Trends in Health Behavior of Polish Women in 1986–2021: The Importance of Socioeconomic Status
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
Ethical Approval
2.2. Methods
2.2.1. Collecting Data
2.2.2. Statistical Analysis
3. Results
4. Discussion
4.1. Alcohol Drinking
4.2. Tobacco Smoking
4.3. Coffee Consumption
4.4. Physical Activity
4.5. Psychosocial Stress and the Importance of Socioeconomic Status
4.6. COVID-19
4.7. Social Situation of Polish Women
4.8. Limitation Study
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hemingway, H.; Marmot, M. Evidence based cardiology: Psychosocial factors in the aetiology and prognosis of coronary heart disease. Systematic review of prospective cohort studies. BMJ 1999, 318, 1460–1467. [Google Scholar] [CrossRef] [PubMed]
- Macleod, J.; Davey Smith, G.; Heslop, P.; Metcalfe, C.; Carroll, D.; Hart, C. Psychological stress and cardiovascular disease: Empirical demonstration of bias in a prospective observational study of Scottish men. BMJ 2002, 324, 1247–1251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipowicz, A.; Szklarska, A.; Mitas, A.W. Biological costs of economic transition: Stress levels during the transition from communism to capitalism in Poland. Econ. Hum. Biol. 2016, 21, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Lopuszanska-Dawid, M.; Kołodziej, H.; Lipowicz, A.; Szklarska, A.; Kopiczko, A.; Bielicki, T. Social class-specific secular trends in height among 19-year old Polish men: 6th national surveys from 1965 till 2010. Econ. Hum. Biol. 2020, 37, 100832. [Google Scholar] [CrossRef] [PubMed]
- Angner, E.; Ray, M.N.; Saag, K.G.; Allison, J.J. Health and Happiness among Older Adults, A Community-based Study. J. Health Psychol. 2009, 14, 503–512. [Google Scholar] [CrossRef] [PubMed]
- Łopuszańska, M.; Szklarska, A.; Lipowicz, A.; Koziel, S.; Jankowska, E.A. Life satisfaction and cardiovascular risk in Poland. Arch. Med. Sci. 2013, 4, 629–634. [Google Scholar] [CrossRef]
- Koivumaa-Honkanen, H.; Koskenvuo, M.; Honkanen, R.J.; Viinamäki, H.; Heikkilä, K.; Kaprio, J. Life dissatisfaction and subsequent work disability in an 11-year follow-up. Psychol. Med. 2004, 34, 221–228. [Google Scholar] [CrossRef]
- Lopuszanska-Dawid, M. Life satisfaction as a health determinant among Polish adult population. Anthropol. Anz. 2018, 75, 175–184. [Google Scholar] [CrossRef]
- McEwen, B.S. Protective and damaging effects of stress mediators: Central role of the brain. Dialogues Clin. Neurosci. 2006, 8, 367–381. [Google Scholar] [CrossRef]
- McEwen, B.S.; Seeman, T. Protective and damaging effects of mediators of stress. Elaborating and testing the concepts of allostasis and allostatic load. Ann. N. Y. Acad. Sci. 1999, 896, 30–47. [Google Scholar] [CrossRef]
- Łopuszańska-Dawid, M. Changes in female biological and functional characteristics over the period of 20 years in connection with social and lifestyle changes. In Monographs of the Józef Piłsudski University of Physical Education in Warsaw; Józef Piłsudski University of Physical Education in Warsaw: Warsaw, Poland, 2018; No. 151; ISBN 978-83-61830-70-2. [Google Scholar]
- Mackenbach, J.P.; Valverde, J.R.; Artnik, B.; Bopp, M.; Brønnum-Hansen, H.; Deboosere, P.; Nusselder, W.J. Trends in health inequalities in 27 European countries. Proc. Natl. Acad. Sci. USA 2018, 115, 6440–6445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- von dem Knesebeck, O.; Verde, P.E.; Dragano, N. Education and health in 22 European countries. Soc. Sci. Med. 2006, 63, 1344–1351. [Google Scholar] [CrossRef] [PubMed]
- Mędraś, M.; Jankowska, E.A.; Rogucka, E.; Lopuszanska, M. The effects of sex steroids and some elements of lifestyle on the normal variation of bone mineral content in younger versus older healthy Polish males. Aging Male 2000, 3, 65–74. [Google Scholar] [CrossRef]
- Bielicki, T.; Szklarska, A.; Welon, Z.; Rogucka, E. Variation in body mass index among Polish adults: Effects of sex, age, birth cohort, and social class. Am. J. Phys. Anthropol. 2001, 116, 166–170. [Google Scholar] [CrossRef]
- Lopuszanska-Dawid, M.; Kołodziej, H.; Lipowicz, A.; Szklarska, A. Age, Education, and Stress Affect Ageing Males’ Symptoms More than Lifestyle Does: The Wroclaw Male Study. Int. J. Environ. Res. Public Health 2022, 19, 5044. [Google Scholar] [CrossRef]
- Jankowska, E.A.; Szklarska, A.; Lopuszanska, M.; Medras, M. Age and social gradients in the intensity of aging males’ symptoms in Poland. Aging Male 2008, 11, 83–88. [Google Scholar] [CrossRef]
- Jankowska, E.A.; Szklarska, A.; Łopuszańska, M.; Mędraś, M. Are age and educational level the determinants of hormonal parameters considered as indices of andropause? Pol. Med. J. 2004, 16, 323–327. Available online: https://pubmed.ncbi.nlm.nih.gov/15517925/ (accessed on 21 February 2023).
