Motor Development Comparison between Preterm and Full-Term Infants Using Alberta Infant Motor Scale
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Evaluation Tool (AIMS)
2.3. Procedures
2.4. Data Analysis
3. Results
3.1. Alberta Infant Motor Scale (AIMS) Positional and Total Scores
3.2. Identification of Motor Delay and Classification of Motor Performance
3.3. Motor Repertories and Representative Motor Skills
4. Discussion
5. Conclusions
6. Limitations of the Study
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morgan, A.S.; Mendonca, M.; Thiele, N.; David, A.L. Management and outcomes of extreme preterm birth. BMJ 2022, 376, e055924. [Google Scholar] [CrossRef] [PubMed]
- Bos, A.F.; Van Braeckel, K.N.; Hitzert, M.M.; Tanis, J.C.; Roze, E. Development of fine motor skills in preterm infants. Dev. Med. Child Neurol. 2013, 55 (Suppl. 4), 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- George, J.M.; Boyd, R.N.; Colditz, P.B.; Rose, S.E.; Pannek, K.; Fripp, J.; Lingwood, B.E.; Lai, M.M.; Kong, A.H.T.; Ware, R.S.; et al. PPREMO: A prospective cohort study of preterm infant brain structure and function to predict neurodevelopmental outcome. BMC Pediatr. 2015, 15, 123. [Google Scholar] [CrossRef]
- You, J.; Shamsi, B.H.; Hao, M.C.; Cao, C.H.; Yang, W.Y. A study on the neurodevelopment outcomes of late preterm infants. BMC Neurol. 2019, 19, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hadders-Algra, M. Early human motor development: From variation to the ability to vary and adapt. Neurosci. Biobehav. Rev. 2018, 90, 411–427. [Google Scholar] [CrossRef]
- Dumuids-Vernet, M.V.; Provasi, J.; Anderson, D.I.; Barbu-Roth, M. Effects of Early Motor Interventions on Gross Motor and Locomotor Development for Infants at-Risk of Motor Delay: A Systematic Review. Front. Pediatr. 2022, 10, 877345. [Google Scholar] [CrossRef]
- Piper, M.C.; Darrah, J. Motor Assessment of the Developing Infant; Saunders: Philadelphia, PA, USA, 1994; 210p. [Google Scholar]
- King-Thomas, L. Responsibilities of the examiner. In A Therapist’s Guide to Pediatric Assessment; King-Thomas, L., Hacker, B.J., Eds.; Little, Brown: Boston, MA, USA, 1987. [Google Scholar]
- Hitzert, M.M.; Van Braeckel, K.N.; Bos, A.F.; Hunnius, S.; Geuze, R.H. Early visual attention in preterm and fullterm infants in relation to cognitive and motor outcomes at school age: An exploratory study. Front. Pediatr. 2014, 2, 106. [Google Scholar] [CrossRef] [Green Version]
- Yan, K.; Xiao, F.; Jiang, Y.; Lu, C.; Zhang, Y.; Kong, Y.; Zhou, J.; Wang, J.; Lin, C.; Yang, H.; et al. Amplitude of low-frequency fluctuation may be an early predictor of delayed motor development due to neonatal hyperbilirubinemia: A fMRI study. Transl Pediatr. 2021, 10, 1271–1284. [Google Scholar] [CrossRef]
