Sibling Resemblance in Physical Activity Levels: The Peruvian Sibling Study on Growth and Health
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Participants
2.2. Measurements and Tests
2.2.1. Anthropometry
2.2.2. Physical Activity
2.2.3. Shared Environment Characteristics (Natural Environment)
2.3. Data Quality Control
2.4. Statistical Procedures
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- van Sluijs, E.M.F.; Ekelund, U.; Crochemore-Silva, I.; Guthold, R.; Ha, A.; Lubans, D.; Oyeyemi, A.L.; Ding, D.; Katzmarzyk, P.T. Physical activity behaviours in adolescence: Current evidence and opportunities for intervention. Lancet 2021, 398, 429–442. [Google Scholar] [CrossRef]
- Kallio, P.; Pahkala, K.; Heinonen, O.J.; Tammelin, T.H.; Pälve, K.; Hirvensalo, M.; Juonala, M.; Loo, B.-M.; Magnussen, C.G.; Rovio, S.; et al. Physical inactivity from youth to adulthood and adult cardiometabolic risk profile. Prev. Med. 2021, 145, 106433. [Google Scholar] [CrossRef]
- Hills, A.P.; Andersen, L.B.; Byrne, N. Physical activity and obesity in children. Br. J. Sports Med. 2011, 45, 866–870. [Google Scholar] [CrossRef] [Green Version]
- Wahid, A.; Manek, N.; Nichols, M.; Kelly, P.; Foster, C.; Webster, P.; Kaur, A.; Smith, C.F.; Wilkins, E.; Rayner, M.; et al. Quantifying the Association Between Physical Activity and Cardiovascular Disease and Diabetes: A Systematic Review and Meta-Analysis. J. Am. Heart Assoc. 2016, 5, e002495. [Google Scholar] [CrossRef] [Green Version]
- Donnelly, J.E.; Hillman, C.H.; Castelli, D.; Etnier, J.L.; Lee, S.; Tomporowski, P.; Lambourne, K.; Szabo-Reed, A.N. Physical Activity, Fitness, Cognitive Function, and Academic Achievement in Children. Med. Sci. Sports Exerc. 2016, 48, 1197–1222. [Google Scholar] [CrossRef] [Green Version]
- Reilly, J.J.; Barnes, J.; Gonzalez, S.; Huang, W.Y.; Manyanga, T.; Tanaka, C.; Tremblay, M.S. Recent Secular Trends in Child and Adolescent Physical Activity and Sedentary Behavior Internationally: Analyses of Active Healthy Kids Global Alliance Global Matrices 1.0 to 4.0. J. Phys. Act. Health 2022, 19, 729–736. [Google Scholar] [CrossRef]
- Aubert, S.; Barnes, J.D.; Demchenko, I.; Hawthorne, M.; Abdeta, C.; Abi Nader, P.; Adsuar Sala, J.C.; Aguilar-Farias, N.; Aznar, S.; Bakalár, P.; et al. Global Matrix 4.0 Physical Activity Report Card Grades for Children and Adolescents: Results and Analyses From 57 Countries. J. Phys. Act. Health 2022, 19, 700–728. [Google Scholar] [CrossRef]
- Marques, A.; Henriques-Neto, D.; Peralta, M.; Martins, J.; Demetriou, Y.; Schönbach, D.M.I.; de Matos, M.G. Prevalence of Physical Activity among Adolescents from 105 Low, Middle, and High-Income Countries. Int. J. Environ. Res. Public Health 2020, 17, 3145. [Google Scholar] [CrossRef]
- Guthold, R.; Stevens, G.A.; Riley, L.M.; Bull, F.C. Global trends in insufficient physical activity among adolescents: A pooled analysis of 298 population-based surveys with 1·6 million participants. Lancet Child Adolesc. Health 2020, 4, 23–35. [Google Scholar] [CrossRef]