- Kołodziej, H.; Łopuszańska, M.; Bielicki, T.; Jankowska, E.A. Social inequality in premature mortality among Polish urban adults during economic transition. Am. J. Hum. Biol. 2007, 19, 878–885. [Google Scholar] [CrossRef]
- Borrell, C.; Dominiquez-Berjon, F.; Pasarin, M.I.; Rohlfs, I.; Nebot, M. Social inequalities in health related behaviours in Barcelona. J. Epidemiol. Community Health 2000, 54, 24–30. [Google Scholar] [CrossRef] [Green Version]
- Łopuszańska, M.; Szklarska, A.; Jankowska, E.A. Health behaviours of adult men and women in Poland, in the years 1984 and 1999. Public Health 2004, 114, 23–28. [Google Scholar]
- Blümel, J.E.; Aedo, S.; Murray, N.; Vallejo, M.S.; Chedraui, P. Health screening of middle-aged women: What factors impact longevity? Menopause 2022, 29, 1008–1013. [Google Scholar] [CrossRef] [PubMed]
- Chmara-Pawlińska, R.; Szwed, A. Cigarette smoking and the age of natural menopause in women in Poland. Przegl. Lek. 2004, 61, 1003–1005. [Google Scholar] [PubMed]
- Downie, R.S. The value and quality of life. J. R. Coll. Physicians Lond. 1999, 33, 378–381. [Google Scholar] [CrossRef]
- Eurostat 2023. Database and Tables by Themes. Population and Social Conditions. Available online: https://ec.europa.eu/eurostat/web/main/data/database (accessed on 13 February 2023).
- Dell Inc. Dell Statistica Data Analysis Software System, Version 13. 2016. Available online: software.dell.com (accessed on 1 January 2020).
- Zagórski, K. Hope factor, inequality, and legitimacy of systemic transformations: The case of Poland. Communist Post-Communist Stud. 1994, 27, 357–376. [Google Scholar] [CrossRef]
- Popova, S.; Rehm, J.; Patra, J.; Zatonski, W. Comparing alcohol consumption in central and eastern Europe to other European countries. Alcohol Alcohol. 2007, 42, 465–473. [Google Scholar] [CrossRef]
- Wojtyniak, B.; Moskalewicz, J.; Stokwiszewski, J.; Rabczenko, D. Gender-specific mortality associated with alcohol consumption in Poland in transition. Addiction 2005, 100, 1779–1789. [Google Scholar] [CrossRef]
- World Health Organization. Alcohol Consumption among Adults. 2023. Available online: https://www.who.int/data/gho/data/indicators/indicator-details/GHO/alcohol-consumption-among-adults-aged-=-15-years-(litres-of-pure-alcohol-per-person-per-year) (accessed on 10 January 2023).
- Statistics Poland. Statistical Yearbook of the Republic of Poland 2015. 2015. Available online: https://stat.gov.pl/download/gfx/portalinformacyjny/pl/defaultaktualnosci/5515/2/10/1/publ_oz_rocznik_statystyczny_rp.pdf (accessed on 17 January 2023).
- Statistics Poland. Statistical Yearbook of the Republic of Poland 2022. 2022. Available online: https://stat.gov.pl/download/gfx/portalinformacyjny/pl/defaultaktualnosci/5515/2/22/1/rocznik_statystyczny_rzeczypospolitej_polskiej_2022.pdf (accessed on 15 January 2023).
- Moskalewicz, J. Privatization of the alcohol arena in Poland. Contemp. Drug Prob. 1993, 20, 263–275. [Google Scholar]
- Rowicka, M.; Postek, S.; Zin-Sędek, M. Patterns of Alcohol Consumption in Poland. Report on the 2020 Questionnaire Survey. The State Agency for Solving Alcohol Problems. 2021. Available online: https://parpa.pl/images/wzorykonsumpcji_2020.pdf (accessed on 6 December 2022).
- Neve, R.J.M.; Drop, M.J.; Lemmens, P.H.; Swinkles, H. Gender differences in drinking behaviour in the Netherlands: Convergence or stability? Addiction 1996, 91, 357–373. [Google Scholar] [CrossRef]
- Petersen, S.; Peto, V.; Rayner, M.; Leal, J.; Luengo-Fernandez, R.; Gray, A. European Cardiovascular Disease Statistics; BHF: London, UK, 2005. [Google Scholar]
- Lipowicz, A. Biological condition of men from towns and villages in the first years of political transformation in Poland. In Monographs of the Department of Anthropology of the Polish Academy of Sciences; No. 26; Polish Academy of Sciences: Wroclaw, Poland, 2009. [Google Scholar]
- Bobak, M. Relative and absolute gender gap in all-cause mortality in Europe and the contribution of smoking. Eur. J. Epidemiol. 2003, 18, 15–18. [Google Scholar] [CrossRef]
- Payne, S. Smoke like a man, die like a men? A review of the relationship between gender, sex and lung cancer. Soc. Sci. Med. 2001, 53, 1067–1080. [Google Scholar] [CrossRef]
- Rentería, E.; Jha, P.; Forman, D.; Soerjomataram, I. The impact of cigarette smoking on life expectancy between 1980 and 2010: A global perspective. Tob. Control 2015, 25, 551–557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bray, F.I.; Weiderpass, E. Lung cancer mortality trends in 36 European countries: Secular trends and birth cohort patterns by sex and region 1970–2007. Int. J. Cancer 2010, 126, 1454–1466. [Google Scholar] [CrossRef] [PubMed]
- Chapman, B.; Fiscella, K.; Duberstein, P.; Kawachi, I. Education and smoking: Confounding or effect modification by phenotypic personality traits? Ann. Behav. Med. 2009, 38, 237–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fish, J.H.; Bartholomew, J.R. Cigarette smoking and cardiovascular disease. Curr. Cardiovasc. Risk Rep. 2007, 1, 384–390. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Surgeon General’s Report Highlights: Health Consequences of Tobacco Use among Women. 2020. Available online: https://www.cdc.gov/tobacco/data_statistics/fact_sheets/fast_facts/index.htm (accessed on 12 December 2022).
