep, and Circadian Rhythm Parameters in Patients with Bipolar Disorder. International Journal of Environmental Research and Public Health, 20(4), 3566. https://doi.org/10.3390/ijerph20043566