Genetic Risk Scores for the Determination of Type 2 Diabetes Mellitus (T2DM) in North India
Abstract
:1. Introduction
2. Methods
Statistical Analyses
3. Results
3.1. Descriptive Statistics
3.2. Odds Ratios
3.3. Polygenic Risk Score and Receiver Operating Characteristic Curves
3.4. Binary Logistic Regression Analyses
4. Discussion
4.1. Clinical Parameters
4.2. Genetic Associations
4.3. Polygenic Risk Score
4.4. Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Diabetes. Available online: http://www.who.int/news-room/fact-sheets/detail/diabetes (accessed on 26 March 2021).
- IDF Diabetes Atlas, 9th ed.; International Diabetes Federation: Brussels, Belgium, 2019; pp. 14–45. Available online: www.diabetesatlas.org (accessed on 26 March 2021).
- Bellou, V.; Belbasis, L.; Tzoulaki, I.; Evangelou, E. Risk factors for type 2 diabetes mellitus: An exposure-wide umbrella review of meta-analyses. PLoS ONE 2018, 13, e0194127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cowie, C.; Casagrande, S.S.; Menke, A.; Cissell, M.A.; Eberhardt, M.S.; Meigs, J.B.; Gregg, E.W.; Knowler, W.C.; Bar-rett-Connor, E.; Becker, D.J.; et al. Diabetes in America, 3rd ed.; National Institute of Diabetes and Digestive and Kidney Diseases (US): Bethesda, MD, USA, 2018; pp. 14.1–14.25. Available online: https://www.niddk.nih.gov/about-niddk/strategic-plans-reports/diabetes-in-america-3rd-edition (accessed on 26 March 2021).
- Galicia-Garcia, U.; Benito-Vicente, A.; Jebari, S.; Larrea-Sebal, A.; Siddiqi, H.; Uribe, K.; Ostolaza, H.; Martín, C. Pathophysiology of Type 2 Diabetes Mellitus. Int. J. Mol. Sci. 2020, 21, 6275. [Google Scholar] [CrossRef] [PubMed]
- Bommer, C.; Heesemann, E.; Sagalova, V.; Manne-Goehler, J.; Atun, R.; Bärnighausen, T.; Vollmer, S. The global economic burden of diabetes in adults aged 20–79 years: A cost-of-illness study. Lancet Diabetes Endocrinol. 2017, 5, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Harding, J.L.; Pavkov, M.E.; Magliano, D.J.; Shaw, J.E.; Gregg, E.W. Global trends in diabetes complications: A review of current evidence. Diabetologia 2019, 62, 3–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. The Top 10 Causes of Death—Factsheet. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 22 March 2021).
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef] [Green Version]
- Unnikrishnan, R.; Anjana, R.M.; Mohan, V. Diabetes mellitus and its complications in India. Nat. Rev. Endocrinol. 2016, 12, 357–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rask-Madsen, C.; King, G.L. Vascular Complications of Diabetes: Mechanisms of Injury and Protective Factors. Cell Metab. 2013, 17, 20–33. [Google Scholar] [CrossRef] [Green Version]
- Khalil, H. Diabetes microvascular complications—A clinical update. Diabetes Metab. Syndr. Clin. Res. Rev. 2017, 11, S133–S139. [Google Scholar] [CrossRef]
- Fowler, M.J. Microvascular and Macrovascular Complications of Diabetes. Clin. Diabetes 2008, 26, 77–82. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.; Refaat, M.; Mohammedi, K.; Jayyousi, A.; Al Suwaidi, J.; Khalil, C.A. Macrovascular Complications in Patients with Diabetes and Prediabetes. BioMed Res. Int. 2017, 2017, 7839101. [Google Scholar] [CrossRef]