- Panico, S.; Mattiello, A. Epidemiology of cardiovascular diseases in women in Europe. Nutr. Metab. Cardiovasc. Dis. 2010, 20, 379–385. [Google Scholar] [CrossRef]
- Grosso, G.; Stepaniak, U.; Micek, A.; Topor-Mądry, R.; Pikhart, H.; Szafraniec, K.; Pająk, A. Association of daily coffee and tea consumption and metabolic syndrome: Results from the Polish arm of the HAPIEE study. Eur. J. Nutr. 2015, 54, 1129–1137. [Google Scholar] [CrossRef] [Green Version]
- Grosso, G.; Stepaniak, U.; Polak, M.; Micek, A.; Topor-Madry, R.; Stefler, D.; Szafraniec, K.; Pajak, A. Coffee consumption and risk of hypertension in the Polish arm of the HAPIEE cohort study. Eur. J. Clin. Nutr. 2016, 70, 109–115. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.; Cho, H.; Myung, S.K. Effect of Coffee Consumption on Risk of Coronary Heart Disease in a Systematic Review and Meta-Analysis of Prospective Cohort Studies. Am. J. Cardiol. 2023, 186, 17–29. [Google Scholar] [CrossRef]
- Shin, S.; Lee, J.E.; Loftfield, E.; Shu, X.O.; Abe, S.K.; Rahman, M.S.; Sinha, R. Coffee and tea consumption and mortality from all causes, cardiovascular disease and cancer: A pooled analysis of prospective studies from the Asia Cohort Consortium. Int. J. Epidemiol. 2022, 51, 626–640. [Google Scholar] [CrossRef]
- Natella, F.; Scaccini, C. Role of coffee in modulation of diabetes risk. Nutr. Rev. 2012, 70, 207–217. [Google Scholar] [CrossRef]
- Lopez-Garcia, E.; Rodriguez-Artalejo, F.; Rexrode, K.M.; Logroscino, G.; Hu, F.B.; van Dam, R.M. Coffee consumption and risk of stroke in women. Circulation 2009, 119, 1116–1123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouchard, D.R.; Ross, R.; Janssen, I. Coffee, tea and their additives: Association with BMI and waist circumference. Obes. Facts 2010, 3, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Larsson, S.C.; Virtamo, J.; Wolk, A. Coffee consumption and risk of stroke in women. Stroke 2011, 42, 908–912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blair, S.N.; Kohl, H.W.; Gordon, N.F.; Paffenbarger, R.S., Jr. How much physical activity is good for health? Annu. Rev. Public Health 1992, 13, 99–126. [Google Scholar] [CrossRef]
- Gajewski, A.K.; Poznańska, A. Mortality of top athletes, actors and clergy in Poland: 1924–2000 follow-up study of the long term effect of physical activity. Eur. J. Epidemiol. 2008, 23, 335–340. [Google Scholar] [CrossRef]
- Mazurek, K.; Żmijewski, P.; Kozdroń, E.; Fojt, A.; Czajkowska, A.; Szczypiorski, P.; Mazurek, T. Cardiovascular risk reduction in sedentary postmenopausal women during organised physical activity. Kardiol. Pol. 2017, 75, 476–485. [Google Scholar] [CrossRef]
- Czajkowska, A.; Lutosławska, G.; Mazurek, K.; Ambroszkiewicz, J.; Zmijewski, P. Plasma homocysteine levels, physical activity and macronutrient intake in young healthy men. Pediatr. Endocrinol. Diabetes Metab. 2011, 17, 30–34. [Google Scholar]
- Public Opinion Research Center CBOS. Physical Activity of Poles. Research Communication. No. 125/2018. 2018. Available online: https://www.cbos.pl/SPISKOM.POL/2018/K_125_18.PDF (accessed on 10 December 2022).
- Public Opinion Research Center CBOS. About the Physical Activity of Poles; Research communication; CBOS: Warsaw, Poland, 2003. [Google Scholar]
- Biernat, E.; Piątkowska, M.; Mynarski, W. Prevalence and socioeconomic determinants of leisure time physical activity among Polish farmers. Ann. Agric. Environ. Med. 2018, 25, 151–156. [Google Scholar] [CrossRef] [Green Version]
- Guszkowska, M. Effects of exercise on anxiety, depression and mood. Psychiatr. Pol. 2004, 38, 611–620. [Google Scholar]
- Lopuszanska-Dawid, M.; Kupis, P.; Lipowicz, A.; Kołodziej, H.; Szklarska, A. How Stress Is Related to Age, Education, Physical Activity, Body Mass Index, and Body Fat Percentage in Adult Polish Men? Int. J. Environ. Res. Public Health 2022, 19, 12149. [Google Scholar] [CrossRef]
- Łopuszańska-Dawid, M.; Szklarska, A. Growth change in Polish women: Reduction of the secular trends? PLoS ONE 2020, 15, e0242074. [Google Scholar] [CrossRef]
- van Oers, J.A.; Bongers, I.M.; van de Goor, L.A.; Garretsen, H.F. Alcohol consumption, alcohol-related problems, problem drinking, and socioeconomic status. Alcohol Alcohol. 1999, 34, 78–88. [Google Scholar] [CrossRef]
- Blaxter, M. Health and Lifestyle; Routledge: London, UK; New York, NY, USA, 1990. [Google Scholar]
- Kołodziej, H. Zróżnicowanie sytuacji społeczno-ekonomicznej i stylu życia dorosłych mężczyzn. Wychow. Fiz. Sport 2000, 2, 47–58. [Google Scholar]
- Fiissel, D.L.; Lafreniere, K.L. Weight control motives for cigarette smoking: Further consequences of the sexual objectification of women? Fem. Psychol. 2006, 16, 327–344. [Google Scholar] [CrossRef]
