Relationships between Heavy Metal Concentrations in Greater Celandine (Chelidonium majus L.) Tissues and Soil in Urban Parks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Morphological Traits of Ch. majus
2.3. Plant and Soil Sampling
2.4. Statistical Analyses
3. Results
3.1. Soil Physico-Chemical Features
3.2. Content of Heavy Metals in Soil
3.3. Content of Heavy Metals in Ch. majus Tissues
3.4. The Correlation of Metal Content in the Soil–Plant System
3.5. Bioaccumulation Factor
3.6. Translocation Factor
4. Discussion
5. Conclusions
- The content of potentially toxic metals in the surface soil layer varied across all sites. The highest content was found for Zn, Pb, and Cd. They exceeded the acceptable standards for recreational areas and cultivated soils.
- Comparing plant parts, we found the highest concentrations of heavy metals in the rhizomes and leaves, respectively. Zn showed the highest values among the studied elements.
- Analyses of bioaccumulation (BAF) and translocation factors (TF) showed that Ch. majus generally does not accumulate or transport heavy metals from the rhizomes to the plant’s aboveground parts. However, the ability to translocate mercury and chromium into Ch. majus leaves means that it should be approached with caution when collecting it from areas with high contamination levels.
- The relationship among the concentration of heavy metals in the tissues of the studied species and the soil is varied and is related to the chemistry of the initial anthropogenic parent rock for individual research sites.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Maji, A.K.; Banerji, P. Ch. majus L. (Greater Celandine)—A Review on Its Phytochemical and Therapeutic Perspectives. Int. J. Herb. Med. 2015, 3, 10–27. [Google Scholar] [CrossRef]
- Hanzlik, P.J. The Pharmacology of Chelidonin, a Neglected Alkaloid of Chelidonium, or Tetterwort. J. Am. Med. Assoc. 1920, 75, 1324–1325. [Google Scholar] [CrossRef]
- Tutin, T.G.; Heywood, V.H.; Burges, N.A.; Moore, D.M.; Valentine, D.H.; Walters, S.M.; Webb, D.A. Flora Europaea; Lycopodiaceae to Platanaceae; Cambridge University Press: Cambridge, UK, 1964; Volume 1. [Google Scholar]
- Migas, P.; Heyka, M. Greater celandine (Ch. majus L.) in modern therapy—Indications and safety of use. Postępy Fitoter. 2011, 3, 208–218. [Google Scholar]
- Zielińska, S.; Jezierska-Domaradzka, A.; Wójciak-Kosior, M.; Sowa, I.; Junka, A.; Matkowski, A.M. Greater Celandine’s Ups and Downs-21 Centuries of Medicinal Uses of Ch. majus From the Viewpoint of Today’s Pharmacology. Front. Pharmacol. 2018, 9, 299. [Google Scholar] [CrossRef] [Green Version]
- Gilca, M.; Tiplica, G.S.; Salavastru, C.M. Traditional and Ethnobotanical Dermatology Practices in Romania and Other Eastern European Countries. Clin. Dermatol. 2018, 36, 338–352. [Google Scholar] [CrossRef]
- Aljuraisy, Y.H.; Mahdi, N.K.; Al-Darraji, M.N.J. Cytotoxic Effect of Ch. majus on Cancer Cell Lines. Al-Anbar J. Vet. Sci. 2012, 5, 85–90. [Google Scholar]
