Territory Differences in Adaptation to Heat among Persons Aged 65 Years and Over in Spain (1983–2018)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Calculation of MMT
2.2. Determination of Heat-Adaptation Levels
2.3. Data Analysis
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yin, Q.; Wang, J.; Ren, Z.; Li, J.; Guo, Y. Mapping the Increased Minimum Mortality Temperatures in the Context of Global Climate Change. Nat. Commun. 2019, 10, 4640. [Google Scholar] [CrossRef]
- Iyakaremye, V.; Zeng, G.; Yang, X.; Zhang, G.; Ullah, I.; Gahigi, A.; Vuguziga, F.; Asfaw, T.G.; Ayugi, B. Increased High-Temperature Extremes and Associated Population Exposure in Africa by the Mid-21st Century. Sci. Total Environ. 2021, 790, 148162. [Google Scholar] [CrossRef]
- WHO Regional Office for Europe. Heat and Health in the WHO European Region: Updated Evidence for Effective Prevention; Sanchez Martinez, G., De’Donato, F., Kendrovski, V., Eds.; WHO Regional Office for Europe: Copenhagen, Demark, 2021. [Google Scholar]
- Meehl, G.A.; Tebaldi, C. More Intense, More Frequent, and Longer Lasting Heat Waves in the 21st Century. Science 2004, 305, 994–997. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2022: Impacts, Adaptation and Vulnerability; IPCC: Geneva, Switzerland, 2022. [Google Scholar]
- Van Daalen, K.R.; Romanello, M.; Rocklöv, J.; Semenza, J.C.; Tonne, C.; Markandya, A.; Dasandi, N.; Jankin, S.; Achebak, H.; Ballester, J.; et al. The 2022 Europe Report of the Lancet Countdown on Health and Climate Change: Towards a Climate Resilient Future. Lancet Public Health 2022, 7, e942–e965. [Google Scholar] [CrossRef]
- Bongioanni, P.; Del Carratore, R.; Corbianco, S.; Diana, A.; Cavallini, G.; Masciandaro, S.M.; Dini, M.; Buizza, R. Climate Change and Neurodegenerative Diseases. Environ. Res. 2021, 201, 111511. [Google Scholar] [CrossRef] [PubMed]
- Clemens, K.K.; Ouédraogo, A.M.; Li, L.; Voogt, J.A.; Gilliland, J.; Krayenhoff, E.S.; Leroyer, S.; Shariff, S.Z. Evaluating the Association between Extreme Heat and Mortality in Urban Southwestern Ontario Using Different Temperature Data Sources. Sci. Rep. 2021, 11, 8153. [Google Scholar] [CrossRef] [PubMed]
- Oudin Åström, D.; Bertil, F.; Joacim, R. Heat Wave Impact on Morbidity and Mortality in the Elderly Population: A Review of Recent Studies. Maturitas 2011, 69, 99–105. [Google Scholar] [CrossRef]
- Navas-Martín, M.Á.; López-Bueno, J.A.; Ascaso-Sánchez, M.S.; Sarmiento-Suárez, R.; Follos, F.; Vellón, J.M.; Mirón, I.J.; Luna, M.Y.; Sánchez-Martínez, G.; Culqui, D.; et al. Gender Differences in Adaptation to Heat in Spain (1983–2018). Environ. Res. 2022, 215, 113986. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Vaneckova, P.; Mengersen, K.; Pan, X.; Tong, S. Is the Association between Temperature and Mortality Modified by Age, Gender and Socio-Economic Status? Sci. Total Environ. 2010, 408, 3513–3518. [Google Scholar] [CrossRef] [PubMed]