- Oberoi, S.; Kansra, P. Economic menace of diabetes in India: A systematic review. Int. J. Diabetes Dev. Ctries. 2020, 40, 464–475. [Google Scholar] [CrossRef]
- Tandon, N.; Anjana, R.M.; Mohan, V.; Kaur, T.; Afshin, A.; Ong, K.; Mukhopadhyay, S.; Thomas, N.; Bhatia, E.; Krishnan, A.; et al. The increasing burden of diabetes and variations among the states of India: The Global Burden of Disease Study 1990–2016. Lancet Glob. Health 2018, 6, e1352–e1362. [Google Scholar] [CrossRef] [Green Version]
- Yajnik, C.S. The insulin resistance epidemic in India: Fetal origins, later lifestyle, or both? Nutr. Rev. 2001, 59, 1–9. [Google Scholar] [CrossRef]
- Dudeja, V.; Misra, A.; Pandey, R.M.; Devina, G.; Kumar, G.; Vikram, N.K. BMI does not accurately predict over-weight in Asian Indians in northern India. Br. J. Nutr. 2001, 86, 105–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathur, N.; Kesavachandran, C.N.; Bihari, V. The normal range of body mass index with high body fat percentage among male residents of Lucknow city in north India. Indian J. Med. Res. 2012, 135, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Willemsen, G.; Ward, K.J.; Bell, C.G.; Christensen, K.; Bowden, J.; Dalgård, C.; Harris, J.R.; Kaprio, J.; Lyle, R.; Magnusson, P.K.; et al. The concordance and heritability of type 2 diabetes in 34,166 twin pairs from international twin reg-isters: The discordant twin (DISCOTWIN) consortium. Twin Res. Hum. Genet. 2015, 18, 762–771. [Google Scholar] [CrossRef] [Green Version]
- Nath, S.; Das, S.; Bhowmik, A.; Ghosh, S.K.; Choudhury, Y. The GSTM1 and GSTT1 Null Genotypes Increase the Risk for Type 2 Diabetes Mellitus and the Subsequent Development of Diabetic Complications: A Meta-analysis. Curr. Diabetes Rev. 2018, 15, 31–43. [Google Scholar] [CrossRef]
- Saadat, M. Evaluation of glutathione S-transferase P1 (GSTP1) Ile105Val polymorphism and susceptibility to type 2 diabetes mellitus, a meta-analysis. Excli J. 2017, 16, 1188–1197. [Google Scholar] [CrossRef] [PubMed]
- Mastana, S.S.; Kaur, A.; Hale, R.; Lindley, M.R. Influence of glutathione S-transferase polymorphisms (GSTT1, GSTM1, GSTP1) on type-2 diabetes mellitus (T2D) risk in an endogamous population from north India. Mol. Biol. Rep. 2013, 40, 7103–7110. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.-Y.; Chen, L.-S.; Zhang, L.-C.; Zhou, T.-B. Meta-analysis of the relationship between ACE I/D gene polymorphism and end-stage renal disease in patients with diabetic nephropathy. Nephrology 2012, 17, 480–487. [Google Scholar] [CrossRef] [PubMed]
- Been, L.F.; Ralhan, S.; Wander, G.S.; Mehra, N.K.; Singh, J.; Mulvihill, J.J.; Aston, C.; Sanghera, D.K. Variants in KCNQ1 increase type II diabetes susceptibility in South Asians: A study of 3,310 subjects from India and the US. BMC Med. Genet. 2011, 12, 18. [Google Scholar] [CrossRef] [Green Version]
- Phani, N.M.; Adhikari, P.; Nagri, S.K.; D’Souza, S.C.; Satyamoorthy, K.; Rai, P.S. Replication and Relevance of Multiple Susceptibility Loci Discovered from Genome Wide Association Studies for Type 2 Diabetes in an Indian Population. PLoS ONE 2016, 11, e0157364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Z.; Dong, M.; Li, J.; Qiu, W.; Li, S. Meta-Analysis of the association of IGF2BP2 gene rs4402960 polymorphisms with T2DM in Asia. BIO Web Conf. 2017, 8, 02003. [Google Scholar] [CrossRef] [Green Version]