- Pantano, F.; Mannocchi, G.; Marinelli, E.; Gentili, S.; Graziano, S.; Busardò, F.P.; di Luca, N.M. Hepatotoxicity Induced by Greater Celandine (Ch. majus L.): A Review of the Literature. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 46–52. [Google Scholar]
- Gilca, M.; Gaman, L.; Panait, E.; Stoian, I.; Atanasiu, V. Ch. majus—An Integrative Review: Traditional Knowledge versus Modern Findings. Complement. Med. Res. 2010, 17, 241–248. [Google Scholar] [CrossRef]
- Colombo, M.L.; Bosisio, E. Pharmacological Activities of Ch. majus L. (Papaveraceae). Pharmacol. Res. 1996, 33, 127–134. [Google Scholar] [CrossRef]
- Chandra, H.; Kumari, P.; Yadav, S. Evaluation of aflatoxin contamination in crude medicinal plants used for the preparation of herbal medicine. Orient. Pharm. Exp. Med. 2019, 19, 137–143. [Google Scholar] [CrossRef]
- Makieieva, N.; Kupka, T.; Spaleniak, G.; Rahmonov, O.; Marek, A.; Błażytko, A.; Stobiński, L.; Stadnytska, N.; Pentak, D.; Buczek, A.; et al. Experimental and Theoretical Characterization of Chelidonic Acid Structure. Struct. Chem. 2022, 33, 2133–2145. [Google Scholar] [CrossRef]
- Jyoti, B.S. Ch. majus L.—A Review on Pharmacological Activities and Clinical Effects. Glob. J. Res. Med. Plants Indigen. Med. 2013, 2, 238–245. [Google Scholar]
- Hădărugă, D.; Hădărugă, N. Antioxidant Activity of Ch. majus L. Extracts from the Banat County. J. Agroaliment. Process. Technol. 2009, 15, 396–402. [Google Scholar]
- Monavari, S.H.; Shahrabadi, M.S.; Keyvani, H.; Bokharaei-Salim, F. Evaluation of in Vitro Antiviral Activity of Ch. majus L. against Herpes Simplex Virus Type-1. Afr. J. Microbiol. Res. 2012, 6, 4360–4364. [Google Scholar] [CrossRef]
- Hou, Z.; Yang, R.; Zhang, C.; Zhu, L.-F.; Miao, F.; Yang, X.-J.; Zhou, L. 2-(Substituted Phenyl)-3,4-Dihydroisoquinolin-2-Iums as Novel Antifungal Lead Compounds: Biological Evaluation and Structure-Activity Relationships. Molecules 2013, 18, 10413–10424. [Google Scholar] [CrossRef] [Green Version]
- Kopyt’ko, Y.F.; Dargaeva, T.D.; Sokol’skaya, T.A.; Grodnitskaya, E.I.; Kopnin, A.A. New Methods for the Quality Control of a Homeopathic Matrix Tincture of Greater Celandine. Pharm. Chem. J. 2005, 39, 603–609. [Google Scholar] [CrossRef]
- Szentmihályi, K.; Marczal, G.; Then, M. Medicinal Plants in View of Trace Elements. Thaiszia J. Bot. 2006, 16, 99–107. [Google Scholar]
- Ullah, R.; Khader, J.A.; Hussain, I.; Talha, N.M.A.; Khan, N. Investigation of Macro and Micro-Nutrients in Selected Medicinal Plants. Afr. J. Pharm. Pharmacol. 2012, 6, 1829–1832. [Google Scholar]
- Leskó, K.; Stefanovits-Bányai, É.; Pais, I.; Simon-Sarkadi, L. Effect of Cadmium and Titanium-Ascorbate Stress on Biological Active Compounds in Wheat Seedlings. J. Plant Nutr. 2002, 25, 2571–2581. [Google Scholar] [CrossRef]
- Szentmihályi, K.; Taba, G.; Lado, C.; Fodor, J.; Then, M.; Szőke, É. Medicinal Plant Teas Recommended as Nutritional Source for Element Supplementation. Acta Aliment. 2005, 34, 161–167. [Google Scholar] [CrossRef]