- van Steen, Y.; Ntarladima, A.M.; Grobbee, R.; Karssenberg, D.; Vaartjes, I. Sex Differences in Mortality after Heat Waves: Are Elderly Women at Higher Risk? Int. Arch. Occup. Environ. Health 2019, 92, 37–48. [Google Scholar] [CrossRef]
- Meade, R.D.; Akerman, A.P.; Notley, S.R.; McGinn, R.; Poirier, P.; Gosselin, P.; Kenny, G.P. Physiological Factors Characterizing Heat-Vulnerable Older Adults: A Narrative Review. Environ. Int. 2020, 144, 105909. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.S.; Lal, R. Vulnerability of Women to Climate Change in Arid and Semi-Arid Regions: The Case of India and South Asia. J. Arid Environ. 2018, 149, 4–17. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, J.; Chen, J.; Shi, H.; Lu, X. Association between Ambient Temperature and Age-Specific Mortality from the Elderly: Epidemiological Evidence from the Chinese Prefecture with Most Serious Aging. Environ. Res. 2022, 211, 113103. [Google Scholar] [CrossRef]
- Petkova, E.P.; Dimitrova, L.K.; Sera, F.; Gasparrini, A. Mortality Attributable to Heat and Cold among the Elderly in Sofia, Bulgaria. Int. J. Biometeorol. 2021, 65, 865–872. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.; Zhao, Q.; Xia, G.; Huber, V.; Peña Ortiz, C.; Gallego Puyol, D.; Son, J.-Y.; Coco Liu, J.; Bell, M.L. Temperature-Related Mortality: A Systematic Review and Investigation of Effect Modifiers. Environ. Res. Lett. 2019, 14, 073004. [Google Scholar] [CrossRef]
- Benmarhnia, T.; Deguen, S.; Kaufman, J.S.; Smargiassi, A. Review Article: Vulnerability to Heat-Related Mortality: A Systematic Review, Meta-Analysis, and Meta-Regression Analysis. Epidemiology 2015, 26, 781–793. [Google Scholar] [CrossRef]
- Folkerts, M.A.; Bröde, P.; Botzen, W.J.W.; Martinius, M.L.; Gerrett, N.; Harmsen, C.N.; Daanen, H.A.M. Long Term Adaptation to Heat Stress: Shifts in the Minimum Mortality Temperature in the Netherlands. Front. Physiol. 2020, 11, 225. [Google Scholar] [CrossRef]
- Schifano, P.; Cappai, G.; de Sario, M.; Michelozzi, P.; Marino, C.; Bargagli, A.M.; Perucci, C.A. Susceptibility to Heat Wave-Related Mortality: A Follow-up Study of a Cohort of Elderly in Rome. Environ. Health 2009, 8, 50. [Google Scholar] [CrossRef] [PubMed]
- Hansen, A.; Bi, P.; Nitschke, M.; Pisaniello, D.; Newbury, J.; Kitson, A. Older Persons and Heat-Susceptibility: The Role of Health Promotion in a Changing Climate. Health Promot. J. Aust. 2011, 22, 17–20. [Google Scholar] [CrossRef]
- United Nations Department of Economic and Social Affairs. World Population Prospects 2022: Summary of Results; United Nations Department of Economic and Social Affairs: New York, NY, USA, 2022. [Google Scholar]
- Montalvo, J.; Ruiz-Labrador, E.; Montoya-Bernabéu, P.; Acosta-Gallo, B. Rural–Urban Gradients and Human Population Dynamics. Sustainability 2019, 11, 3107. [Google Scholar] [CrossRef]
- Camarero, L.; Oliva, J. Thinking in Rural Gap: Mobility and Social Inequalities. Palgrave Commun. 2019, 5, 95. [Google Scholar] [CrossRef]