- Leong, S.L.; Madden, C.; Gray, A.R.; Horwath, C.C. A nationwide survey of weight control practices among middle-aged New Zealand women. N. Z. Med. J. 2013, 126, 12–20. [Google Scholar]
- Liczbińska, G.; Brabec, M.; Piontek, J.; Malina, R.M. Age at menarche, environmental stress, and social inequality: Evidence from Poland in the 1930s–1950s. Am. J. Hum. Biol. 2022, 35, e23817. [Google Scholar] [CrossRef] [PubMed]
- Kołodziej, H.; Kozieł, S. Recent trend in stature in 14-year-old boys from Wroclaw, Poland. Anthropol. Rev. 2002, 65, 57–63. [Google Scholar] [CrossRef]
- Yau, Y.H.; Potenza, M.N. Stress and eating behaviors. Minerva. Endocrinol. 2013, 38, 255–267. [Google Scholar] [PubMed]
- Moynihan, A.B.; van Tilburg, W.A.; Igou, E.R.; Wisman, A.; Donnelly, A.E.; Mulcaire, J.B. Eaten up by boredom: Consuming food to escape awareness of the bored self. Front. Psychol. 2015, 6, 369. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Liu, X.; Fang, Y.; Fan, B.; Fuller, C.J.; Guan, Z.; Yao, Z.; Kong, J.; Lu, J.; Litvak, I.J. Alcohol abuse/dependence symptoms among hospital employees exposed to a SARS outbreak. Alcohol Alcohol. 2008, 43, 706–712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakaloudi, D.R.; Jeyakumar, D.T.; Jayawardena, R.; Chourdakis, M. The impact of COVID-19 lockdown on snacking habits, fast-food and alcohol consumption: A systematic review of the evidence. Clin. Nutr. 2021, 41, 3038–3045. [Google Scholar] [CrossRef] [PubMed]
- Sidor, A.; Rzymski, P. Dietary Choices and Habits during COVID-19 Lockdown: Experience from Poland. Nutrients 2020, 12, 1657. [Google Scholar] [CrossRef] [PubMed]
- Chenarides, L.; Grebitus, C.; Lusk, J.L.; Printezis, I. Food consumption behavior during the COVID-19 pandemic. Agribusiness 2021, 37, 44–81. [Google Scholar] [CrossRef] [PubMed]
- Pinto, J.; van Zeller, M.; Amorim, P.; Pimentel, A.; Dantas, P.; Eusébio, E.; Neves, A.; Pipa, J.; Santa Clara, E.; Santiago, T.; et al. Sleep quality in times of COVID-19 pandemic. Sleep Med. 2020, 74, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Razzoli, M.; Bartolomucci, A. The Dichotomous Effect of Chronic Stress on Obesity. Trends Endocrinol. Metab. 2016, 27, 504–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borowska, B.; Suder, A.; Kliś, K.; Wronka, I. Associations between Sleep Duration and Anthropometric Indices of Adiposity in Female University Students. Int. J. Environ. Res. Public Health 2022, 19, 11681. [Google Scholar] [CrossRef] [PubMed]
- Di Renzo, L.; Gualtieri, P.; Pivari, F.; Soldati, L.; Attinà, A.; Cinelli, G.; Leggeri, C.; Caparello, G.; Barrea, L.; Scerbo, F.; et al. Eating habits and lifestyle changes during COVID-19 lockdown: An Italian survey. J. Transl. Med. 2020, 18, 229. [Google Scholar] [CrossRef]
- Ammar, A.; Brach, M.; Trabelsi, K.; Chtourou, H.; Boukhris, O.; Masmoudi, L.; Bouaziz, B.; Bentlage, E.; How, D.; Ahmed, M.; et al. Effects of COVID-19 Home Confinement on Eating Behaviour and Physical Activity: Results of the ECLB-COVID19 International Online Survey. Nutrients 2020, 12, 1583. [Google Scholar] [CrossRef]
- Hall, G.; Laddu, D.R.; Phillips, S.A.; Lavie, C.J.; Arena, R. A tale of two pandemics: How will COVID-19 and global trends in physical inactivity and sedentary behavior affect one another? Prog. Cardiovasc. Dis. 2020, 64, 108–110. [Google Scholar] [CrossRef]
- Dunton, G.F.; Do, B.; Wang, S.D. Early effects of the COVID-19 pandemic on physical activity and sedentary behavior in children living in the U.S. BMC Public Health 2020, 20, 1351. [Google Scholar] [CrossRef]
- Kaur, H.; Singh, T.; Arya, Y.K.; Mittal, S. Physical Fitness and Exercise during the COVID-19 Pandemic: A Qualitative Enquiry. Front. Psychol. 2020, 11, 590172. [Google Scholar] [CrossRef] [PubMed]
- Chaabna, K.; Chaabane, S.; Jithesh, A.; Doraiswamy, S.; Mamtani, R.; Cheema, S. Effect of the COVID-19 pandemic on the proportion of physically active children and adults worldwide: A systematic review and meta-analysis. Front. Public Health 2022, 10, 1009703. [Google Scholar] [CrossRef] [PubMed]
- United Nations Development Programme—UNDP. Human Development Report. 2022. Available online: https://hdr.undp.org/content/human-development-report-2021-22 (accessed on 1 January 2023).
- Kołodziej, H.; Łopuszańska, M.; Jankowska, E.A. Decrease in sex differences in premature mortality during systemic transformation in Poland. J. Biosoc. Sci. 2008, 40, 297–312. [Google Scholar] [CrossRef] [PubMed]
- Eurostat 2022. Sustainable Development in the European Union—2022 Edition—Products Flagship Publications—Eurostat (europa.eu). Available online: https://ec.europa.eu/eurostat/en/web/products-flagship-publications/-/ks-09-22-019 (accessed on 20 December 2022).