- Lightfoot, J.T.; de Geus, E.; Booth, F.W.; Bray, M.S.; Hoed, M.D.; Kaprio, J.; Kelly, S.A.; Pomp, D.; Saul, M.; Thomis, M.; et al. Biological/Genetic Regulation of Physical Activity Level. Med. Sci. Sports Exerc. 2018, 50, 863–873. [Google Scholar] [CrossRef]
- Lin, X.; Eaton, C.B.; Manson, J.E.; Liu, S. The Genetics of Physical Activity. Curr. Cardiol. Rep. 2017, 19, 119. [Google Scholar] [CrossRef]
- Santos, D.M.D.V.E.; Katzmarzyk, P.T.; Seabra, A.F.T.; Maia, J.A.R. Genetics of Physical Activity and Physical Inactivity in Humans. Behav. Genet. 2012, 42, 559–578. [Google Scholar] [CrossRef]
- Li, L.; Moosbrugger, M.E. Correlations between Physical Activity Participation and the Environment in Children and Adolescents: A Systematic Review and Meta-Analysis Using Ecological Frameworks. Int. J. Environ. Res. Public Health 2021, 18, 9080. [Google Scholar] [CrossRef]
- Weinberg, D.; Stevens, G.W.J.M.; Bucksch, J.; Inchley, J.; De Looze, M. Do country-level environmental factors explain cross-national variation in adolescent physical activity? A multilevel study in 29 European countries. BMC Public Health 2019, 19, 680. [Google Scholar] [CrossRef]
- Rhodes, R.E.; Guerrero, M.D.; Vanderloo, L.M.; Barbeau, K.; Birken, C.S.; Chaput, J.-P.; Faulkner, G.; Janssen, I.; Madigan, S.; Mâsse, L.; et al. Development of a consensus statement on the role of the family in the physical activity, sedentary, and sleep behaviours of children and youth. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 74. [Google Scholar] [CrossRef]
- Kracht, C.L.; Sisson, S.B. Sibling influence on children’s objectively measured physical activity: A meta-analysis and systematic review. BMJ Open Sport Exerc. Med. 2018, 4, e000405. [Google Scholar] [CrossRef] [Green Version]
- Blazo, J.A.; Smith, A.L. A systematic review of siblings and physical activity experiences. Int. Rev. Sport Exerc. Psychol. 2018, 11, 122–159. [Google Scholar] [CrossRef]
- Pereira, S.; Santos, C.; Katzmarzyk, P.T.; Maia, J. Familial Resemblance in Body Shape and Composition, Metabolic Syndrome, Physical Activity and Physical Fitness: A Summary of Research in Portuguese Families and Siblings. Twin Res. Hum. Genet. 2019, 22, 651–659. [Google Scholar] [CrossRef]
- Frisell, T.; Öberg, S.; Kuja-Halkola, R.; Sjölander, A. Sibling Comparison Designs. Epidemiology 2012, 23, 713–720. [Google Scholar] [CrossRef] [Green Version]
- Keyes, K.M.; Smith, G.D.; Susser, E. On Sibling Designs. Epidemiology 2013, 24, 473–474. [Google Scholar] [CrossRef] [Green Version]
- Santos, C.; Bustamante, A.; Vasconcelos, O.; Pereira, S.; Garganta, R.; Lightfoot, J.T.; Tani, G.; Hedeker, D.; Katzmarzyk, P.T.; Maia, J. Sibling Resemblances in Physical Fitness in Three Distinct Regions in Peru: The Peruvian Sibling Study on Growth and Health. Behav. Genet. 2022, 52, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Abdellaoui, A.; Dolan, C.V.; Verweij, K.J.H.; Nivard, M.G. Gene–environment correlations across geographic regions affect genome-wide association studies. Nat. Genet. 2022, 54, 1345–1354. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Oh, S.; Min, H.; Kim, Y.; Park, T. Practical issues in genome-wide association studies for physical activity. Ann. N. Y. Acad. Sci. 2011, 1229, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Lightfoot, J.T. Current Understanding of the Genetic Basis for Physical Activity. J. Nutr. 2011, 141, 526–530. [Google Scholar] [CrossRef] [Green Version]