- Estrada, F.; Botzen, W.J.W.; Tol, R.S.J. A Global Economic Assessment of City Policies to Reduce Climate Change Impacts. Nat. Clim. Chang. 2017, 7, 403–406. [Google Scholar] [CrossRef]
- Rohat, G.; Flacke, J.; Dosio, A.; Pedde, S.; Dao, H.; van Maarseveen, M. Influence of Changes in Socioeconomic and Climatic Conditions on Future Heat-Related Health Challenges in Europe. Glob. Planet Chang. 2019, 172, 45–59. [Google Scholar] [CrossRef]
- Smid, M.; Russo, S.; Costa, A.C.; Granell, C.; Pebesma, E. Ranking European Capitals by Exposure to Heat Waves and Cold Waves. Urb. Clim. 2019, 27, 388–402. [Google Scholar] [CrossRef]
- Marston, H.R.; van Hoof, J. “Who Doesn’t Think about Technology When Designing Urban Environments for Older People?” A Case Study Approach to a Proposed Extension of the WHO’s Age-Friendly Cities Model. Int. J. Environ. Res. Public Health 2019, 16, 3525. [Google Scholar] [CrossRef]
- Oke, T.R. The Energetic Basis of the Urban Heat Island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Song, B.-G.; Park, K.-H.; Kim, G.-A.; Kim, S.-H.; Park, G.-U.; Mun, H.-S. Analysis of Relationship between the Spatial Characteristics of the Elderly Population Distribution and Heat Wave Based on GIS—Focused on Changwon City. J. Korean Assoc. Geogr. Inf. Stud. 2020, 23, 68–84. [Google Scholar] [CrossRef]
- UN-Habitat. State of the World’s Cities 2010/2011: Bridging the Urban Divide; Earthscan: London, UK, 2010. [Google Scholar]
- Kazmierczak, A.; Bittner, S.; Breil, M.; Coninx, I.; Johnson, K.; Kleinenkuhnen, L.; Kochova, T.; Lauwaet, D.; Nielsen, H.O.; Smith, H.; et al. Urban Adaptation in Europe: How Cities and Towns Respond to Climate Change; European Environment Agency (EEA): Copenhagen, Denmark, 2020. [Google Scholar] [CrossRef]
- Chen, K.; Zhou, L.; Chen, X.; Ma, Z.; Liu, Y.; Huang, L.; Bi, J.; Kinney, P.L. Urbanization Level and Vulnerability to Heat-Related Mortality in Jiangsu Province, China. Environ. Health Perspect. 2016, 124, 1863–1869. [Google Scholar] [CrossRef]
- Krummenauer, L.; Prahl, B.F.; Costa, L.; Holsten, A.; Walther, C.; Kropp, J.P. Global Drivers of Minimum Mortality Temperatures in Cities. Sci. Total Environ. 2019, 695, 133560. [Google Scholar] [CrossRef]
- Evangelopoulos, D.; Analitis, A.; Giannakopoulos, C.; Katsouyanni, K. Does Climatic Zone of Birth Modify the Temperature-Mortality Association of London Inhabitants during the Warm Season? A Time-Series Analysis for 2004–2013. Environ. Res. 2021, 193, 110357. [Google Scholar] [CrossRef]
- Honda, Y.; Onozuka, D. Heat-Related Mortality/Morbidity in East Asia. In Extreme Weather Events and Human Health; Springer: Cham, Switzerland, 2020; pp. 131–144. [Google Scholar] [CrossRef]
- Díaz, J.; Jordán, A.; García, R.; López, C.; Alberdi, J.C.; Hernández, E.; Otero, A. Heat Waves in Madrid 1986-1997: Effects on the Health of the Elderly. Int. Arch. Occup. Environ. Health 2002, 75, 163–170. [Google Scholar] [CrossRef]