- Rao, P.; Wang, H.; Fang, H.; Gao, Q.; Zhang, J.; Song, M.; Zhou, Y.; Wang, Y.; Wang, W. Association between IGF2BP2 Polymorphisms and Type 2 Diabetes Mellitus: A Case–Control Study and Meta-Analysis. Int. J. Environ. Res. Public Health 2016, 13, 574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarhangi, N.; Sharifi, F.; Hashemian, L.; Doabsari, M.H.; Heshmatzad, K.; Rahbaran, M.; Jamaldini, S.H.; Meybodi, H.R.A.; Hasanzad, M. PPARG (Pro12Ala) genetic variant and risk of T2DM: A systematic review and meta-analysis. Sci. Rep. 2020, 10, 12764. [Google Scholar] [CrossRef] [PubMed]
- Majid, M.; Masood, A.; Kadla, S.A.; Hameed, I.; Ganai, B.A. Association of Pro12Ala Polymorphism of Peroxisome Proliferator-Activated Receptor gamma 2 (PPARγ2) Gene with Type 2 Diabetes Mellitus in Ethnic Kashmiri Population. Biochem. Genet. 2017, 55, 10–21. [Google Scholar] [CrossRef]
- Phani, N.M.; Vohra, M.; Rajesh, S.; Adhikari, P.; Nagri, S.K.; D’Souza, S.C.; Satyamoorthy, K.; Rai, P.S. Implications of critical PPARγ2, ADIPOQ and FTO gene polymorphisms in type 2 diabetes and obesity-mediated susceptibility to type 2 diabetes in an Indian population. Mol. Genet. Genom. 2016, 291, 193–204. [Google Scholar] [CrossRef]
- Niu, W.; Qi, Y.; Gao, P.; Zhu, D. Angiotensin converting enzyme D allele is associated with an increased risk of type 2 diabetes: Evidence from a meta-analysis. Endocr. J. 2010, 57, 431–438. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.P.; Naz, I.; Gilmour, A.; Singh, M.; Mastana, S. Association of APOE (Hha1) and ACE (I/D) gene poly-morphisms with type 2 diabetes mellitus in North West India. Diabetes Res. Clin. Pract. 2006, 74, 95–102. [Google Scholar] [CrossRef]
- Raza, S.T.; Abbas, S.; Siddiqi, Z.; Mahdi, F. Association between ACE(rs4646994), FABP2(rs1799883), MTHFR(rs1801133), FTO(rs9939609) genes polymorphism and type 2 diabetes with dyslipidemia. Int. J. Mol. Cell. Med. 2017, 6, 121. [Google Scholar]
- Peng, S.; Zhu, Y.; Lü, B.; Xu, F.; Li, X.; Lai, M. TCF7L2 gene polymorphisms and type 2 diabetes risk: A comprehensive and updated meta-analysis involving 121 174 subjects. Mutagenesis 2013, 28, 25–37. [Google Scholar] [CrossRef] [Green Version]
- Gauderman, W.J.; Morrison, J.M. QUANTO 1.1: A Computer Program for Power and Sample Size Calculations for Genetic-Epidemiology Studies. 2006. Available online: http://hydra.usc.edu/gxe (accessed on 20 March 2021).
- American Diabetes Association Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 2004, 27 (Suppl. S1), S5–S10. [CrossRef] [PubMed] [Green Version]
- Miller, S.A.; Dykes, D.D.; Polesky, H.F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988, 6, 1215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solé, X.; Guinó, E.; Valls, J.; Iniesta, R.; Moreno, V. SNPStats: A web tool for the analysis of association studies. Bioinformatics 2006, 22, 1928–1929. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-Y. Statistical notes for clinical researchers: Assessing normal distribution (2) using skewness and kurtosis. Restor. Dent. Endod. 2013, 38, 52–54. [Google Scholar] [CrossRef] [PubMed]