- de Geus, E.J. Genetic Pathways Underlying Individual Differences in Regular Physical Activity. Exerc. Sport Sci. Rev. 2023, 51, 2–18. [Google Scholar] [CrossRef]
- Pereira, S.; Katzmarzyk, P.T.; Gomes, T.N.; Souza, M.; Chaves, R.N.; Santos, F.K.; Santos, D.; Bustamante, A.; Barreira, T.; Hedeker, D.; et al. Resemblance in physical activity levels: The Portuguese sibling study on growth, fitness, lifestyle, and health. Am. J. Hum. Biol. 2018, 30, e23061. [Google Scholar] [CrossRef] [Green Version]
- Jacobi, D.; Caille, A.; Borys, J.-M.; Lommez, A.; Couet, C.; Charles, M.A.; Oppert, J.-M. FLVS Study Group Parent-Offspring Correlations in Pedometer-Assessed Physical Activity. PLoS ONE 2011, 6, e29195. [Google Scholar] [CrossRef] [Green Version]
- Wild, C.P. Complementing the Genome with an “Exposome”: The Outstanding Challenge of Environmental Exposure Measurement in Molecular Epidemiology. Cancer Epidemiol. Biomark. Prev. 2005, 14, 1847–1850. [Google Scholar] [CrossRef] [Green Version]
- Gallup, J.L.; Gaviria, A.; Lora, E. Is Geography Destiny? Lessons from Latin America; Stanford University Press: Redwood City, CA, USA, 2003. [Google Scholar]
- Hedeker, D.; Mermelstein, R.J.; Demirtas, H. Modeling between-subject and within-subject variances in ecological momentary assessment data using mixed-effects location scale models. Stat. Med. 2012, 31, 3328–3336. [Google Scholar] [CrossRef] [Green Version]
- Bustamante, A.; Beunen, G.; Maia, J. Como Crecen y se Desarrollan los Niños y Adolescentes en La Merced y San Ramón. Al-cances para la Educación Física, el Deporte y la Salud; Universidad Nacional de Educación Enrique Guzmán y Valle, La Cantuta: Lima, Perú, 2011; p. 174. [Google Scholar]
- Lohman, T.G.; Roche, A.F.; Martorell, R. Anthropometric Standardization Reference Manual; Human Kinetics Books: Champaign, IL, USA, 1988; Volume 177. [Google Scholar]
- Clemes, S.A.; Biddle, S.J. The Use of Pedometers for Monitoring Physical Activity in Children and Adolescents: Measurement Considerations. J. Phys. Act. Health 2013, 10, 249–262. [Google Scholar] [CrossRef] [Green Version]
- Lubans, D.R.; Morgan, P.; Tudor-Locke, C. A systematic review of studies using pedometers to promote physical activity among youth. Prev. Med. 2009, 48, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Beets, M.W.; Bornstein, D.; Beighle, A.; Cardinal, B.J.; Morgan, C.F. Pedometer-Measured Physical Activity Patterns of Youth: A 13-Country Review. Am. J. Prev. Med. 2010, 38, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Tudor-Locke, C.; Williams, J.E.; Reis, J.P.; Pluto, D. Utility of Pedometers for Assessing Physical Activity. Sports Med. 2004, 34, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Omron Instruction Manual Go Smart Tri-Axis Pocket Pedometer Model HJ-303. Available online: https://omronhealthcare.com/ (accessed on 15 December 2022).