1: 1986 | 2: 1991 | 3: 1996 | 4: 2006 | 5: 2019 | 6: 2021 | 1–6: 1986–2021 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n = 2016 | n = 1181 | n = 1203 | n = 642 | n = 498 | n = 266 | N = 5608 | |||||||||
n | % | n | % | n | % | n | % | n | % | n | % | N | % | χ2; p | |
Educational level | |||||||||||||||
1. tertiary | 481 | 23.86 | 450 | 38.10 | 373 | 31.01 | 205 | 31.93 | 323 | 64.86 | 169 | 63.53 | 2001 | 34.46 | 856.21; 0.0001 |
2. secondary | 835 | 41.42 | 186 | 15.75 | 574 | 47.71 | 305 | 47.51 | 162 | 32.53 | 87 | 32.71 | 2149 | 37.01 | |
3. vocational | 700 | 34.72 | 545 | 46.15 | 256 | 21.28 | 132 | 20.56 | 13 | 2.61 | 10 | 3.76 | 1656 | 28.53 | |
Alcohol drinking | |||||||||||||||
1. non-drinkers | 851 | 42.21 | 216 | 18.29 | 150 | 12.47 | 48 | 7.48 | 41 | 8.23 | 30 | 11.28 | 1336 | 23.01 | 1808.02; 0.0001 |
2. occasionally | 1028 | 50.99 | 257 | 21.76 | 614 | 51.04 | 477 | 74.30 | 391 | 78.51 | 195 | 73.31 | 2962 | 51.02 | |
3. frequent drinkers | 137 | 6.80 | 708 | 59.95 | 439 | 36.49 | 117 | 18.22 | 66 | 13.25 | 41 | 15.41 | 1508 | 25.97 | |
Cigarettes smoking | |||||||||||||||
1. never | 1092 | 54.17 | 632 | 53.51 | 414 | 34.41 | 322 | 50.16 | 340 | 68.27 | 146 | 54.89 | 2946 | 50.74 | 354.65; 0.0001 |
2. quitted smoking | 229 | 11.36 | 63 | 5.33 | 218 | 18.12 | 135 | 21.03 | 65 | 13.05 | 63 | 23.68 | 773 | 13.31 | |
3. smoker | 695 | 34.47 | 486 | 41.16 | 571 | 47.47 | 185 | 28.82 | 93 | 18.67 | 57 | 21.43 | 2087 | 35.95 | |
Number of cigarettes smoked | |||||||||||||||
1. less than 5 cig. per day | 351 | 50.50 | 79 | 16.26 | 86 | 15.06 | 36 | 19.46 | 40 | 43.01 | 9 | 15.79 | 601 | 28.80 | 285.96; 0.0013 |
2. 5–20 cig. per day | 245 | 35.25 | 260 | 53.50 | 351 | 61.47 | 100 | 54.05 | 33 | 35.48 | 39 | 68.42 | 1028 | 49.26 | |
3. more than 20 cig. per day | 99 | 14.25 | 147 | 30.24 | 134 | 23.47 | 49 | 26.49 | 20 | 21.51 | 9 | 15.79 | 458 | 21.94 | |
Coffee drinking | |||||||||||||||
1. no | 961 | 47.67 | 152 | 12.87 | 35 | 2.91 | 123 | 19.16 | 158 | 31.73 | 30 | 11.27 | 1459 | 25.13 | 2439.36; 0.0001 |
2. 1–2 cups per day | 937 | 46.48 | 337 | 28.54 | 247 | 20.53 | 298 | 46.42 | 300 | 60.24 | 188 | 70.68 | 2307 | 39.73 | |
3. more | 118 | 5.85 | 692 | 58.59 | 921 | 76.56 | 221 | 34.42 | 40 | 8.03 | 48 | 18.05 | 2040 | 35.14 | |
Physical activity | |||||||||||||||
1. regularly | 469 | 23.26 | 113 | 9.57 | 565 | 46.97 | 276 | 42.99 | 346 | 69.48 | 113 | 42.48 | 1882 | 32.41 | 1681.55; 0.0001 |
2. irregularly | 1229 | 60.96 | 334 | 28.28 | 255 | 21.20 | 163 | 25.39 | 125 | 25.10 | 109 | 40.98 | 2215 | 38.15 | |
3. physically inactive | 318 | 15.77 | 734 | 62.15 | 383 | 31.84 | 203 | 31.62 | 27 | 5.42 | 44 | 16.54 | 1709 | 29.44 |
1: 1986 | 2: 1991 | 3: 1996 | 4: 2006 | 5: 2019 | 6: 2021 | 1–6: 1986–2021 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n = 2016 | n = 1181 | n = 1203 | n = 642 | n = 498 | n = 266 | N = 5608 | |||||||||
n | % | n | % | n | % | n | % | n | % | n | % | N | % | χ2; p | |
Alcohol drinking | 1: Tertiary | 358.47; 0.0001 | |||||||||||||
1. no | 166 | 34.51 | 28 | 6.22 | 44 | 11.80 | 9 | 4.39 | 25 | 7.74 | 19 | 11.24 | 291 | 14.54 | |
2. occasionally | 271 | 56.34 | 63 | 14.00 | 173 | 46.38 | 161 | 78.54 | 254 | 78.64 | 122 | 72.19 | 1044 | 52.17 | |
3. frequent drinkers | 44 | 9.15 | 359 | 79.78 | 156 | 41.82 | 35 | 17.07 | 44 | 13.62 | 28 | 16.57 | 666 | 33.28 | |
χ2; p | 833.44; 0.0001 | ||||||||||||||
2: Secondary | |||||||||||||||
1. no | 324 | 38.80 | 68 | 36.56 | 71 | 12.37 | 20 | 6.56 | 13 | 8.02 | 10 | 11.49 | 506 | 23.55 | |
2. occasionally | 453 | 54.25 | 100 | 53.76 | 317 | 55.23 | 228 | 74.75 | 128 | 79.01 | 65 | 74.71 | 1291 | 60.07 | |
3. frequent drinkers | 58 | 6.95 | 18 | 9.68 | 186 | 32.40 | 57 | 18.69 | 21 | 12.96 | 12 | 13.79 | 352 | 16.38 | |
χ2; p | 365.35; 0.0001 | ||||||||||||||
3: Vocational | |||||||||||||||
1. no | 361 | 51.57 | 120 | 22.02 | 35 | 13.67 | 19 | 14.39 | 3 | 23.08 | 1 | 10.00 | 539 | 32.55 | |
2. occasionally | 304 | 43.43 | 94 | 17.25 | 124 | 48.44 | 88 | 66.67 | 9 | 69.23 | 8 | 80.00 | 627 | 37.86 | |