- Navas-Martín, M.Á.; López-Bueno, J.A.; Díaz, J.; Follos, F.; Vellón, J.M.; Mirón, I.J.; Luna, Y.; Sánchez-Martínez, G.; Culqui, D.; Linares, C. Effects of Local Factors on Adaptation to Heat in Spain (1983–2018). Environ. Res. 2022, 209, 112784. [Google Scholar] [CrossRef] [PubMed]
- Sharma, J.; Ravindranath, N.H. Applying IPCC 2014 Framework for Hazard-Specific Vulnerability Assessment under Climate Change. Environ. Res. Commun. 2019, 1, 051004. [Google Scholar] [CrossRef]
- Koppe, C.; Kovats, S.; Jendritzky, G.; Menne, B.; Baumüller, J.; Bitan, A.; Díaz Jiménez, J.; Ebi, K.L.; Havenith, G.; Santiago, L.; et al. Health and Global Environmental Change Heat-Waves: Risks and Responses; WHO: Geneva, Switzerland, 2004. [Google Scholar]
- IPCC. Annex I: Glossary. In Global Warming of 1.5 °C; Cambridge University Press: Cambridge, UK, 2022; pp. 541–562. [Google Scholar] [CrossRef]
- Füssel, H.M.; Klein, R.J.T. Climate Change Vulnerability Assessments: An Evolution of Conceptual Thinking. Clim. Chang. 2006, 75, 301–329. [Google Scholar] [CrossRef]
- Bunker, A.; Wildenhain, J.; Vandenbergh, A.; Henschke, N.; Rocklöv, J.; Hajat, S.; Sauerborn, R. Effects of Air Temperature on Climate-Sensitive Mortality and Morbidity Outcomes in the Elderly; a Systematic Review and Meta-Analysis of Epidemiological Evidence. EBioMedicine 2016, 6, 258–268. [Google Scholar] [CrossRef] [PubMed]
- Park, C.E.; Jeong, S.; Harrington, L.J.; Lee, M.I.; Zheng, C. Population Ageing Determines Changes in Heat Vulnerability to Future Warming. Environ. Res. Lett. 2020, 15, 114043. [Google Scholar] [CrossRef]
- Varquez, A.C.G.; Darmanto, N.S.; Honda, Y.; Ihara, T.; Kanda, M. Future Increase in Elderly Heat-Related Mortality of a Rapidly Growing Asian Megacity. Sci. Rep. 2020, 10, 9304. [Google Scholar] [CrossRef]
- López-Bueno, J.A.; Navas-Martín, M.A.; Díaz, J.; Mirón, I.J.; Luna, M.Y.; Sánchez-Martínez, G.; Culqui, D.; Linares, C. Analysis of Vulnerability to Heat in Rural and Urban Areas in Spain: What Factors Explain Heat’s Geographic Behavior? Environ. Res. 2022, 207, 112213. [Google Scholar] [CrossRef] [PubMed]
- López-Bueno, J.A.; Navas-Martín, M.A.; Linares, C.; Mirón, I.J.; Luna, M.Y.; Sánchez-Martínez, G.; Culqui, D.; Díaz, J. Analysis of the Impact of Heat Waves on Daily Mortality in Urban and Rural Areas in Madrid. Environ. Res. 2021, 195, 110892. [Google Scholar] [CrossRef] [PubMed]
- Navas-Martín, M.Á.; López-Bueno, J.A.; Ascaso-Sánchez, M.S.; Follos, F.; Vellón, J.M.; Mirón, I.J.; Luna, M.Y.; Sánchez-Martínez, G.; Linares, C.; Díaz, J. Heat Adaptation among the Elderly in Spain (1983–2018). Int. J. Environ. Res. Public Health 2023, 20, 1314. [Google Scholar] [CrossRef] [PubMed]
- Eurostat. Regional Yearbook. 2015. Available online: https://ec.europa.eu/eurostat/statistical-atlas/gis/viewer/?config=RYB-2015.json&mids=2,117,CNTOVL&o=1,1,0.7&ch=11,27,113,114¢er=40.52285,0.40096,4&lcis=117&i=117,43.10,-8.35& (accessed on 8 April 2021).