- Hox, J.J.; Moerbeek, M.; Van de Schoot, R. Multilevel Analysis: Techniques and Applications; Routledge: New York, USA, 2018. [Google Scholar]
- Snijders, T.A.B.; Bosker, R.J. Multilevel Analysis: An Introduction to Basic and Advanced Multilevel Modeling, 2nd ed.; Sage Publishers: London, UK, 2012. [Google Scholar]
- Maia, J.; Gomes, T.N.; Trégouët, D.-A.; Katzmarzyk, P.T. Familial resemblance of physical activity levels in the Portuguese population. J. Sci. Med. Sport 2014, 17, 381–386. [Google Scholar] [CrossRef]
- de Geus, E.J.; Bartels, M.; Kaprio, J.; Lightfoot, J.T.; Thomis, M. Genetics of Regular Exercise and Sedentary Behaviors. Twin Res. Hum. Genet. 2014, 17, 262–271. [Google Scholar] [CrossRef] [Green Version]
- Doherty, A.; Smith-Byrne, K.; Ferreira, T.; Holmes, M.V.; Holmes, C.; Pulit, S.L.; Lindgren, C.M. GWAS identifies 14 loci for device-measured physical activity and sleep duration. Nat. Commun. 2018, 9, 5257. [Google Scholar] [CrossRef] [Green Version]
- Klimentidis, Y.C.; Raichlen, D.A.; Bea, J.; Garcia, D.O.; Wineinger, N.E.; Mandarino, L.J.; Alexander, G.E.; Chen, Z.; Going, S.B. Genome-wide association study of habitual physical activity in over 377,000 UK Biobank participants identifies multiple variants including CADM2 and APOE. Int. J. Obes. 2018, 42, 1161–1176. [Google Scholar] [CrossRef] [Green Version]
- Tudor-Locke, C.; Craig, C.L.; Beets, M.W.; Belton, S.; Cardon, G.M.; Duncan, S.; Hatano, Y.; Lubans, D.R.; Olds, T.S.; Raustorp, A.; et al. How many steps/day are enough? for children and adolescents. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 78. [Google Scholar] [CrossRef] [Green Version]
- Corder, K.; Sharp, S.J.; Atkin, A.J.; Andersen, L.B.; Cardon, G.; Page, A.; Davey, R.; Grøntved, A.; Hallal, P.C.; Janz, K.F.; et al. Age-related patterns of vigorous-intensity physical activity in youth: The International Children’s Accelerometry Database. Prev. Med. Rep. 2016, 4, 17–22. [Google Scholar] [CrossRef] [Green Version]
- Duncan, J.S.; Schofield, G.; Duncan, E.K. Pedometer-Determined Physical Activity and Body Composition in New Zealand Children. Med. Sci. Sports Exerc. 2006, 38, 1402–1409. [Google Scholar] [CrossRef]
- Alvis-Chirinos, K.; Huamán-Espino, L.; Pillaca, J.; Aparco, J.P. Measurement of physical activity by triaxial accelerometers in schoolchildren from three peruvian cities. Rev. Peru. Med. Exp. Salud Publica 2017, 34, 28–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sea-Level (S) (n = 66) | Amazon Region (A) (n = 80) | High-Altitude (H) (n = 101) | F | Post Hoc among Regions | ||
---|---|---|---|---|---|---|
Mean ± SD | ||||||
Age (years) | 10.4 ± 2.9 | 10.6 ± 3.1 | 10.5 ± 2.9 | 0.039 ns | ||
Anthropometry | ||||||
Height (cm) | 138.2 ± 14.8 | 135.8 ± 15.0 | 134.0 ± 15.6 | 1.51 ns | ||
Weight (kg) | 35.4 ± 12.8 | 37.1 ± 12.6 | 31.5 ± 10.5 | 5.55 * | A > H | |
BMI (kg/m2) | 18.0 ± 3.9 | 19.6 ± 3.9 | 17.0 ± 2.3 | 13.55 * | A > S; A > H | |
Physical activity | ||||||
Total number of steps∙day−1 | 8.155 ± 2878 | 11.170 ± 3931 | 11.695 ± 3621 | 21.52 * | S < A; S < H | |