- Szőke, É.; Kéry, Á. Pharmacognosy; Folpress Nyomda: Budapest, Hungary, 2003. [Google Scholar]
- Sagiroglu, A.; Sasmaz, A.; Sen, O. Hyperaccumulator Plants of the Keban Mining District and Their Possible Impact on the Environment. Pol. J. Environ. Stud. 2006, 15, 317–325. [Google Scholar]
- Then, M.; Szentmihályi, K.; Sárközi, A.; Illés, V.; Forgács, E. Effect of Sample Handling on Alkaloid and Mineral Content of Aqueous Extracts of Greater Celandine (Ch. majus L.). J. Chromatogr. A 2000, 889, 69–74. [Google Scholar] [CrossRef]
- Buzuk, G.N.; Lovkova, M.Y.; Sokolova, S.M.; Tyutekin, Y.V. Relationship between Celandine Isoquinoline Alkaloids, Macroelements, and Microelements. Appl. Biochem. Microbiol. 2001, 37, 500–505. [Google Scholar] [CrossRef]
- Sárközi, Á.; Then, M.; Szentmihályi, K. Mineral Element Content of Greater Celandine (Ch. majus L.). Acta Aliment. 2005, 34, 113–120. [Google Scholar] [CrossRef]
- Szentmihályi, K.; Then, M. Examination of Microelements in Medicinal Plants of the Carpathian Basin. Acta Aliment. 2007, 36, 231–236. [Google Scholar] [CrossRef]
- Szentmihályi, K.; Szőllősi-Varga, I.; Then, M. Elements, Alkaloids and Antioxidant Value of Ch. majus L. and the Extracts Obtained by Different Extraction Methods. Eur. Chem. Bull. 2021, 10, 58–66. [Google Scholar] [CrossRef]
- Dojczeva, I. The Effect of Some Heavy Metals (Cd, Cu, Pb, Zn) and Substrates on Ch. majus L. Seed Germination and Seedling Growth. Ecol. Balk. 2021, 13, 115–124. [Google Scholar]
- Rahmonov, O.; Dragan, W.; Cabała, J.; Krzysztofik, R. Long-Term Vegetation Changes and Socioeconomic Effects of River Engineering in Industrialized Areas (Southern Poland). Int. J. Environ. Res. Public Health 2023, 20, 2255. [Google Scholar] [CrossRef]
- Rahmonov, O.; Czylok, A.; Orczewska, A.; Majgier, L.; Parusel, T. Chemical Composition of the Leaves of Reynoutria Japonica Houtt. and Soil Features in Polluted Areas. Open Life Sci. 2014, 9, 320–330. [Google Scholar] [CrossRef] [Green Version]
- Bednarek, R.; Dziadowiec, H.; Pokojowska, U.; Prusinkiewicz, Z. Ecological and Soil Science Research; PWN: Warsaw, Poland, 2004. [Google Scholar]
- MacNaeidhe, F. Procedures and Precautions Used in Sampling Techniques and Analysis of Trace Elements in Plant Matrices. Sci. Total Environ. 1995, 176, 25–31. [Google Scholar] [CrossRef]
- Markert, B. Sample Preparation (Cleaning, Drying, Homogenization) for Trace Element Analysis in Plant Matrices. Sci. Total Environ. 1995, 176, 45–61. [Google Scholar] [CrossRef]
- Sekabira, K.; Oryem-Origa, H.; Mutumba, G.M.; Kakudidi, E.; Basamba, T.A. Heavy Metal Phytoremediation by Commelina Benghalensis(L) and Cynodon Dactylon (L) Growing in Urban Stream Sediments. Int. J. Plant Physiol. Biochem. 2011, 3, 133–142. [Google Scholar]
- Álvarez-Mateos, P.; Alés-Álvarez, F.-J.; García-Martín, J.F. Phytoremediation of Highly Contaminated Mining Soils by Jatropha Curcas L. and Production of Catalytic Carbons from the Generated Biomass. J. Environ. Manag. 2019, 231, 886–895. [Google Scholar] [CrossRef]