- Follos, F.; Linares, C.; López-Bueno, J.A.; Navas, M.A.; Culqui, D.; Vellón, J.M.; Luna, M.Y.; Sánchez-Martínez, G.; Díaz, J. Evolution of the Minimum Mortality Temperature (1983–2018): Is Spain Adapting to Heat? Sci. Total Environ. 2021, 784, 147233. [Google Scholar] [CrossRef] [PubMed]
- Follos, F.; Linares, C.; Vellón, J.M.; López-Bueno, J.A.; Luna, M.Y.; Sánchez-Martínez, G.; Díaz, J. The Evolution of Minimum Mortality Temperatures as an Indicator of Heat Adaptation: The Cases of Madrid and Seville (Spain). Sci. Total Environ. 2020, 747, 141259. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, A.C.; Lundgren, L. Vulnerability and Adaptation to Heat in Cities: Perspectives and Perceptions of Local Adaptation Decision-Makers in Sweden. Local Environ. 2015, 20, 442–458. [Google Scholar] [CrossRef]
- Turek-Hankins, L.L.; Coughlan de Perez, E.; Scarpa, G.; Ruiz-Diaz, R.; Schwerdtle, P.N.; Joe, E.T.; Galappaththi, E.K.; French, E.M.; Austin, S.E.; Singh, C.; et al. Climate Change Adaptation to Extreme Heat: A Global Systematic Review of Implemented Action. Oxf. Open Clim. Chang. 2021, 1, kgab005. [Google Scholar] [CrossRef]
- Hu, K.; Guo, Y.; Hochrainer-Stigler, S.; Liu, W.; See, L.; Yang, X.; Zhong, J.; Fei, F.; Chen, F.; Zhang, Y.; et al. Evidence for Urban–Rural Disparity in Temperature–Mortality Relationships in Zhejiang Province, China. Environ. Health Perspect. 2019, 127, 037001. [Google Scholar] [CrossRef]
- Krummenauer, L.; Costa, L.; Prahl, B.F.; Kropp, J.P. Future Heat Adaptation and Exposure among Urban Populations and Why a Prospering Economy Alone Won’t Save Us. Sci. Rep. 2021, 11, 20309. [Google Scholar] [CrossRef] [PubMed]
- Demoury, C.; Aerts, R.; Vandeninden, B.; Van Schaeybroeck, B.; De Clercq, E.M. Impact of Short-Term Exposure to Extreme Temperatures on Mortality: A Multi-City Study in Belgium. Int. J. Environ. Res. Public Health 2022, 19, 3763. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Xu, Z.; Bambrick, H.; Su, H.; Tong, S.; Hu, W. Impacts of Heat, Cold, and Temperature Variability on Mortality in Australia, 2000–2009. Sci. Total Environ. 2019, 651, 2558–2565. [Google Scholar] [CrossRef]
- Barcelo, A.R.; Fecht, D.; Pirani, M.; Piel, F.B.; Nardocci, A.C.; Vineis, P. The Effects of Temperature on Mortality: Trends Over 19-Years in São Paulo, Brazil. SSRN Electron. J. 2022. [Google Scholar] [CrossRef]
- Bakhsh, K.; Rauf, S.; Zulfiqar, F. Adaptation Strategies for Minimizing Heat Wave Induced Morbidity and Its Determinants. Sustain. Cities Soc. 2018, 41, 95–103. [Google Scholar] [CrossRef]
- Silva, V.d.L.; Cesse, E.Â.P.; Albuquerque, M.d.F.P.M.d. Social Determinants of Death among the Elderly: A Systematic Literature Review. Rev. Bras. Epidemiol. 2014, 17, 178–193. [Google Scholar] [CrossRef] [PubMed]