- Obuchowski, N.A.; Bullen, J.A. Receiver operating characteristic (ROC) curves: Review of methods with applications in diagnostic medicine. Phys. Med. Biol. 2018, 63, 07TR01. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.; Khadgawat, R.; Ng, H.K.T.; Kumar, S.; Aggarwal, A.; Rao, V.R.; Sachdeva, M.P. A validation study of type 2 diabetes-related variants of the TCF7L2, HHEX, KCNJ11, and ADIPOQ genes in one endogamous ethnic group of North India. Ann. Hum. Genet. 2010, 74, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Parikh, R.M.; Joshi, S.R.; Menon, P.S.; Shah, N.S. Prevalence and pattern of diabetic dyslipidemia in Indian type 2 diabetic patients. Diabetes Metab. Syndr. Clin. Res. Rev. 2010, 4, 10–12. [Google Scholar] [CrossRef]
- Ormazabal, V.; Nair, S.; Elfeky, O.; Aguayo, C.; Salomon, C.; Zuñiga, F.A. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc. Diabetol. 2018, 17, 122. [Google Scholar] [CrossRef] [Green Version]
- Kaur, N.; Bhatti, G.K.; Kaur, S.; Bhadada, S.K.; Singh, S.; Bhatti, J.S. Transcription factor 7-like 2 gene, rs12255372 (G/T) variant and susceptibility to type 2 diabetes mellitus in North Indians. Gene Rep. 2020, 19, 100595. [Google Scholar] [CrossRef]
- Hayes, J.D.; Strange, R.C. Glutathione S-Transferase Polymorphisms and Their Biological Consequences. Pharmacology 2000, 61, 154–166. [Google Scholar] [CrossRef] [PubMed]
- Dušinská, M.; Ficek, A.; Horská, A.; Rašlová, K.; Petrovská, H.; Vallová, B.; Drlicková, M.; Wood, S.G.; Štupáková, A.; Gašparovič, J.; et al. Glutathione S-transferase polymorphisms influence the level of oxidative DNA damage and antioxidant protection in humans. Mutat. Res./Fundam. Mol. Mech. Mutagen. 2001, 482, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Opara, E.C. Oxidative stress, micronutrients, diabetes mellitus and its complications. J. R. Soc. Promot. Health 2002, 122, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Baig, S.; Shabeer, M.; Rizi, E.P.; Agarwal, M.; Lee, M.H.; Ooi, D.S.Q.; Chia, C.; Aung, N.; Ng, G.; Teo, Y.; et al. Heredity of type 2 diabetes confers increased susceptibility to oxidative stress and inflammation. BMJ Open Diabetes Res. Care 2020, 8, e000945. [Google Scholar] [CrossRef] [Green Version]
- Abhilash, P.; Singh, N. Pesticide use and application: An Indian scenario. J. Hazard. Mater. 2009, 165, 1–12. [Google Scholar] [CrossRef]
- Karami, S.; Boffetta, P.; Rothman, N.; Hung, R.J.; Stewart, T.; Zaridze, D.; Navritalova, M.; Mates, D.; Janout, V.; Kollarova, H.; et al. Renal cell carcinoma, occupational pesticide exposure and modification by glutathione S-transferase polymorphisms. Carcinogenesis 2008, 29, 1567–1571. [Google Scholar] [CrossRef] [Green Version]
- Tomer, V.; Sangha, J.K.; Ramya, H.G. Pesticide: An Appraisal on Human Health Implications. Proc. Natl. Acad. Sci. India Sect. B Boil. Sci. 2015, 85, 451–463. [Google Scholar] [CrossRef]
- Jodhka, S.S. Sikhs in contemporary times: Eligious identities and discourses of development. Sikh Form. 2009, 5, 1–22. [Google Scholar] [CrossRef]
- Torekov, S.S.; Iepsen, E.; Christiansen, M.; Linneberg, A.; Pedersen, O.; Holst, J.J.; Kanters, J.K.; Hansen, T. KCNQ1 Long QT Syndrome Patients Have Hyperinsulinemia and Symptomatic Hypoglycemia. Diabetes 2014, 63, 1315–1325. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.-X.; Liao, M.-Q.; Zeng, Y.-F.; Gao, X.-P.; Liu, Y.-H.; Sun, W.; Zhu, S.; Zeng, F.-F.; Ye, Y.-B. Associations of KCNQ1 Polymorphisms with the Risk of Type 2 Diabetes Mellitus: An Updated Meta-Analysis with Trial Sequential Analysis. J. Diabetes Res. 2020, 2020, 7145139. [Google Scholar] [CrossRef]