- Spittle, A.J.; Thompson, D.K.; Brown, N.C.; Treyvaud, K.; Cheong, J.L.; Lee, K.J.; Pace, C.C.; Olsen, J.; Allinson, L.G.; Morgan, A.T.; et al. Neurobehaviour between birth and 40 weeks’ gestation in infants born < 30 weeks’ gestation and parental psychological wellbeing: Predictors of brain development and child outcomes. BMC Pediatr. 2014, 14, 111. [Google Scholar]
- Eliks, M.; Gajewska, E. The Alberta Infant Motor Scale: A tool for the assessment of motor aspects of neurodevelopment in infancy and early childhood. Front. Neurol. 2022, 13, 927502. [Google Scholar] [CrossRef]
- Pin, T.W.; Eldridge, B.; Galea, M.P. Motor trajectories from 4 to 18 months corrected age in infants born at less than 30 weeks of gestation. Early Hum. Dev. 2010, 86, 573–580. [Google Scholar] [CrossRef]
- Syrengelas, D.; Nikaina, E.; Kleisiouni, P.; Siahanidou, T. Alberta Infant Motor Scale (AIMS) Performance of Early-Term Greek Infants: The Impact of Shorter Gestation on Gross Motor Development among “Term-Born” Infants. Children 2022, 9, 270. [Google Scholar] [CrossRef]
- Piper, M.; Darrah, J. Motor Assessment of the Developing Infant, 2nd ed.; Elsevier: Philadelphia, PA, USA, 2021. [Google Scholar]
- Darrah, J.; Bartlett, D.; Maguire, T.O.; Avison, W.R.; Lacaze-Masmonteil, T. Have infant gross motor abilities changed in 20 years? A re-evaluation of the Alberta Infant Motor Scale normative values. Dev. Med. Child Neurol. 2014, 56, 877–881. [Google Scholar] [CrossRef] [Green Version]
- Darrah, J.; Piper, M.; Watt, M.J. Assessment of gross motor skills of at-risk infants: Predictive validity of the Alberta Infant Motor Scale. Dev Med Child Neurol. 1998, 40, 485–491. [Google Scholar] [CrossRef]
- Santos, R.S.; Araujo, A.P.; Porto, M.A. Early diagnosis of abnormal development of preterm newborns: Assessment instruments. J. Pediatr. (Rio J). 2008, 84, 289–299. [Google Scholar] [CrossRef] [Green Version]
- Formiga, C.K.M.R.; Vieira, M.E.B.; Linhares, M.B.M. Developmental assessment of infants born preterm: Comparison between the chronological and corrected ages. J. Hum. Growth Dev. 2015, 25, 230–236. [Google Scholar] [CrossRef] [Green Version]
- Maia, P.C.; Silva, L.P.; Oliveira, M.M.C.; Cardoso, M.V.L.M.L. Motor development of preterm and term infants—Using Alberta Infant Motor Scale. Acta Paul. Enferm. 2011, 24, 670–675. [Google Scholar] [CrossRef] [Green Version]
- van Haastert, I.C.; de Vries, L.S.; Helders, P.J.; Jongmans, M.J. Early gross motor development of preterm infants according to the Alberta Infant Motor Scale. J. Pediatr. 2006, 149, 617–622. [Google Scholar] [CrossRef]
- Restiffe, A.P.; Gherpelli, J.L. Differences in walking attainment ages between low-risk preterm and healthy full-term infants. Arq. Neuropsiquiatr. 2012, 70, 593–598. [Google Scholar] [CrossRef] [Green Version]
- Cutler, R.; Heimer, C.B.; Wortis, H.; Freedman, A.M. The effects of prenatal and neonatal complications on the developmental of premature children at two and half year of age. J. Gen. Psychol. 1965, 107, 261–276. [Google Scholar] [CrossRef]
