Calculation and Allocation of Atmospheric Environment Governance Cost in the Yangtze River Economic Belt of China
Abstract
:1. Introduction
- (1)
- Considering the possible technological retrogression of each DMU, a sequential SBM-DEA efficiency measurement model is constructed, and the shadow price of each atmospheric environmental factor is calculated using duality theory. At the same time, the emission reduction potential of each factor is calculated based on environmental efficiency, and then the total cost of atmospheric environmental governance is calculated.
- (2)
- By combining the modified Shapley value model and the FCA-DEA model, an allocation model system of atmospheric environmental governance costs is established, which takes into account fairness and efficiency.
- (3)
- The above models are applied to calculate and allocate the atmospheric environment governance cost of the Yangtze River Economic Belt in 2025. The example verifies the feasibility of the model system and also provides decision support for the coordinated governance of the atmospheric environment in the Yangtze River Economic Belt.
2. Materials and Methods
2.1. Method
2.1.1. Efficiency Measure Model Based on Sequential SBM-Undesirable
2.1.2. Calculation Model of Environmental Governance Cost Based on Shadow Price
2.1.3. Equitable Allocation of Regional Atmospheric Environment Governance Cost
2.1.4. Allocation Model and Solution of Regional Atmospheric Environment Governance Cost Based on Modified FCA-DEA Model
2.2. Data Sources and Processing
- (1)
- Data from 2013 to 2020
- (2)
- Data from 2021 to 2025
3. Results
3.1. Atmospheric Environmental Governance Cost in Yangtze River Economic Belt
3.1.1. The Shadow Price of CO2 Emissions
3.1.2. The Shadow Price of NOX Emissions
3.1.3. The Shadow Price of PM2.5 Emissions
3.1.4. Emission Reduction Potential and Total Governance Cost of Atmospheric Environment in 2025
3.2. Allocation of Atmospheric Environment Governance Cost in the Yangtze River Economic Belt
3.2.1. Equitable Allocation of Atmospheric Environment Governance Cost
3.2.2. Allocation of Atmospheric Environment Governance Cost Based on Modified FCA-DEA Model
3.3. Fairness Test of Allocation Scheme Based on the Modified FCA-DEA Model
4. Conclusions
- (1)
- From 2013 to 2025, the shadow prices of CO2, NOX and PM2.5 emissions in each province of the Yangtze River Economic Belt show an upward trend, indicating increasing pressure for future emission reduction. The average shadow prices of CO2, NOX and PM2.5 emissions in the Yangtze River Economic Belt are CNY 1432.65/ton, CNY 146.50 ten thousand/ton and CNY 3529.76 billion/(μg/m3), respectively. Zhejiang and Guizhou have the highest and lowest average shadow price of CO2 emissions, with CNY 2596.47/ton and CNY 748.63/ton, respectively. Shanghai and Sichuan have the highest and lowest average shadow price of NOX emissions, with CNY 313.64 ten thousand/tonand 27.97 ten thousand/ton, respectively. Sichuan and Guizhou have the highest and lowest average shadow price of PM2.5 emissions, with CNY 17,296.39.
- (2)
- The average environmental efficiency of 11 provinces in 2025 is 0.68. The environmental efficiency values of Shanghai, Jiangsu, Zhejiang and Sichuan are all 1, and these provinces have no potential to reduce emissions. Guizhou has the largest CO2 and NOX emission reduction potential, with 63.12% and 70.57%, respectively. Chongqing has the largest PM2.5 emission reduction potential of 34.31%. The total atmospheric environment governance cost in the Yangtze River Economic Belt will be CNY 3856.666 billion in 2025, accounting for 6.1% of GDP of the entire economic belt. Among the 11 provinces, Anhui has the highest emission reduction cost, accounting for 17.26% of the province’s GDP.