- Dinu, C.; Vasile, G.-G.; Buleandra, M.; Popa, D.E.; Gheorghe, S.; Ungureanu, E.-M. Translocation and Accumulation of Heavy Metals in Ocimum Basilicum L. Plants Grown in a Mining-Contaminated Soil. J. Soils Sediments 2020, 20, 2141–2154. [Google Scholar] [CrossRef]
- Chudecka, J. Characteristics of the Soil Substrate in the Anthropogenic Layer of the Oldest Part of Szczecin; University Publishing House of the West Pomeranian University of Technology: Szczecin, Poland, 2009. [Google Scholar]
- Drozd, J. Soils of urban areas and methods of improving their fertility. In Art of Gardens in the Cityscape; Publishing House of Wroclaw University of Technology: Wroclaw, Poland, 1997; pp. 167–172. [Google Scholar]
- Greinert, A. Studies on Soils of the Urbanized Area of Zielona Góra; University of Zielona Gora Publishing House: Zielona Gora, Poland, 2003. [Google Scholar]
- Charzyński, P.; Hulisz, P.; Bednarek, R. Technogenic Soils of Poland; Polish Society of Soil Science: Toruń, Poland, 2013. [Google Scholar]
- Prokof’eva, T.V.; Poputnikov, V.O. Anthropogenic Transformation of Soils in the Pokrovskoe-Streshnevo Park (Moscow) and Adjacent Residential Areas. Eurasian Soil Sci. 2010, 43, 701–711. [Google Scholar] [CrossRef]
- Rahmonov, O.; Banaszek, J.; Pukowiec-Kurda, K. Relationships Between Heavy Metal Concentrations in Japanese Knotweed (Reynoutria Japonica Houtt.) Tissues and Soil in Urban Parks in Southern Poland. IOP Conf. Ser. Earth Environ. Sci. 2019, 221, 012145. [Google Scholar] [CrossRef] [Green Version]
- Prusinkiewicz, Z.; Bednarek, R.; Kośko, A.; Szmyt, M. Paleopedological Studies of the Age and Properties of Illuvial Bands at an Archaeological Site. Quat. Int. 1998, 51–52, 195–201. [Google Scholar] [CrossRef]
- Cachada, A.; Pato, P.; Rocha-Santos, T.; da Silva, E.F.; Duarte, A.C. Levels, Sources and Potential Human Health Risks of Organic Pollutants in Urban Soils. Sci. Total Environ. 2012, 430, 184–192. [Google Scholar] [CrossRef]
- Li, G.; Sun, G.-X.; Ren, Y.; Luo, X.-S.; Zhu, Y.-G. Urban Soil and Human Health: A Review. Eur. J. Soil Sci. 2018, 69, 196–215. [Google Scholar] [CrossRef] [Green Version]
- Oliver, M.A. Soil and Human Health: A Review. Eur. J. Soil Sci. 1997, 48, 573–592. [Google Scholar] [CrossRef]
- Kabata-Pendias, A.; Piotrowska, M.; Motowicka-Terelak, T.; Maliszewska-Kordybach, B.; Filipiak, K.; Krakowiak, A.; Pietruch, C. Basics of Assessing Chemical Contamination of Soils. Heavy Metals, Sulfur, and PAHs; State Environmental Protection Inspectorate: Warsaw, Poland, 1995. [Google Scholar]
- Rahmonov, O.; Krzysztofik, R.; Środek, D.; Smolarek-Lach, J. Vegetation- and Environmental Changes on Non-Reclaimed Spoil Heaps in Southern Poland. Biology 2020, 9, 164. [Google Scholar] [CrossRef]
- Środek, D.; Rahmonov, O. The Properties of Black Locust Robinia Pseudoacacia L. to Selectively Accumulate Chemical Elements from Soils of Ecologically Transformed Areas. Forests 2022, 13, 7. [Google Scholar] [CrossRef]