- Spittle, A.J.; Lee, K.J.; Spencer-Smith, M.; Lorefice, L.E.; Anderson, P.J.; Doyle, L.W. Accuracy of Two Motor Assessments during the First Year of Life in Preterm Infants for Predicting Motor Outcome at Preschool Age. PLoS ONE 2015, 10, e0125854. [Google Scholar] [CrossRef] [PubMed]
- Martins Roberto Formiga, C.K.; Carvalho Rodrigues Nonato, J.; França do Amaral, L.E.; Ramos Fagundes, R.; Martins Linhares, M.B. Comparac¸ão do desenvolvimento motor de lactentes pré-termo de duas amostras regionais brasileiras. J. Hum. Growth Dev. 2013, 23, 352–357. [Google Scholar]
- de Castro, A.G.; Lima Mde, C.; de Aquino, R.R.; Eickmann, S.H. Sensory oral motor and global motor development of preterm infants. Pro. Fono. 2007, 19, 29–38. [Google Scholar] [PubMed] [Green Version]
- Snider, L.M.; Majnemer, A.; Mazer, B.; Campbell, S.; Bos, A.F. A comparison of the general movements assessment with traditional approaches to newborn and infant assessment: Concurrent validity. Early Hum. Dev. 2008, 84, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Hadders-Algra, M.; Heineman, K.R. The Infant Motor Profile; Routledge, Inc.: New York, NY, USA, 2021. [Google Scholar]
- Ko, J.; Lim, H.K. Reliability Study of the Items of the Alberta Infant Motor Scale (AIMS) Using Kappa Analysis. Int. J. Environ. Res. Public Health 2022, 19, 1767. [Google Scholar] [CrossRef]
- Gorga, D.; Stern, F.M.; Ross, G.; Nagler, W. Neuromotor development of preterm and full-term infants. Early Hum. Dev. 1988, 18, 137–149. [Google Scholar] [CrossRef]
- de Groot, L.; Hopkins, B.; Touwen, B. Muscle power, sitting unsupported and trunk rotation in pre-term infants. Early Hum. Dev. 1995, 43, 37–46. [Google Scholar] [CrossRef]
- Hadders-Algra, M.; Tacke, U.; Pietz, J.; Philippi, H. SINDA: Standardized Infant NeuroDevelopmental Assessment: An Instrument for Early Detection of Neurodevelopmental Disorders; Mac Keith Press, Inc.: London, UK, 2022. [Google Scholar]
- Sgandurra, G.; Lorentzen, J.; Inguaggiato, E.; Bartalena, L.; Beani, E.; Cecchi, F.; Dario, P.; Giampietri, M.; Greisen, G.; Herskind, A.; et al. A randomized clinical trial in preterm infants on the effects of a home-based early intervention with the ‘CareToy System’. PLoS ONE 2017, 12, e0173521. [Google Scholar] [CrossRef] [Green Version]
- Dusing, S.C.; Burnsed, J.C.; Brown, S.E.; Harper, A.D.; Hendricks-Munoz, K.D.; Stevenson, R.D.; Thacker, L.R.; Molinini, R.M. Efficacy of Supporting Play Exploration and Early Development Intervention in the First Months of Life for Infants Born Very Preterm: 3-Arm Randomized Clinical Trial Protocol. Phys. Ther. 2020, 100, 1343–1352. [Google Scholar] [CrossRef]
- Ustad, T.; Fjortoft, T.; Oberg, G.K. General movement optimality score and general movements trajectories following early parent-administrated physiotherapy in the neonatal intensive care unit. Early Hum. Dev. 2021, 163, 105488. [Google Scholar] [CrossRef]