- Cheung, B.M.Y.; Li, C. Diabetes and Hypertension: Is There a Common Metabolic Pathway? Curr. Atheroscler. Rep. 2012, 14, 160–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Ning, C.; Mu, J.; Li, D.; Ma, Y.; Meng, X. Role of Wnt signaling pathways in type 2 diabetes mellitus. Mol. Cell. Biochem. 2021, 476, 2219–2232. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, L.; Huang, Q.; Huang, Z.-C.; Li, J.; Li, S.-M. A Multi-Ethnic Meta-Analysis of the Association between the TCF7L2 Variant Rs12255372 and Type 2 Diabetes Mellitus. In Medicine and Biopharmaceutical: Proceedings of the 2015 International Conference; (2015 International Conference on Medicine and Biopharmaceutical, China, 15–16 August 2015); World Scientific: Singapore, 2016; pp. 99–114. [Google Scholar] [CrossRef]
- Ding, W.; Xu, L.; Zhang, L.; Han, Z.; Jiang, Q.; Wang, Z.; Jin, S. Meta-analysis of association between TCF7L2 polymorphism rs7903146 and type 2 diabetes mellitus. BMC Med. Genet. 2018, 19, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bodhini, D.; Radha, V.; Dhar, M.; Narayani, N.; Mohan, V. The rs12255372 (G/T) and rs7903146 (C/T) polymor-phisms of the TCF7L2 gene are associated with type 2 diabetes mellitus in Asian Indians. Metabolism 2007, 56, 1174–1178. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, G.; Spurgeon, C.J.; Tabassum, R.; Bhaskar, S.; Kulkarni, S.R.; Mahajan, A.; Chavali, S.; Kumar, M.K.; Prakash, S.; Dwivedi, O.P.; et al. Impact of common variants of PPARG, KCNJ11, TCF7L2, SLC30A8, HHEX, CDKN2A, IGF2BP2, and CDKAL1 on the risk of type 2 diabetes in 5,164 Indians. Diabetes 2010, 59, 2068–2074. [Google Scholar] [CrossRef] [Green Version]
- Kommoju, U.J.; Maruda, J.; Kadarkarai, K.J.P.S.; Irgam, K.; Velaga, L.; Reddy, B.M. Association of TCF7L2 gene polymorphisms with T2DM in the population of Hyderabad, India. PLoS ONE 2013, 8, e60212. [Google Scholar]
- Verma, A.K.; Goyal, Y.; Bhatt, D.; Beg, M.M.A.; Dev, K.; Alsahli, M.A.; Rahmani, A.H. Association Between CDKAL1, HHEX, CDKN2A/2B and IGF2BP2 Gene Polymorphisms and Susceptibility to Type 2 Diabetes in Uttarakhand, India. Diabetes, Metabolic Syndrome and Obesity. Targets Ther. 2021, 14, 23. [Google Scholar]
- Lewis, C.M.; Vassos, E. Polygenic risk scores: From research tools to clinical instruments. Genome Med. 2020, 12, 44. [Google Scholar] [CrossRef]
- Aschard, H. A perspective on interaction effects in genetic association studies. Genet. Epidemiol. 2016, 40, 678–688. [Google Scholar] [CrossRef]
Gene | Role | Putative Pathological Function | rs Number | Association Study Findings |
---|---|---|---|---|
GSTT1 Glutathione S-transferase theta 1 | Production of glutathione | Detoxification and inflammation | rs17856199 | ↑ risk (Nath et al., 2019) [21] |
GSTM1 Glutathione S-transferase mu 1 | Production of glutathione | As above | rs366631 | ↑ risk (Nath et al., 2019) [21] |
GSTP1 Glutathione S-transferase pi 1 | Production of glutathione | As above | rs1695 | Consensus inconclusive (Saadat, 2017) [22]; ↑ risk in north India Mastana et al., 2013) [23] |