3. frequent drinkers | 35 | 5.00 | 331 | 60.73 | 97 | 37.89 | 25 | 18.94 | 1 | 7.69 | 1 | 10.00 | 490 | 29.59 | |
χ2; p | 633.79; 0.0001 | ||||||||||||||
Cigarettes smoking | 1: Tertiary | 110.34; 0.0001 | |||||||||||||
1. never | 222 | 46.15 | 277 | 61.56 | 134 | 35.92 | 127 | 61.95 | 215 | 66.56 | 81 | 47.93 | 1056 | 52.77 | |
2. quitted smoking | 87 | 18.09 | 15 | 3.33 | 79 | 21.18 | 38 | 18.54 | 52 | 16.10 | 47 | 27.81 | 318 | 15.89 | |
3. smoker | 172 | 35.76 | 158 | 35.11 | 160 | 42.90 | 40 | 19.51 | 56 | 17.34 | 41 | 24.26 | 627 | 31.33 | |
χ2; p | 191.07; 0.0001 | ||||||||||||||
2: Secondary | |||||||||||||||
1. never | 422 | 50.54 | 86 | 46.24 | 217 | 37.80 | 149 | 48.85 | 119 | 73.46 | 59 | 67.82 | 1052 | 48.95 | |
2. quitted smoking | 108 | 12.93 | 25 | 13.44 | 113 | 19.69 | 65 | 21.31 | 11 | 6.79 | 16 | 18.39 | 338 | 15.73 | |
3. smoker | 305 | 36.53 | 75 | 40.32 | 244 | 42.51 | 91 | 29.84 | 32 | 19.75 | 12 | 13.79 | 759 | 35.32 | |
χ2; p | 106.37; 0.0001 | ||||||||||||||
3: Vocational | |||||||||||||||
1. never | 448 | 64.00 | 269 | 49.36 | 63 | 24.61 | 46 | 34. | 6 | 46.15 | 6 | 60 | 838 | 50.60 | |
2. quitted smoking | 34 | 4.86 | 23 | 4.22 | 26 | 10.16 | 32 | 24.24 | 2 | 15.38 | 0 | 0 | 117 | 7.07 | |
3. smoker | 218 | 31.14 | 253 | 46.42 | 167 | 65.23 | 54 | 40.91 | 5 | 38.46 | 4 | 40 | 701 | 42.33 | |
χ2; p | 176.71; 0.0001 | ||||||||||||||
Number of cigarettes smoked | 1: Tertiary | 17.61; 0.0015 | |||||||||||||
1. less than 5 cig. per day | 72 | 41.86 | 26 | 16.46 | 27 | 16.88 | 7 | 17.50 | 22 | 39.29 | 4 | 9.76 | 158 | 25.20 | |
2. 5–20 cig. per day | 63 | 36.63 | 108 | 68.35 | 82 | 51.25 | 21 | 52.50 | 23 | 41.07 | 31 | 75.61 | 328 | 52.31 | |
3. more than 20 cig. per day | 37 | 21.51 | 24 | 15.19 | 51 | 31.88 | 12 | 30.00 | 11 | 19.64 | 6 | 14.63 | 141 | 22.49 | |
χ2; p | 69.72; 0.0001 | ||||||||||||||
2: Secondary | |||||||||||||||
1. less than 5 cig. per day | 164 | 53.77 | 10 | 13.33 | 43 | 17.62 | 22 | 24.18 | 15 | 46.88 | 5 | 41.67 | 259 | 34.12 | |
2. 5–20 cig. per day | 97 | 31.80 | 9 | 12.00 | 169 | 69.26 | 48 | 52.75 | 9 | 28.13 | 5 | 41.67 | 337 | 44.40 | |
3. more than 20 cig. per day | 44 | 14.43 | 56 | 74.67 | 32 | 13.11 | 21 | 23.08 | 8 | 25.00 | 2 | 16.67 | 163 | 21.48 | |
χ2; p | 217.00; 0.0001 | ||||||||||||||
3: Vocational | |||||||||||||||
1. less than 5 cig. per day | 115 | 52.75 | 43 | 17.00 | 16 | 9.58 | 7 | 12.96 | 3 | 60.00 | 0 | 0.00 | 184 | 26.25 | |
2. 5–20 cig. per day | 85 | 38.99 | 143 | 56.52 | 100 | 59.88 | 31 | 57.41 | 1 | 20.00 | 3 | 75.00 | 363 | 51.78 | |
3. more than 20 cig. per day | 18 | 8.26 | 67 | 26.48 | 51 | 30.54 | 16 | 29.63 | 1 | 20.00 | 1 | 25.00 | 154 | 21.97 | |
χ2; p | 131.63; 0.0001 | ||||||||||||||
Coffee drinking | 1: Tertiary | 144.14; 0.0001 | |||||||||||||
1. no | 204 | 42.41 | 36 | 8.00 | 5 | 1.34 | 45 | 21.95 | 104 | 32.20 | 17 | 10.06 | 411 | 20.54 | |
2. 1–2 cups per day | 222 | 46.15 | 63 | 14.00 | 57 | 15.28 | 92 | 44.88 | 197 | 60.99 | 119 | 70.41 | 750 | 37.48 | |
3. more | 55 | 11.43 | 351 | 78.00 | 311 | 83.38 | 68 | 33.17 | 22 | 6.81 | 33 | 19.53 | 840 | 41.98 | |
χ2; p | 1073.07; 0.0001 | ||||||||||||||
2: Secondary | |||||||||||||||
1. no | 365 | 43.71 | 47 | 25.27 | 25 | 4.36 | 55 | 18.03 | 49 | 30.25 | 11 | 12.64 | 552 | 25.69 | |
2. 1–2 cups per day | 421 | 50.42 | 124 | 66.67 | 151 | 26.31 | 150 | 49.18 | 97 | 59.88 | 63 | 72.41 | 1006 | 46.81 | |
3. more | 49 | 5.87 | 15 | 8.06 | 398 | 69.34 | 100 | 32.79 | 16 | 9.88 | 13 | 14.94 | 591 | 27.50 | |
χ2; p | 887.47; 0.0001 | ||||||||||||||
3: Vocational | |||||||||||||||
1. no | 392 | 56.00 | 69 | 12.66 | 5 | 1.95 | 23 | 17.42 | 5 | 38.46 | 2 | 20.00 | 496 | 29.95 | |
2. 1–2 cups per day | 294 | 42.00 | 150 | 27.52 | 39 | 15.23 | 56 | 42.42 | 6 | 46.15 | 6 | 60.00 | 551 | 33.27 | |
3. more | 14 | 2.00 | 326 | 59.82 | 212 | 82.81 | 53 | 40.15 | 2 | 15.38 | 2 | 20.00 | 609 | 36.77 | |
χ2; p | 960.97; 0.0001 | ||||||||||||||
Physical activity | 1: Tertiary | 213.00; 0.0001 | |||||||||||||
1. regularly | 136 | 28.27 | 34 | 7.56 | 146 | 39.14 | 81 | 39.51 | 217 | 67.18 | 60 | 35.50 | 674 | 33.68 | |