- Marchi, V.; Belmonti, V.; Cecchi, F.; Coluccini, M.; Ghirri, P.; Grassi, A.; Sabatini, A.M.; Guzzetta, A. Movement analysis in early infancy: Towards a motion biomarker of age. Early Hum. Dev. 2020, 142, 104942. [Google Scholar] [CrossRef]
- Geerdink, J.J.; Hopkins, B.; Hoeksma, J.B. The development of head position preference in preterm infants beyond term age. Dev. Psychobiol. 1994, 27, 153–168. [Google Scholar] [CrossRef]
- Herrero, D.; Einspieler, C.; Panvequio Aizawa, C.Y.; Mutlu, A.; Yang, H.; Nogolova, A.; Pansy, J.; Nielsen-Saines, K.; Marschik, P.B.; GenGM Study Group. The motor repertoire in 3- to 5-month old infants with Down syndrome. Res. Dev. Disabil. 2017, 67, 1–8. [Google Scholar] [CrossRef]
- Palmer, C.F.; Rindler, D.; Leverone, B. Moving into tummy time, together: Touch and transitions aid parent confidence and infant development. Infant Ment. Health J. 2019, 40, 277–288. [Google Scholar] [CrossRef]
- Kuchirko, Y.A.; Tamis-LeMonda, C.S. The cultural context of infant development: Variability, specificity, and universality. Adv. Child Dev. Behav. 2019, 57, 27–63. [Google Scholar]
- Group WHOMGRS. WHO Motor Development Study: Windows of achievement for six gross motor development milestones. Acta Paediatr. Suppl. 2006, 450, 8641–8695. [Google Scholar]
HFI Group | HPI Group | PIBI Group | |
---|---|---|---|
CoA or CA (days) | 201.9 ± 98.9 | 169.5 ± 100.1 | 179.6 ± 120.1 |
Gestational age (days) | 278.0 ± 6.0 | 223.6 ± 20.6 | 203.3 ± 26.3 |
Gestational weeks | |||
Less than 32 weeks More than 32weeks | - - | 48 (45.7) 57 (54.3) | 37 (74.0) 13 (26.0) |
Birth weight (grams) | 3321.2 ± 145.3 | 1617.8 ± 704.9 | 1295.0 ± 638.5 |
Birth weight (grams) | |||
Less than 1500 g More than 1500 g | 47 (44.8) 58 (55.2) | 31 (62.0%) 19 (38.0%) | |
Gender | |||
Girls Boys | 35 (36.1) 62 (63.9) | 51 (48.6) 54 (51.4) | 21 (42.0) 29 (58.0) |
Brain injury | |||
PVL | |||
Yes No | 0 (0.0) 97 (100.0) | 0 (0.0) 105 (100.0) | 24 (48.0) 26 (52.0) |
IVH (grade I or IIa) | |||
Yes No | 0 (0.0) 97 (100.0) | 0 (0.0) 105 (100.0) | 35 (70.0) 15 (30.0) |
Age bands (months) | |||
0–3 4–6 7–9 10≤ Total | 14 (14.4) 29 (29.9) 32 (33.0) 22 (22.7) 97 (100.0) | 24 (22.9) 36 (34.3) 33 (31.4) 12 (11.4) 105 (100.0) | 9 (18.0) 22 (44.0) 13 (26.0) 6 (12.0) 50 (100.0) |
0–3 m | 4–6 m | 7–9 m | 10 m ≤ | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N | Mean (Min–Max) | p | n | Mean (Min–Max) | p | n | Mean (Min–Max) | p | n | Mean (Min–Max) | p | |
Prone | ||||||||||||
HFI | 14 | 2.5 (2–5) | 29 | 7 (4–21) | 32 | 15 (6–21) | 22 | 21 (21–21) | ||||
HPI | 24 | 3 (1–5) | 0.988 | 36 | 6 (2–18) a,b | 0.000 * | 33 | 12 (6–21) a | 0.005 * | 12 | 21 (19–21) | 0.205 |
PIBI | 9 | 2 (1–7) | 22 | 5 (1–10) c | 13 | 10 (2–14) c | 6 | 21 (15–21) | ||||
Supine | ||||||||||||
HFI | 14 | 3 (3–5) | 29 | 9 (3–9) | 32 | 9 (9–9) | 22 | 9 (9–9) | ||||
HPI | 24 | 3 (2–4) | 0.149 | 36 | 5 (2–9) b | 0.000 * | 33 | 9 (4–9) b | 0.034 | 12 | 9 (9–9) | 1.000 |