- Singh, R.; Singh, D.P.; Kumar, N.; Bhargava, S.K.; Barman, S.C. Accumulation and Translocation of Heavy Metals in Soil and Plants from Fly Ash Contaminated Area. J. Environ. Biol. 2010, 31, 421–430. [Google Scholar]
- Ross, S.M. Retention, Transformation and Mobility of Toxic Metals in Soils; John Wiley and Sons Ltd.: Hoboken, NJ, USA, 1994. [Google Scholar]
- Jungk, A.O. Dynamics of Nutrient Movement at the Soil-Root Interface. In Plant Roots Hidden Half; CRC Press: Boca Raton, FL, USA, 2002; pp. 587–616. [Google Scholar]
- Cameselle, C.; Reddy, K.R. Electrobioremediation: Combined electrokinetics and bioremediation technology for contaminated site remediation. Indian Geotech. J. 2022, 52, 1205–1225. [Google Scholar] [CrossRef]
- Sharma, M.; Satyam, N.; Reddy, K.R.; Chrysochoou, M. Multiple heavy metal immobilization and strength improvement of contaminated soil using bio-mediated calcite precipitation technique. Environ. Sci. Pollut. Res. 2022, 29, 51827–51846. [Google Scholar] [CrossRef]
- Rahmonov, O. Relationship between Vegetation and Soil in the Initial Phase of Succession in Sandy Areas; University of Silesia: Katowice, Poland, 2007. [Google Scholar]
- Jabeen, S.; Shah, M.T.; Khan, S.; Hayat, M. Determination of Major and Trace Elements in Ten Important Folk Therapeutic Plants of Haripur Basin, Pakistan. J. Med. Plants Res. 2010, 4, 559–566. [Google Scholar]
- Buzuk, G.N.; Lovkova, M.I.; Sokolova, S.M.; Tiutekin, I.V. Genetic aspects of the relationship between isoquinoline alkaloids and mineral elements in greater celandine (Ch. majus L.). Prikl. Biokhim. Mikrobiol. 2003, 39, 37–42. [Google Scholar]
Habitat | Type of Soil | Vegetation Types | Ecological Function | Site Coordinates | |
---|---|---|---|---|---|
APrzem-1 | Along paths in areas spontaneously overgrown with nitrophilous shrubs | Urbic technosol, mollic technosol, technic regosole | Stand with Robinia pseudacacia, Acer negundo, and Sambucus nigra; at its edge grows Ch. Majus, with share of Impatiens parviflora, Arctium tomentosum, Urtica dioica, Reynoutri japonica, Artemisia vulgaris, and other nitrophilous species | abandoned and derelict | 50°17′57.99″ N 19°08′20.76″ E |
Pschoe-2 | Long park paths on artificial man-made embankments | historic park, culture and entertainment | 50°18′03.86″ N 19°08′33.87″ E | ||
Pziel-3 | Zone adjacent to hornbeam woodland, habitat is built up by soil and garden rubbish, next to car park | Ecological, sport and recreation | 50°20′41.79″ N 19°10′56.63″ E | ||
PLes-4 | At the edge of the forest by a closed car park | Ecological, sport and recreation, economic, culture and entertainment | 50°18′01.05″ N 19°14′29.87″ E | ||
PLes-5 | At the foot of the artificial embankment | 50°18′09.76″ N 19°14′43.86″ E | |||
PSiel-6 | At the foot of the artificial embankment | Ecological, sport and recreation | 50°16′59.08″ N 19°08′34.82″ E |
Site | [mm] | ||||||||
---|---|---|---|---|---|---|---|---|---|
>10.0 | 10.0–5.0 | 5.0–2.0 | 2.0–1.0 | 1.0–0.5 | 0.5–0.25 | 0.25–0.1 | 0.1–0.05 | <0.05 | |