2. irregularly | 269 | 55.93 | 56 | 12.44 | 85 | 22.79 | 57 | 27.80 | 86 | 26.63 | 76 | 44.97 | 629 | 31.43 | |
3. physically inactive | 76 | 15.80 | 360 | 80.00 | 142 | 38.07 | 67 | 32.68 | 20 | 6.19 | 33 | 19.53 | 698 | 34.88 | |
χ2; p | 775.70; 0.0001 | ||||||||||||||
2: Secondary | |||||||||||||||
1. regularly | 188 | 22.51 | 43 | 23.12 | 279 | 48.61 | 133 | 43.61 | 121 | 74.69 | 50 | 57.47 | 814 | 37.88 | |
2. irregularly | 507 | 60.72 | 120 | 64.52 | 143 | 24.91 | 76 | 24.92 | 34 | 20.99 | 29 | 33.33 | 909 | 42.30 | |
3. physically inactive | 140 | 16.77 | 23 | 12.37 | 152 | 26.48 | 96 | 31.48 | 7 | 4.32 | 8 | 9.20 | 426 | 19.82 | |
χ2; p | 393.72; 0.0001 | ||||||||||||||
3: Vocational | |||||||||||||||
1. regularly | 145 | 20.71 | 36 | 6.61 | 140 | 54.69 | 62 | 46.97 | 8 | 61.54 | 3 | 30.00 | 394 | 23.79 | |
2. irregularly | 453 | 64.71 | 158 | 28.99 | 27 | 10.55 | 30 | 22.73 | 5 | 38.46 | 4 | 40.00 | 677 | 40.88 | |
3. physically inactive | 102 | 14.57 | 351 | 64.40 | 89 | 34.77 | 40 | 30.30 | 0 | 0.00 | 3 | 30.00 | 585 | 35.33 | |
χ2; p | 624.71; 0.0001 |
OR | 95%CI | p | |
---|---|---|---|
Alkohol drinking—risk of alcohol consumption weekly or more | |||
Cohorts: | |||
1: 1986—reference group | 1.0 (ref.) | ||
2: 1991 | 18.3546 | 14.8600–22.6711 | 0.0001 |
3: 1996 | 8.1047 | 6.5537–10.0227 | 0.0001 |
4: 2006 | 3.0510 | 2.3340–3.9884 | 0.0001 |
5: 2019 | 1.7028 | 1.2364–2.3452 | 0.0011 |
6: 2021 | 2.0486 | 1.3968–3.0044 | 0.0002 |
Level of education: | |||
1: tertiary—reference group | 1.0 (ref.) | ||
2: secondary | 0.4380 | 0.3708–0.5174 | 0.0001 |
3: vocational | 0.6694 | 0.5654–0.7925 | 0.0001 |
χ2; p | 209.36; 0.0001 | ||
R-square (McFadden) | 0.8658 | ||
Hosmer-Lemeshow test; p | 79.1956; 0.0001 | ||
Cigarettes smoking—risk of current smoking | |||
Cohorts: | |||
1: 1986—reference group | 1.0 (ref.) | ||
2: 1991 | 1.3153 | 1.1308–1.5300 | 0.0004 |
3: 1996 | 1.7900 | 1.5450–2.0740 | 0.0001 |
4: 2006 | 0.8020 | 0.6600–0.9747 | 0.0266 |
5: 2019 | 0.4922 | 0.3836–0.6316 | 0.0001 |
6: 2021 | 0.5821 | 0.4264–0.7948 | 0.0007 |
Level of education: | |||
1: tertiary—reference group | 1.0 (ref.) | ||
2: secondary | 1.1146 | 0.9735–1.2761 | 0.1163 |
3: vocational | 1.4056 | 1.2187–1.6212 | 0.0001 |
χ2; p | 64.82; 0.0001 | ||
R-square (McFadden) | 0.7706 | ||
Hosmer-Lemeshow test; p | 27.3277; 0.0001 | ||
Number of cigarettes smoked—risk of smoking more than 20 cigarettes a day | |||
Cohorts: | |||
1: 1986—reference group | 1.0 (ref.) | ||
2: 1991 | 2.6970 | 2.0060–3.6261 | 0.0001 |
3: 1996 | 1.8437 | 1.3827–2.4584 | 0.0001 |
4: 2006 | 2.1607 | 1.4629–3.1913 | 0.0001 |
5: 2019 | 1.6151 | 0.9365–2.7854 | 0.0847 |
6: 2021 | 1.1131 | 0.5252–2.3589 | 0.7799 |
Level of education: | |||
1: tertiary—reference group | 1.0 (ref.) | ||
2: secondary | 1.0410 | 0.7978–1.3585 | 0.7672 |
3: vocational | 0.9056 | 0.6919–1.1852 | 0.4700 |
χ2; p | 125.10; 0.0001 | ||
R-square (McFadden) | 0.2858 | ||
Hosmer-Lemeshow test; p | 14.1071; 0.0070 | ||
Coffee drinking—risk of drinking more than two cups of coffee a day | |||
Cohorts: | |||
1: 1986—reference group | 1.0 (ref.) | ||
2: 1991 | 19.9733 | 16.0029–24.9287 | <0.0001 |
3: 1996 | 60.3562 | 47.6247–76.4912 | <0.0001 |
4: 2006 | 8.8313 | 6.8642–11.3622 | <0.0001 |
5: 2019 | 1.0922 | 0.7458–1.5600 | 0.6505 |
6: 2021 | 2.8215 | 1.9422–4.0989 | <0.0001 |
Level of education: | |||
1: tertiary—reference group | 1.0 (ref.) | ||
2: secondary | 0.3509 | 0.2939–0.4189 | 0.0001 |
3: vocational | 0.6353 | 0.5322–0.7584 | 0.0001 |
χ2; p | 231.50; 0.0001 | ||
R-square (McFadden) | 0.9153 | ||
Hosmer-Lemeshow test; p | 59.2979; 0.0001 | ||
Physical activity—risk of being physically inactive | |||
Cohorts: | |||
1: 1986—reference group | 1.0 (ref.) | ||
2: 1991 | 7.8062 | 6.5836–9.2558 | 0.0001 |
3: 1996 | 2.5361 | 2.1329–3.0156 | 0.0001 |
4: 2006 | 2.5006 | 2.0310–3.0788 | 0.0001 |
5: 2019 | 0.2566 | 0.1700–0.3874 | 0.0001 |
6: 2021 | 0.9002 | 0.6329–1.2804 | 0.5587 |
Level of education: | |||
1: tertiary—reference group | 1.0 (ref.) | ||
2: secondary | 0.4858 | 0.4163–0.5669 | 0.0001 |