PIBI | 9 | 3 (2–9) | 22 | 4 (2–9) c | 13 | 9 (4–9) c | 6 | 9 (9–9) | ||||
Sitting | ||||||||||||
HFI | 14 | 1 (1–2) | 29 | 4 (2–12) | 32 | 10 (5–12) | 22 | 12 (12–12) | ||||
HPI | 24 | 1 (1–2) | 0.645 | 36 | 3 (1–10) b | 0.000 * | 33 | 9 (3–12) a,b | 0.000 * | 12 | 12 (12–12) | 0.059 |
PIBI | 9 | 1 (1–3) | 22 | 2 (1–6) c | 13 | 5 (0–12) c | 6 | 12 (6–12) | ||||
Standing | ||||||||||||
HFI | 14 | 2 (2–3) | 29 | 3 (2–10) | 32 | 3 (3–10) | 22 | 11 (8–16) | ||||
HPI | 24 | 2 (1–2) | 0.062 | 36 | 2 (2–6) b | 0.000 * | 33 | 3 (2–10) a,b | 0.000 * | 12 | 10 (4–16) b | 0.135 |
PIBI | 9 | 2 (1–2) | 22 | 2 (2–3) c | 13 | 3 (1–3) c | 6 | 10.5 (2–14) c | ||||
Total score | ||||||||||||
HFI | 14 | 9 (8–13) | 29 | 22 (11–52) | 32 | 39 (29–52) | 22 | 53 (50–58) | ||||
HPI | 24 | 9 (6–25) | 0.594 | 36 | 17 (7–43) a,b | 0.000 * | 33 | 33 (16–52) a,b | 0.000 * | 12 | 51.5 (46–58) b | 0.093 |
PIBI | 9 | 8 (6–21) | 22 | 14 (6–26) c | 13 | 27 (7–36) c | 6 | 52.5 (32–56) |
AIMS ≤ 10th | |||
---|---|---|---|
Age | HFI | HPI | PIBI |
0–3 m | 0/14 (0.0) | 0/25 (0.0) | 2/9 (22.2) |
4–6 m | 0/29 (0.0) | 5/36 (13.9) | 5/22 (22.7) |
7–9 m | 0/32 (0.0) | 4/33 (12.1) | 3/13 (23.1) |
10 m ≤ | 0/22 (0.0) | 1/12 (8.3) | 4/6 (66.7) |
Total | 0/97 (0.0) | 10/105 (9.5) | 14/50 (28.0) |
Age | Group | n | Prone (Items 1–21) | Supine (Items 1–9) | Sitting (Items 1–12) | Standing (Items 1–16) |
---|---|---|---|---|---|---|
1 m | HFI | 0 | ||||
HPI | 4 | 1. prone lying (1) |
1. supine lying (1), 2. supine lying (2) | 1. sitting with support | 1. supported standing (1) | |
PIBI | 0 | |||||
2 m | HFI | 8 | 1, 2 | 1, 2, 3. supine lying (3) | 1 | 1, 2 |
HPI | 6 | 1, 2. prone lying (2) | 1, 2 | 1 | 1, 2. supported standing (2) | |
PIBI | 2 | 1, 2 | 1, 2 | 1 | 1, 2 | |
3 m | HFI | 6 | 1, 2 | 1, 2, 3 | 1 | 1, 2 |
HPI | 14 | 1, 2 | 1, 2, 3 | 1 | 1, 2 | |
PIBI | 7 | 1 | 1, 2 | 1 | 1 | |
4 m | HFI | 4 | 1, 2, 3, 4 | 1, 2, 3 | 1 | 1, 2 |
HPI | 14 | 1, 2 | 1, 2, 3 | 1 | 1, 2 | |
PIBI | 10 | 1, 2, 3. prone prop, 4. forearm support (1) | 1, 2, 3 | 1 | 1, 2 | |
5 m | HFI | 15 | 1, 2, 2, 4, 5, 6. forearm support (2) | 1, 2, 3, 4. supine lying (4) | 1, 2. sitting with propped arms, 3. pull to sit | 1, 2 |
HPI | 14 | 1, 2, 3, 4, 5. prone mobility | 1, 2, 3 | 1 | 1, 2 | |
PIBI | 9 | 1, 2, 3 | 1, 2, 3 | 1 | 1, 2 | |
6 m | HFI | 10 | 1, 2, 3, 4, 5, 6 | 1, 2, 3, 4, 5. hands to knees 6. active extension, 7. hands to feet, 8. rolling supine to prone without rotation, 9. rolling supine to prone with rotation | 1, 2, 3, 4, 5 | 1, 2, 3. supported standing (3) |
HPI | 8 | 1, 2, 3, 4, 5, 6 | 1, 2, 3 | 1, 2, 3 | 1, 2 | |
PIBI | 3 | 1, 2, 3, 4, 5, 6 | 1, 2, 3, 4 | 1, 2, 3, 4.unsustained sitting, 5. sitting with arm support | 1, 2 | |
7 m | HFI | 10 | 1, 2, 3, 4, 5, 6 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | 1, 2, 3, 4, 5, 6. unsustained sitting without arm support | 1, 2, 3 |
HPI | 16 | 1, 2, 3, 4, 5, 6 | 1, 2, 3, 4 | 1, 2, 3 | 1, 2 | |