KCNQ1 Potassium voltage-gated channel subfamily Q member 1 | Voltage-gated potassium channel | Channels in pancreatic β-cells involved in regulating insulin secretion | rs2237892 | ↑ risk (Yu et al., 2020) [24]; inconsistent findings in India (Been et al., 2011; Phani et al., 2016a) [25,26] |
IGF2BP2 Insulin-like growth factor 2 mRNA-binding protein 2 | Regulator of IGF2 translation | IGF2 associated with reduced first-phase insulin secretion | rs4402960 | ↑ risk (Huang et al., 2017a; Rao et al., 2016) [27,28] |
PPARG2 Peroxisome proliferator-activated receptor gamma 2 | Nuclear receptor | Regulation of adipocyte differentiation and glucose and insulin sensitivity | rs1801282 | ↓ risk (Sarhangi et al., 2020; Majid et al., 2017) [29,30] some inconsistent findings (Phani et al., 2016b) [31] |
ACE Angiotensin-converting enzyme | Angiotensin-converting enzyme | Angiotensin conversion affecting inflammation | rs4646994 | ↑ risk associated with D allele/DD genotype (Niu et al., 2010; Singh et al., 2006; Raza et al., 2017) [32,33,34] |
TCF7L2 Transcription factor 7-like 2 | Transcription factor | Apoptosis, proliferation, and functioning of pancreatic β-cells | rs12255372 | ↑ risk (Peng et al., 2013) [35] |
TCF7L2 | Transcription factor | As above | rs7903146 | ↑ risk (Peng et al., 2013) [35] |
TCF7L2 | Transcription factor | As above | rs7901695 | ↑ risk (Peng et al., 2013) [35] |
Gene/Position | Group | Total | GF (% Distribution) | MAF (±SE) | HWE p Value | ||
---|---|---|---|---|---|---|---|
Null | Wild type | ||||||
GSTT1 | Patients | 225 | 70 (31) | 155 (69) | N/A | N/A | |
rs17856199 | Controls | 231 | 40 (17) | 191 (83) | N/A | N/A | |
Null | Wild type | ||||||
GSTM1 | Patients | 225 | 119 (53) | 106 (47) | N/A | N/A | |
rs366631 | Controls | 231 | 66 (29) | 165 (71) | N/A | N/A | |
I/I | I/V | V/V | V | ||||
GSTP1 | Patients | 225 | 82 (36) | 99 (44) | 44 (20) | 0.416 (±0.023) | 0.158 |
rs1695 | Controls | 230 | 104 (45) | 108 (47) | 18 (8) | 0.313 (±0.022) | 0.164 |
C/C | C/T | T/T | T | ||||
KCNQ1 | Patients | 225 | 160 (71) | 62 (28) | 3 (1) | 0.151 (±0.017) | 0.267 |
rs2237892 | Controls | 230 | 137 (60) | 86 (37) | 7 (3) | 0.217 (±0.019) | 0.134 |
G/G | G/T | T/T | T | ||||
IGF2BP2 | Patients | 225 | 58 (26) | 118 (52) | 49 (22) | 0.480 (±0.024) | 0.448 |
rs4402960 | Controls | 230 | 58 (25) | 119 (52) | 53 (23) | 0.489 (±0.023) | 0.593 |
P/P | P/A | A/A | A | ||||
PPARG2 | Patients | 223 | 184 (83) | 33 (15) | 6 (3) | 0.101 (±0.014) | 0.006 * |
rs1801282 | Controls | 230 | 178 (77) | 48 (21) | 4 (2) | 0.122 (±0.015) | 0.715 |
I/I | I/D | D/D | I | ||||
ACE | Patients | 225 | 28 (12) | 105 (47) | 92 (41) | 0.358 (±0.023) | 0.816 |
rs4646994 | Controls | 231 | 60 (26) | 123 (53) | 48 (21) | 0.526 (±0.023) | 0.303 |
G/G | G/T | T/T | T | ||||
TCF7L2 | Patients | 223 | 127 (57) | 85 (38) | 11 (5) | 0.240 (±0.020) | 0.500 |
rs12255372 | Controls | 226 | 172 (76) | 48 (21) | 6 (3) | 0.133 (±0.016) | 0.244 |
C/C | C/T | T/T | T | ||||
TCF7L2 | Patients | 224 | 131 (58) | 78 (35) | 15 (7) | 0.241 (±0.020) | 0.469 |
rs7903146 | Controls | 230 | 151 (66) | 74 (32) | 5 (2) | 0.183 (±0.018) | 0.238 |
C/C | C/T | T/T | C | ||||
TCF7L2 | Patients | 225 | 38 (17) | 106 (47) | 81 (36) | 0.404 (±0.023) | 0.740 |
rs7901695 | Controls | 228 | 17 (7) | 75 (33) | 136 (60) | 0.239 (±0.020) | 0.148 |