3: vocational | 0.7449 | 0.6376–0.8703 | 0.0002 |
χ2; p | 207.01; 0.0001 | ||
R-square (McFadden) | 0.8344 | ||
Hosmer-Lemeshow test; p | 82.2937; 0.0001 |
OR | 95%CI | p | |
---|---|---|---|
Alkohol drinking—risk of alcohol consumption weekly or more | |||
Level of education | 0.7856 | 0.7207–0.8564 | 0.0001 |
Gini coefficient | 4.0660 | 3.3488–4.9368 | 0.0001 |
Gender Inequality Index | 5.5864 | 2.8479–10.9580 | 0.0001 |
Women total employment (%) | 0.0493 | 0.0349–0.0695 | 0.0001 |
Employed women being in managerial positions (%) | 25.6732 | 16.7658–39.3129 | 0.0001 |
Women among scientists (%) | 0.6321 | 0.5758–0.6938 | 0.0001 |
Cohorts | 458,975.4929 | 110,282.9073–1,910,164.5772 | 0.0001 |
χ2; p | 1527.61; 0.0001 | ||
Hosmer-Lemeshow test; p | 16.0403; 0.0248 | ||
Cigarettes smoking—risk of current smoking | |||
Level of education | 1.1955 | 1.1129–1.2841 | 0.0001 |
Gini coefficient | 0.0005 | 0.0001–3.0283 | 0.0001 |
Gender Inequality Index | 1.8913 | 1.4295–2.5023 | 0.0001 |
Women total employment (%) | 0.2499 | 0.1874–0.3333 | 0.0001 |
Employed women being in managerial positions (%) | 4.9038 | 3.4152–7.0413 | 0.0001 |
Women among scientists (%) | 0.6862 | 0.6315–0.7457 | 0.0001 |
Cohorts | 469.7444 | 143.7170–1535.3766 | 0.0001 |
χ2; p | 2551.31; 0.0001 | ||
Hosmer-Lemeshow test; p | 61.4640; 0.0001 | ||
Number of cigarettes smoked—risk of smoking more than 20 cigarettes a day | |||
Level of education | 0.9122 | 0.7977–1.0432 | 0.1796 |
Gini coefficient | 13.3168 | 3.4261–51.7606 | 0.0004 |
Gender Inequality Index | 1.5828 | 0.0001–4.8496 | 0.0042 |
Women total employment (%) | 1.5943 | 0.9724–2.6140 | 0.0645 |
Employed women being in managerial positions (%) | 0.4962 | 0.2636–0.9341 | 0.0299 |
Women among scientists (%) | 1.4014 | 1.2163–1.6148 | 0.0001 |
Cohorts | 0.0325 | 0.0042–0.2502 | 0.0010 |
χ2; p | 1008.54; 0.0001 | ||
Hosmer-Lemeshow test; p | 107.8676; 0.0001 | ||
Coffee drinking—risk of drinking more than two cups of coffee a day | |||
Level of education | 0.7744 | 0.7101–0.8446 | 0.0001 |
Gini coefficient | 1.0493 | 1.0016–5.9147 | 0.0001 |
Gender Inequality Index | 7.4594 | 5.9971–9.2782 | 0.0001 |
Women total employment (%) | 0.0170 | 0.0121–0.0237 | 0.0001 |
Employed women being in managerial positions (%) | 80.3298 | 52.9453–121.8784 | 0.0001 |
Women among scientists (%) | 0.4282 | 0.3921–0.4676 | 0.0001 |
Cohorts | 69,525,170.9074 | 17,936,592.9111–269,490,900.8378 | 0.0001 |
χ2; p | 1779.74; 0.0001 | ||
Hosmer-Lemeshow test; p | 67.9660; 0.0001 | ||
Physical activity—risk of being physically inactive | |||
Level of education | 0.8404 | 0.7760–0.9101 | 0.0001 |
Gini coefficient | 5.1286 | 1.1096–23.7045 | 0.0001 |
Gender Inequality Index | 3.6662 | 2.5864–5.1968 | 0.0001 |
Women total employment (%) | 0.4572 | 0.3344–0.6250 | 0.0001 |
Employed women being in managerial positions (%) | 1.6088 | 1.0774–2.4023 | 0.0201 |
Women among scientists (%) | 1.0278 | 0.9447–1.1181 | 0.5244 |
Cohorts | 104.97106 | 30.6414–359.6095 | 0.0001 |
χ2; p | 1526.78; 0.0001 | ||
Hosmer-Lemeshow test; p | 31.6769; 0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopuszanska-Dawid, M. Trends in Health Behavior of Polish Women in 1986–2021: The Importance of Socioeconomic Status. Int. J. Environ. Res. Public Health 2023, 20, 3964. https://doi.org/10.3390/ijerph20053964
Lopuszanska-Dawid M. Trends in Health Behavior of Polish Women in 1986–2021: The Importance of Socioeconomic Status. International Journal of Environmental Research and Public Health. 2023; 20(5):3964. https://doi.org/10.3390/ijerph20053964
Chicago/Turabian StyleLopuszanska-Dawid, Monika. 2023. "Trends in Health Behavior of Polish Women in 1986–2021: The Importance of Socioeconomic Status" International Journal of Environmental Research and Public Health 20, no. 5: 3964. https://doi.org/10.3390/ijerph20053964
APA StyleLopuszanska-Dawid, M. (2023). Trends in Health Behavior of Polish Women in 1986–2021: The Importance of Socioeconomic Status. International Journal of Environmental Research and Public Health, 20(5), 3964. https://doi.org/10.3390/ijerph20053964