- Morgenstern, H. Ecologic Studies in Epidemiology: Concepts, Principles, and Methods. Annu. Rev. Public Health 1995, 16, 61–81. [Google Scholar] [CrossRef] [PubMed]
- Madrigano, J.; McCormick, S.; Kinney, P.L. The Two Ways of Assessing Heat-Related Mortality and Vulnerability. Am. J. Public Health 2015, 105, 2212. [Google Scholar] [CrossRef]
- Pyrgou, A.; Santamouris, M. Probability Risk of Heat- and Cold-Related Mortality to Temperature, Gender, and Age Using GAM Regression Analysis. Climate 2020, 8, 40. [Google Scholar] [CrossRef]
- Oudin Åström, D.; Ebi, K.L.; Vicedo-Cabrera, A.M.; Gasparrini, A. Investigating Changes in Mortality Attributable to Heat and Cold in Stockholm, Sweden. Int. J. Biometeorol. 2018, 62, 1777–1780. [Google Scholar] [CrossRef] [PubMed]
Province | MMT Mean | TMAX Mean (°C) | TMAX Rise (°C/Decade) | MMT Variation (°C/Decade) | Adaptation Level (MMT Variation-Tax Rise) |
---|---|---|---|---|---|
Arabia | 28.2 | 17.4 | 0.459 | −0.299 | −0.758 |
Alicante | 30.2 | 23.5 | 0.190 | 0.817 | 0.627 * |
Barcelona | 26.9 | 20.6 | 0.414 | 0.483 | 0.069 * |
Cadiz | 28.2 | 21.7 | 0.287 | −0.230 | −0.517 |
Gipuzkoa | 26.3 | 16.6 | 0.244 | 0.328 | 0.084 |
Madrid | 29.2 | 20.2 | 0.394 | 0.816 | 0.422 * |
Malaga | 31.5 | 23.5 | 0.320 | 0.327 | 0.007 |
Murcia | 30.3 | 22.4 | 0.172 | 1.510 | 1.338 * |
Palmas, Las | 29.4 | 24.3 | 0.128 | −0.495 | −0.623 |
S.C. Tenerife | 30.1 | 24.7 | 0.225 | −0.342 | −0.567 |
Seville | 34.0 | 25.6 | 0.310 | 1.425 | 1.115 * |
Valencia | 31.0 | 22.9 | 0.313 | 0.359 | 0.046 |
Bizkaia (Biscay) | 29.1 | 19.7 | 0.062 | 0.210 | 0.148 |
Zaragoza | 30.0 | 21.3 | 0.472 | 0.377 | −0.095 |
(Spain) | 29.6 | 21.74 | 0.29 | 0.38 | 0.09 |
Province | MMT Mean | TMAX Mean (°C) | TMAX Rise (°C/Decade) | MMT Variation (°C/Decade) | Adaptation Level (MMT Variation-Tmax Rise) |
---|---|---|---|---|---|
Albacete | 30.4 | 21 | 0.509 | 0.337 | −0.172 |
Almería | 31.3 | 23.4 | −0.070 | 0.531 | 0.601 |
Avila | 23.1 | 17.2 | 0.394 | −0.737 | −1.131 |
Badajoz | 32.8 | 24 | 0.286 | 0.490 | 0.204 |
Balearic Isles | 28.6 | 22 | 0.330 | 1.449 | 1.119 * |
Burgos | 27.4 | 16.8 | 0.372 | 1.611 | 1.239 |
Cáceres | 29.7 | 22.1 | 0.336 | 0.623 | 0.287 |
Castellón | 29.9 | 22.5 | 0.370 | 0.757 | 0.387 |
Ciudad Real | 29.5 | 22 | 0.267 | 0.341 | 0.074 |
Cordoba | 34.3 | 25.4 | 0.332 | 1.887 | 1.555 * |
Corunna | 24.7 | 18 | 0.351 | 0.832 | 0.481 |
Cuenca | 26.1 | 19.6 | 0.617 | −0.245 | −0.862 |
Girona | 29.5 | 21.1 | 0.656 | 0.980 | 0.324 |
Granada | 31.7 | 22.6 | 0.416 | 1.018 | 0.602 * |
Guadalajara | 26.4 | 20.5 | 0.367 | −1.054 | −1.421 |