Gene/ Position | Model | Genotype/Allele | Crude OR (95% CI) | Crude p Value | Adjusted OR (95%CI) for Age and BMI | Adjusted p Value |
---|---|---|---|---|---|---|
GSTT1 | Recessive | Wild type | 1.00 (ref) | N/A | ||
rs17856199 | Null | 2.16 (1.39–3.36) | 0.001 * | N/A | N/A | |
GSTM1 | Recessive | Wild type | 1.00 (ref) | N/A | ||
rs366631 | Null | 2.81 (1.91–4.13) | <0.001 * | N/A | N/A | |
GSTP1 | Codominant | I/I | 1.00 (ref) | 1.00 (ref) | ||
rs1695 | I/V | 1.16 (0.78–1.73) | <0.001 ** | 1.16 (0.77–1.73) | 0.0014 ** | |
V/V | 3.10 (1.67–5.76) | <0.001 * | 3.03 (1.61–5.67) | 0.0014 * | ||
Dominant | I/I | 1.00 (ref) | 1.00 (ref) | |||
I/V–V/V | 1.44 (0.99–2.10) | 0.057 | 1.42 (0.97–2.08) | 0.069 | ||
Recessive | I/I–I/V | 1.00 (ref) | 1.00 (ref) | |||
V/V | 2.86 (1.60–5.13) | <0.001 * | 2.80 (1.55–5.05) | 0.0004 * | ||
Log–additive | V | 1.56 (1.18–2.05) | 0.0014 * | 1.54 (1.17–2.03) | 0.0021 * | |
KCNQ1 | Codominant | T/T | 1.00 (ref) | 1.00 (ref) | ||
rs2237892 | C/T | 1.68 (0.42–6.76) | 0.026 ** | 1.76 (0.44–7.14) | 0.033 ** | |
C/C | 2.73 (0.69–10.74) | 0.026 ** | 2.80 (0.71–11.13) | 0.033 ** | ||
Dominant | T/T | 1.00 (ref) | 1.00 (ref) | |||
C/T–C/C | 2.32 (0.59–9.10) | 0.21 | 2.40 (0.61–9.47) | 0.19 | ||
Recessive | T/T–C/T | 1.00 (ref) | 1.00 (ref) | |||
C/C | 1.67 (1.13–2.47) | 0.0096 * | 1.65 (1.11–2.44) | 0.013 * | ||
Log–additive | C | 1.63 (1.14–2.33) | 0.007 * | 1.61 (1.12–2.31) | 0.0091 * | |
IGF2BP2 | Codominant | T/T | 1.00 (ref) | 1.00 (ref) | ||
rs4402960 | G/T | 1.07 (0.67–1.71) | 0.95 | 0.99 (0.62–1.59) | 0.99 | |
G/G | 1.08 (0.64–1.84) | 0.95 | 0.97 (0.56–1.67) | 0.99 | ||
Dominant | T/T | 1.00 (ref) | 1.00 (ref) | |||
G/T–G/G | 1.08 (0.69–1.67) | 0.75 | 0.98 (0.63–1.54) | 0.94 | ||
Recessive | T/T–G/T | 1.00 (ref) | 1.00 (ref) | |||
G/G | 1.03 (0.68–1.57) | 0.89 | 0.98 (0.64–1.50) | 0.92 | ||
Log–additive | G | 1.04 (0.80–1.36) | 0.78 | 0.99 (0.75–1.29) | 0.91 | |
PPARG2 | Codominant | A/A | 1.00 (ref) | 1.00 (ref) | ||
rs1801282 | P/A | 0.46 (0.12–1.75) | 0.20 | 0.44 (0.11–1.69) | 0.18 | |
P/P | 0.69 (0.19–2.48) | 0.20 | 0.67 (0.19–2.46) | 0.18 | ||
Dominant | A/A | 1.00 (ref) | 1.00 (ref) | |||
P/A–P/P | 0.64 (0.18–2.30) | 0.49 | 0.62 (0.17–2.26) | 0.47 | ||
Recessive | A/A–P/A | 1.00 (ref) | 1.00 (ref) | |||
P/P | 1.38 (0.87–2.19) | 0.17 | 1.40 (0.88–2.24) | 0.16 | ||
Log–additive | P | 1.21 (0.81–1.81) | 0.34 | 1.22 (0.82–1.83) | 0.32 | |
ACE | Codominant | I/I | 1.00 (ref) | 1.00 (ref) | ||
rs4646994 | I/D | 1.83 (1.09–3.07) | <0.001 * | 1.86 (1.10–3.14) | <0.0001 * | |
D/D | 4.11 (2.33–7.25) | <0.001 * | 4.19 (2.36–7.44) | <0.0001 * | ||
Dominant | I/I | 1.00 (ref) | 1.00 (ref) | |||
I/D–D/D | 2.47 (1.51–4.04) | <0.001 * | 2.52 (1.53–4.14) | <0.001 * | ||
Recessive | I/I–I/D | 1.00 (ref) | 1.00 (ref) | |||
D/D | 2.64 (1.74–3.99) | <0.001 * | 2.66 (1.75–4.04) | <0.001 * | ||
Log–additive | D | 2.06 (1.55–2.72) | <0.001 * | 2.07 (1.56–2.75) | <0.001 * | |
TCF7L2 | Codominant | G/G | 1.00 (ref) | 1.00 (ref) | ||
rs12255372 | G/T | 2.40 (1.57–3.66) | <0.001 * | 2.42 (1.58–3.70) | <0.001 * | |
T/T | 2.48 (0.89–6.89) | <0.001 ** | 2.20 (0.78–6.19) | <0.001 ** | ||
Dominant | G/G | 1.00 (ref) | 1.00 (ref) | |||
G/T–T/T | 2.41 (1.61–3.61) | <0.001 * | 2.39 (1.59–3.60) | <0.001 * | ||