[%] | |||||||||
APrzem-1 | 5.3 | 2.5 | 3.7 | 6.8 | 21.1 | 34.9 | 18.5 | 4.1 | 3.1 |
PSchoe-2 | 14.9 | 8.3 | 8.5 | 6.5 | 13.2 | 22.9 | 17.2 | 4.9 | 3.6 |
PZiel-3 | - | 1.9 | 2.6 | 4.1 | 23.2 | 39.9 | 19.3 | 4.9 | 4.1 |
PLes-4 | 16.2 | 9.0 | 8.2 | 6.7 | 13.4 | 23.7 | 14.7 | 5.2 | 2.9 |
PLes-5 | 3.4 | 1.6 | 2.0 | 5.1 | 25.4 | 34.3 | 21.7 | 4.2 | 2.3 |
PSiel-6 | 5.0 | 2.1 | 2.7 | 10.0 | 20.8 | 28.9 | 20.0 | 5.4 | 5.1 |
Site | pH | Loss on Ignition | Corg. | Nt | C/N | Mgavail. | Kavail. | Pavail. | Pt | Hh | Al3+ | H+ | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H2O | KCl | ||||||||||||
[%] | [mg/kg] | [cmol (+)/kg] | |||||||||||
APrzem-1 | 7.2 | 6.6 | 13.36 | 11.1 | 0.275 | 40 | 158.5 | 221 | 52.8 | 404 | 1.48 | 0.10 | 0.06 |
PSchoe-2 | 7.3 | 6.7 | 11.83 | 8.7 | 0.223 | 39 | 139.0 | 198 | 39.0 | 430 | 1.32 | 0.02 | 0.02 |
PZiel-3 | 6.4 | 5.6 | 9.26 | 7.2 | 0.374 | 19 | 153.0 | 178 | 12.5 | 298 | 2.81 | 0.01 | 0.12 |
PLes-4 | 7.1 | 6.5 | 20.27 | 3.2 | 0.601 | 5 | 322.5 | 305 | 146.6 | 709 | 1.92 | 0.02 | 0.08 |
PLes-5 | 7.4 | 6.8 | 11.25 | 10.4 | 0.280 | 37 | 329.5 | 294 | 135.9 | 512 | 1.41 | 0.03 | 0.04 |
PSiel-6 | 6.3 | 5.7 | 26.56 | 13.6 | 0.664 | 20 | 308.0 | 211 | 143.1 | 940 | 4.72 | 0.04 | 0.16 |
Element/Site | APrzem-1 | PSchoe-2 | PZiel-3 | PLes-4 | PLes-5 | PSiel-6 | Permissible Limits * |
---|---|---|---|---|---|---|---|
Pb [mg/kg] | 526.55 | 373.57 | 119.00 | 346.23 | 197.82 | 247.03 | 200 |
Cd [mg/kg] | 8.60 | 7.82 | 3.13 | 13.46 | 7.64 | 7.81 | 2 |
Zn [mg/kg] | 1113.90 | 1038.20 | 394.50 | 1363.80 | 672.00 | 950.40 | 500 |
Mn [mg/kg] | 716.00 | 562.00 | 344.00 | 588.00 | 375.00 | 484.00 | lack |
Fe [%] | 2.57 | 2.76 | 1.44 | 2.02 | 1.07 | 2.10 | lack |
Cu [mg/kg] | 155.79 | 75.84 | 21.90 | 46.06 | 29.33 | 50.02 | 200 |
Ni [mg/kg] | 27.60 | 33.80 | 9.40 | 32.60 | 12.80 | 16.50 | 150 |
Cr [mg/kg] | 25.00 | 23.80 | 17.20 | 17.30 | 18.30 | 13.50 | 200 |
Hg [ppb] | 309.00 | 330.00 | 112.00 | 198.00 | 128.00 | 254.00 | 5 |
As [mg/kg] | 22.40 | 23.10 | 8.50 | 18.70 | 8.90 | 18.10 | 25 |
Element | Plant Tissue | Investigated Site | Limit Value for Edible Plants * | |||||
---|---|---|---|---|---|---|---|---|
APrzem-1 | PSchoe-2 | PZiel-3 | PLes-4 | PLes-5 | PSiel-6 | |||
Pb [mg/kg] | rhizomes | 33.92 | 25.09 | 8.36 | 27.47 | 10.78 | 11.51 | 0.43 (edible) |
stems | 6.07 | 4.95 | 1.85 | 7.43 | 6.31 | 5.20 | ||
leaves | 18.71 | 7.6 | 4.99 | 20.60 | 9.23 | 6.17 | ||
Cd [mg/kg] | rhizomes | 2.20 | 3.30 | 1.73 | 1.97 | 1.40 | 2.70 | 0.3 |
stems | 0.67 | 1.32 | 0.35 | 0.77 | 0.57 | 0.56 | ||
leaves | 0.56 | 1.02 | 0.46 | 1.07 | 0.57 | 0.34 | ||
Zn [mg/kg] | rhizomes | 279.50 | 408.30 | 235.50 | 233.70 | 178.70 | 284.00 | 27.4 |
stems | 150.80 | 227.50 | 91.10 | 134.20 | 80.60 | 158.90 | ||
leaves | 112.30 | 297.40 | 57.80 | 190.10 | 75.60 | 116.40 | ||
Mn [mg/kg] | rhizomes | 181.00 | 76.00 | 106.00 | 79.00 | 68.00 | 45.00 | 2 |
stems | 72.00 | 22.00 | 29.00 | 29.00 | 27.00 | 20.00 | ||
leaves | 293.00 | 73.00 | 71.00 | 76.00 | 56.00 | 42.00 | ||