Huelva | 30.4 | 24.1 | 0.322 | 0.916 | 0.594 |
Huesca | 27.8 | 19.8 | 0.489 | 0.442 | −0.047 |
Jaén | 30.2 | 21.8 | 0.516 | 1.299 | 0.783 * |
León | 26.4 | 16.9 | 0.243 | 0.516 | 0.273 |
Lleida | 30.3 | 21.7 | 0.264 | 0.499 | 0.235 |
Rioja, La | 27.5 | 19.8 | 0.416 | 0.091 | −0.325 |
Lugo | 27.9 | 17.8 | 0.189 | 1.060 | 0.871 |
Navarre | 27.2 | 18.6 | 0.442 | −0.344 | −0.786 |
Ourense | 31.4 | 21.6 | 0.457 | 0.973 | 0.516 |
Asturias | 25.3 | 17.5 | 0.184 | −0.047 | −0.231 |
Palencia | 24.0 | 16.8 | 0.286 | 1.953 | 1.667 |
Pontevedra | 26.4 | 19.1 | 0.099 | 0.455 | 0.356 |
Salamanca | 27.4 | 19 | 0.613 | −0.442 | −1.055 |
Cantabria | 26.6 | 18.7 | 0.277 | −0.175 | −0.452 |
Segovia | 23.8 | 18.1 | 0.298 | −0.450 | −0.748 |
Soria | 24.3 | 17.3 | 0.280 | 0.035 | −0.245 |
Tarragona | 28.8 | 21.3 | 0.380 | 0.484 | 0.104 |
Teruel | 23.8 | 19.9 | 0.420 | −0.122 * | −0.542 |
Toledo | 30.2 | 22.4 | 0.412 | 1.197 | 0.785 * |
Valladolid | 26.5 | 17.8 | 0.186 | 0.225 * | 0.039 |
Zamora | 25.9 | 19.2 | 0.491 | −0.194 | −0.685 |
(Spain) | 28 | 20.21 | 0.36 | 0.48 | 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navas-Martín, M.Á.; López-Bueno, J.A.; Ascaso-Sánchez, M.S.; Follos, F.; Vellón, J.M.; Mirón, I.J.; Luna, M.Y.; Sánchez-Martínez, G.; Díaz, J.; Linares, C. Territory Differences in Adaptation to Heat among Persons Aged 65 Years and Over in Spain (1983–2018). Int. J. Environ. Res. Public Health 2023, 20, 4168. https://doi.org/10.3390/ijerph20054168
Navas-Martín MÁ, López-Bueno JA, Ascaso-Sánchez MS, Follos F, Vellón JM, Mirón IJ, Luna MY, Sánchez-Martínez G, Díaz J, Linares C. Territory Differences in Adaptation to Heat among Persons Aged 65 Years and Over in Spain (1983–2018). International Journal of Environmental Research and Public Health. 2023; 20(5):4168. https://doi.org/10.3390/ijerph20054168
Chicago/Turabian StyleNavas-Martín, Miguel Ángel, José Antonio López-Bueno, María Soledad Ascaso-Sánchez, Fernando Follos, José Manuel Vellón, Isidro Juan Mirón, María Yolanda Luna, Gerardo Sánchez-Martínez, Julio Díaz, and Cristina Linares. 2023. "Territory Differences in Adaptation to Heat among Persons Aged 65 Years and Over in Spain (1983–2018)" International Journal of Environmental Research and Public Health 20, no. 5: 4168. https://doi.org/10.3390/ijerph20054168
APA StyleNavas-Martín, M. Á., López-Bueno, J. A., Ascaso-Sánchez, M. S., Follos, F., Vellón, J. M., Mirón, I. J., Luna, M. Y., Sánchez-Martínez, G., Díaz, J., & Linares, C. (2023). Territory Differences in Adaptation to Heat among Persons Aged 65 Years and Over in Spain (1983–2018). International Journal of Environmental Research and Public Health, 20(5), 4168. https://doi.org/10.3390/ijerph20054168