Recessive | G/G–G/T | 1.00 (ref) | 1.00 (ref) | |||
T/T | 1.90 (0.69–5.24) | 0.20 | 1.67 (0.60–4.67) | 0.32 | ||
Log–additive | T | 2.06 (1.45–2.93) | <0.001 * | 2.03 (1.42–2.90) | <0.001 * | |
TCF7L2 | Codominant | C/C | 1.00 (ref) | 1.00 (ref) | ||
rs7903146 | C/T | 1.21 (0.82–1.80) | 0.036 ** | 1.23 (0.82–1.83) | 0.031 ** | |
T/T | 3.46 (1.22–9.77) | 0.036 * | 3.59 (1.26–10.22) | 0.031 * | ||
Dominant | C/C | 1.00 (ref) | 1.00 (ref) | |||
C/T–T/T | 1.36 (0.93–1.99) | 0.12 | 1.38 (0.94–2.02) | 0.10 | ||
Recessive | C/C–C/T | 1.00 (ref) | 1.00 (ref) | |||
T/T | 3.23 (1.15–9.04) | 0.017 * | 3.34 (1.18–9.44) | 0.014 * | ||
Log–additive | T | 1.43 (1.03–1.97) | 0.03 * | 1.45 (1.04–2.01) | 0.026 * | |
TCF7L2 | Codominant | T/T | 1.00 (ref) | 1.00 (ref) | ||
rs7901695 | C/T | 2.37 (1.58–3.55) | <0.001 * | 2.47 (1.64–3.73) | <0.001 * | |
C/C | 3.75 (1.99–7.08) | <0.001 * | 3.76 (1.98–7.14) | <0.001 * | ||
Dominant | T/T | 1.00 (ref) | 1.00 (ref) | |||
C/T–C/C | 2.63 (1.80–3.84) | <0.001 * | 2.72 (1.85–3.99) | <0.001 * | ||
Recessive | T/T–C/T | 1.00 (ref) | 1.00 (ref) | |||
C/C | 2.52 (1.38–4.62) | 0.0019 * | 2.49 (1.35–4.57) | 0.0024 * | ||
Log–additive | C | 2.08 (1.56–2.77) | <0.001 * | 2.11 (1.58–2.82) | <0.001 * |
Haplotype | Haplotype Frequency (%) | Crude OR (95% CI) | Crude p Value | Adjusted OR (95%CI) for Age and BMI | Adjusted p Value | |
---|---|---|---|---|---|---|
Controls | Patients | |||||
GCT | 104 (45.0) | 127 (56.3) | 1.00 (ref) | - | 1.00 (ref) | - |
GCC | 47 (20.4) | 39 (17.2) | 2.36 (1.55–3.61) | <0.001 * | 2.34 (1.53–3.57) | <0.001 * |
GTT | 26 (11.0) | 21 (9.5) | 2.64 (1.48–4.73) | 0.001 * | 2.62 (1.47–4.67) | 0.001 * |
TCT | 19 (8.1) | 14 (6.3) | 2.69 (1.45–4.98) | 0.002 * | 2.63 (1.41–4.90) | 0.002 * |
TCC | 12 (5.3) | 4 (2.0) | 8.02 (2.95–21.77) | <0.001 * | 8.12 (2.98–22.09) | <0.001 * |
GTC | 11 (5.0) | 8 (3.7) | 2.39 (1.09–5.21) | 0.029 * | 2.61 (1.19–5.74) | 0.018 * |
TTT | 9 (3.7) | 9 (3.9) | 1.36 (0.54–3.43) | 0.510 | 1.29 (0.49–3.39) | 0.600 |
TTC | 3 (1.4) | 2 (1.1) | 4.75 (0.71–31.58) | 0.110 | 4.85 (0.69–34.28) | 0.110 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shitomi-Jones, L.M.; Akam, L.; Hunter, D.; Singh, P.; Mastana, S. Genetic Risk Scores for the Determination of Type 2 Diabetes Mellitus (T2DM) in North India. Int. J. Environ. Res. Public Health 2023, 20, 3729. https://doi.org/10.3390/ijerph20043729
Shitomi-Jones LM, Akam L, Hunter D, Singh P, Mastana S. Genetic Risk Scores for the Determination of Type 2 Diabetes Mellitus (T2DM) in North India. International Journal of Environmental Research and Public Health. 2023; 20(4):3729. https://doi.org/10.3390/ijerph20043729
Chicago/Turabian StyleShitomi-Jones, Lisa Mitsuko, Liz Akam, David Hunter, Puneetpal Singh, and Sarabjit Mastana. 2023. "Genetic Risk Scores for the Determination of Type 2 Diabetes Mellitus (T2DM) in North India" International Journal of Environmental Research and Public Health 20, no. 4: 3729. https://doi.org/10.3390/ijerph20043729
APA StyleShitomi-Jones, L. M., Akam, L., Hunter, D., Singh, P., & Mastana, S. (2023). Genetic Risk Scores for the Determination of Type 2 Diabetes Mellitus (T2DM) in North India. International Journal of Environmental Research and Public Health, 20(4), 3729. https://doi.org/10.3390/ijerph20043729