Fe [%] | rhizomes | 0.18 | 0.15 | 0.08 | 0.13 | 0.07 | 0.11 | 20 (mg/kg) |
stems | 0.06 | 0.04 | 0.03 | 0.05 | 0.05 | 0.06 | ||
leaves | 0.17 | 0.07 | 0.07 | 0.14 | 0.08 | 0.08 | ||
Cu [mg/kg] | rhizomes | 16.98 | 16.39 | 11.59 | 10.38 | 7.46 | 19.53 | 3 |
stems | 5.57 | 4.20 | 3.30 | 5.04 | 3.44 | 5.80 | ||
leaves | 14.24 | 8.32 | 7.57 | 8.22 | 7.36 | 7.80 | ||
Ni [mg/kg] | rhizomes | 2.80 | 3.10 | 1.30 | 1.80 | 2.30 | 1.40 | 1.63 |
stems | 0.90 | 0.70 | 0.30 | 0.60 | 0.80 | 0.50 | ||
leaves | 1.60 | 8.40 | 0.60 | 1.40 | 1.30 | 0.40 | ||
Cr [mg/kg] | rhizomes | 3.10 | 4.00 | 2.40 | 2.70 | 2.90 | 2.10 | 0.02 |
stems | 2.00 | 1.90 | 1.50 | 1.80 | 2.60 | 1.70 | ||
leaves | 3.10 | 16.10 | 2.20 | 2.80 | 4.00 | 1.90 | ||
Hg [ppb] | rhizomes | 37.00 | 25.00 | 16.00 | 16.00 | 17.00 | 24.00 | Lack inform. |
stems | 11.00 | 11.00 | 4.00 | 6.00 | 10.00 | 9.00 | ||
leaves | 45.00 | 45.00 | 27.00 | 42.00 | 54.00 | 36.00 | ||
As [mg/kg] | rhizomes | 2.60 | 1.10 | 0.60 | 2.40 | 0.70 | 1.50 | |
stems | 0.50 | 0.40 | n.d. | 0.60 | 0.60 | 0.40 | ||
leaves | 1.10 | 0.50 | 0.20 | 1.50 | 0.50 | 0.40 |
Pb | Cd | Zn | Mn | Fe | Cu | Ni | Cr | Hg | As | |
---|---|---|---|---|---|---|---|---|---|---|
Leaves | 0.04 | 0.09 | 0.15 | 0.19 | 0.05 | 0.19 | 0.09 | 0.24 | 0.22 | 0.04 |
Stems | 0.02 | 0.09 | 0.16 | 0.06 | 0.03 | 0.10 | 0.03 | 0.10 | 0.04 | 0.03 |
Rhizomes | 0.06 | 0.32 | 0.33 | 0.18 | 0.06 | 0.29 | 0.11 | 0.15 | 0.11 | 0.09 |
Pb | Cd | Zn | Mn | Fe | Cu | Ni | Cr | Hg | As | |
---|---|---|---|---|---|---|---|---|---|---|
Leaves | 0.57 | 0.30 | 0.52 | 1.10 | 0.85 | 0.65 | 1.08 | 1.75 | 1.84 | 0.47 |
Stems | 0.27 | 0.32 | 0.52 | 0.36 | 0.38 | 0.33 | 0.30 | 0.67 | 0.38 | 0.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahmonov, O.; Środek, D.; Pytel, S.; Makieieva, N.; Kupka, T. Relationships between Heavy Metal Concentrations in Greater Celandine (Chelidonium majus L.) Tissues and Soil in Urban Parks. Int. J. Environ. Res. Public Health 2023, 20, 3887. https://doi.org/10.3390/ijerph20053887
Rahmonov O, Środek D, Pytel S, Makieieva N, Kupka T. Relationships between Heavy Metal Concentrations in Greater Celandine (Chelidonium majus L.) Tissues and Soil in Urban Parks. International Journal of Environmental Research and Public Health. 2023; 20(5):3887. https://doi.org/10.3390/ijerph20053887
Chicago/Turabian StyleRahmonov, Oimahmad, Dorota Środek, Sławomir Pytel, Natalina Makieieva, and Teobald Kupka. 2023. "Relationships between Heavy Metal Concentrations in Greater Celandine (Chelidonium majus L.) Tissues and Soil in Urban Parks" International Journal of Environmental Research and Public Health 20, no. 5: 3887. https://doi.org/10.3390/ijerph20053887
APA StyleRahmonov, O., Środek, D., Pytel, S., Makieieva, N., & Kupka, T. (2023). Relationships between Heavy Metal Concentrations in Greater Celandine (Chelidonium majus L.) Tissues and Soil in Urban Parks. International Journal of Environmental Research and Public Health, 20(5), 3887. https://doi.org/10.3390/ijerph20053887