PIBI | 3 | 1, 2, 3, 4, 5, 6 | 1, 2, 3, 4, 8 | 1, 2, 3 | 1, 2 | |
8 m | HFI | 18 | 1, 2, 3, 4, 5, 6, 7. extended arm support, 9. swimming | 1, 2, 3, 4, 5, 6, 7, 8, 9 | 1, 2, 3, 4, 5, 6, 7, 8. sitting without arm support (1) | 1, 2, 3 |
HPI | 7 | 1, 2, 3, 4, 5, 6, 10. reaching with forearm support, 11. pivoting | 1, 2, 3, 4, 5, 6, 7, 8, 9 | 1, 2, 3, 4, 5, 6, 7. weight shift in unsustained sitting | 1, 2, 3 | |
PIBI | 9 | 1, 2 | 1, 2, 3, 4 | - | 1 | |
9 m | HFI | 4 | 1, 2, 3, 4, 5, 6, 7, 8. rolling prone to supine without rotation, 9, 10, 11, 12. rolling prone to supine with rotation, 13. 4-point kneeling (1) | 1, 2, 3, 4, 5, 6, 7, 8, 9 | 1, 2, 3, 4, 5, 6, 7, 8, 9. reach with rotation in sitting, 11. sitting to 4-point kneeling | 1, 2, 3 |
HPI | 10 | 1, 2, 3, 4, 5, 6, 7, 8 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | 1, 2, 3, 4, 5, 6, 7 | 1, 2, 3 | |
PIBI | 1 | 1, 2, 3, 4, 5, 6, 7 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | 1, 2, 3, 4, 5 | 1, 2, 3 | |
10–12 m | HFI | 16 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | 1, 2, 3, 4, 5, 6, 7, 8, 10 |
HPI | 5 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14. propped side lying, 15. reciprocal crawling, 16.4-point kneeling to sitting or half-sitting, 17. reciprocal creeping (1), 18. reaching from extended arm support, 19. Four-point kneeling (2) | 1, 2, 3, 4, 5, 6, 7, 8, 9 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.sitting rone, 11, 12. sitting without arm support (2) | 1, 2, 3, 4. pulls to stand with support | |
PIBI | 1 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20. modified 4-point kneeling, 21. reciprocal creeping (2) | 1, 2, 3, 4, 5, 6, 7, 8, 9 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | 1, 2, 3, 4, 5.pull to stand/stands, 6.supported standing with rotation, 7. cruising without rotation, 8. half-kneeling, 9. controlled lowering through standing, 10. cruising with rotation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ko, J.; Lim, H.K. Motor Development Comparison between Preterm and Full-Term Infants Using Alberta Infant Motor Scale. Int. J. Environ. Res. Public Health 2023, 20, 3819. https://doi.org/10.3390/ijerph20053819
Ko J, Lim HK. Motor Development Comparison between Preterm and Full-Term Infants Using Alberta Infant Motor Scale. International Journal of Environmental Research and Public Health. 2023; 20(5):3819. https://doi.org/10.3390/ijerph20053819
Chicago/Turabian StyleKo, Jooyeon, and Hyun Kyoon Lim. 2023. "Motor Development Comparison between Preterm and Full-Term Infants Using Alberta Infant Motor Scale" International Journal of Environmental Research and Public Health 20, no. 5: 3819. https://doi.org/10.3390/ijerph20053819
APA StyleKo, J., & Lim, H. K. (2023). Motor Development Comparison between Preterm and Full-Term Infants Using Alberta Infant Motor Scale. International Journal of Environmental Research and Public Health, 20(5), 3819. https://doi.org/10.3390/ijerph20053819