Log transformed minutes for moderate steps (min∙day−1) | 0.82 ± 0.45 | 0.61 ± 0.48 | 0.67 ± 0.49 | 3.53 * | A < S |
BB (95%CI) | SS (95%CI) | BS (95%CI) | Log Likelihood (LL) | Δ LL(χ2) ¥ | p-Value | ||
---|---|---|---|---|---|---|---|
Physical activity | |||||||
Total number of steps∙day−1 | Null model: equal ρ | 0.44 (0.31–0.58) | 0.44 (0.31–0.58) | 0.44 (0.31–0.58) | −2352.09 | ||
Model 1 (without covariates and different ρ) | 0.58 (0.26–0.84) | 0.58 (0.36–0.77) | 0.38 (0.22–0.57) | −2347.73 | 4.36 (8.72) | 0.06 | |
Model 2 (individual characteristics) | 0.46 (0.34–0.60) | 0.46 (0.34–0.60) | 0.46 (0.34–0.60) | −2343.21 | 8.88 (17.76) | <0.001 | |
Model 3 (geographical area of residence) | 0.42 (0.29–0.56) | 0.42 (0.29–0.56) | 0.42 (0.29–0.56) | −2337.39 | 5.82 (11.64) | <0.001 | |
Minutes for moderate steps (min∙day−1) (log transformed) | Null model: equal ρ | 0.35 (0.22–0.51) | 0.35 (0.22–0.51 | 0.35 (0.22–0.51 | −158.91 | ||
Model 1 (without covariates and different ρ) | 0.41 (0.11–0.80) | 0.22 (0.05–0.61) | 0.40 (0.23–0.59) | −158.15 | 0.76 (1.52) | 0.82 | |
Model 2 (individual characteristics) | 0.34 (0.21–0.50) | 0.34 (0.21–0.50) | 0.34 (0.21–0.50) | −157.54 | 1.37 (2.75) | 0.43 |
Full Model (Model 3) | |
---|---|
Fixed effects | Estimate ± SE |
Intercept (BB) | 11158.63 ± 1001.06 * |
SS | −2908.75 ± 954.31 * |
BS | −1393.79 ± 806.13 ns |
Age | 63.56 ± 72.47 ns |
Age2 | −81.26 ± 19.83 * |
BMI | −115.43 ± 66.10 ns |
High-altitude | 2508.92 ± 737.94 * |
Amazon region | 2213.11 ± 776.63 * |
Variance components (σ2) | σ2 ± SE |
Between siblings (σ2B) | |
All sibtypes | 4638044 ± 1061023 |
Within siblings (σ2w) | |
All sibtypes | 6306225 ± 758801.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, C.; Maia, J.; Pereira, S.; Vasconcelos, O.; Garganta, R.; Lightfoot, J.T.; Tani, G.; Hedeker, D.; Katzmarzyk, P.T.; Bustamante, A. Sibling Resemblance in Physical Activity Levels: The Peruvian Sibling Study on Growth and Health. Int. J. Environ. Res. Public Health 2023, 20, 4210. https://doi.org/10.3390/ijerph20054210
Santos C, Maia J, Pereira S, Vasconcelos O, Garganta R, Lightfoot JT, Tani G, Hedeker D, Katzmarzyk PT, Bustamante A. Sibling Resemblance in Physical Activity Levels: The Peruvian Sibling Study on Growth and Health. International Journal of Environmental Research and Public Health. 2023; 20(5):4210. https://doi.org/10.3390/ijerph20054210
Chicago/Turabian StyleSantos, Carla, José Maia, Sara Pereira, Olga Vasconcelos, Rui Garganta, J. Timothy Lightfoot, Go Tani, Donald Hedeker, Peter T. Katzmarzyk, and Alcibíades Bustamante. 2023. "Sibling Resemblance in Physical Activity Levels: The Peruvian Sibling Study on Growth and Health" International Journal of Environmental Research and Public Health 20, no. 5: 4210. https://doi.org/10.3390/ijerph20054210
APA StyleSantos, C., Maia, J., Pereira, S., Vasconcelos, O., Garganta, R., Lightfoot, J. T., Tani, G., Hedeker, D., Katzmarzyk, P. T., & Bustamante, A. (2023). Sibling Resemblance in Physical Activity Levels: The Peruvian Sibling Study on Growth and Health. International Journal of Environmental Research and Public Health, 20(5), 4210. https://doi.org/10.3390/ijerph20054210