- (3)
- Based on the modified FCAM-DEA model, Jiangsu, Zhejiang and Sichuan will share a relatively large amount of governance costs in 2025, accounting for 21.24%, 13.36% and 10.29% of the total governance cost, respectively. Guizhou, Chongqing, Yunnan and Jiangxi will share fewer governance costs. The Gini coefficient of this cost allocation scheme is only 0.1933. The allocation scheme under the modified FCAM-DEA model achieves fairness as well as efficiency.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Bureau of Statistics of China. 2022 China Statistical Yearbook; China Statistics Press: Beijing, China, 2021. [Google Scholar]
- Zhou, K.; Yang, J.; Yang, T.; Ding, T. Spatial and temporal evolution characteristics and spillover effects of China’s regional carbon emissions. J. Environ. Manag. 2023, 325, 116423. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Xu, L. How does China’s air pollution influence its labor wage distortions? Theoretical and empirical analysis from the perspective of spatial spillover effects. Sci. Total. Environ. 2020, 745, 140843. [Google Scholar] [CrossRef]
- Lv, T.; Hu, H.; Zhang, X.; Xie, H.; Wang, L.; Fu, S. Spatial spillover effects of urbanization on carbon emissions in the Yangtze River Delta urban agglomeration, China. Environ. Sci. Pollut. Res. 2022, 29, 33920–33934. [Google Scholar] [CrossRef]
- Yang, J.; Dong, X.; Zhang, Z. Atmospheric environmental treatment cost accounting andanalysis of total amount and structure. Environ. Pollut. Control 2014, 36, 100–105. [Google Scholar]
- Su, W.; Liu, Y.; Wang, S.; Zhao, Y.; Su, Y.; Li, S. Regional inequality, spatial spillover effects, and the factors influencing city-level energy-related carbon emissions in China. J. Geogr. Sci. 2018, 28, 495–513. [Google Scholar] [CrossRef] [Green Version]
- Sun, R.; Yu, Z.; Wu, J.; Xu, H. Virtual control cost accounting for regional air pollution and the spatial difference analysis. J. Arid. Environ. 2018, 32, 56–61. [Google Scholar]
- Färe, R.; Grosskopf, S.; Noh, D.-W.; Weber, W. Characteristics of a polluting technology: Theory and practice. J. Econom. 2005, 126, 469–492. [Google Scholar] [CrossRef]
- Matsushita, K.; Yamane, F. Pollution from the electric power sector in Japan and efficient pollution reduction. Energy Econ. 2012, 34, 1124–1130. [Google Scholar] [CrossRef]
- Molinos-Senante, M.; Hanley, N.; Sala-Garrido, R. Measuring the CO2 shadow price for wastewater treatment: A directional distance function approach. Appl. Energy 2015, 144, 241–249. [Google Scholar] [CrossRef]
- Boussemart, J.-P.; Leleu, H.; Shen, Z. Worldwide carbon shadow prices during 1990–2011. Energy Policy 2017, 109, 288–296. [Google Scholar] [CrossRef] [Green Version]
- Sala-Garrido, R.; Mocholi-Arce, M.; Molinos-Senante, M.; Maziotis, A. Marginal abatement cost of carbon dioxide emissions in the provision of urban drinking water. Sustain. Prod. Consum. 2021, 25, 439–449. [Google Scholar] [CrossRef]
- Wei, C.; LoSchel, A.; Liu, B. An empirical analysis of the CO2 shadow price in Chinese thermal power enterprises. Energy Econ. 2013, 40, 22–31. [Google Scholar] [CrossRef]
- Du, L.; Hanley, A.; Wei, C. Estimating the Marginal Abatement Costs of Carbon Dioxide Emissions in China: A Parametric Analysis; Kiel Working Paper, No. 1883; Kiel Institute for the World Economy (IfW): Kiel, Germany, 2015. [Google Scholar]
- Wei, X.; Zhang, N. The shadow prices of CO2 and SO2 for Chinese Coal-fired Power Plants: A partial frontier approach. Energy Econ. 2020, 85, 104576. [Google Scholar] [CrossRef]
- Nakaishi, T. Developing effective CO2 and SO2 mitigation strategy based on marginal abatement costs of coal-fired power plants in China. Appl. Energy 2021, 294, 116978. [Google Scholar] [CrossRef]
- Wang, K.; Che, L.; Ma, C.; Wei, Y.-M. The shadow price of CO2 emissions in China’s iron and steel industry. Sci. Total. Environ. 2017, 598, 272–281. [Google Scholar] [CrossRef]
- He, W.; Wang, B.; Wang, Z. Will regional economic integration influence carbon dioxide marginal abatement costs? Evidence from Chinese panel data. Energy Econ. 2018, 74, 263–274. [Google Scholar] [CrossRef]
- Cheng, S.; Lu, K.; Liu, W.; Xiao, D. Efficiency and marginal abatement cost of PM2.5 in China: A parametric approach. J. Clean. Prod. 2019, 235, 57–68. [Google Scholar] [CrossRef]
- Zeng, S.; Jiang, X.; Su, B.; Nan, X. China’s SO2 shadow prices and environmental technical efficiency at the province level. Int. Rev. Econ. Financ. 2018, 57, 86–102. [Google Scholar] [CrossRef]
- Wu, Q.; Lin, H. Estimating Regional Shadow Prices of CO2 in China: A Directional Environmental Production Frontier Approach. Sustainability 2019, 11, 429. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; Zhao, Y. Can China Achieve Peak Carbon Emissions and Carbon Neutrality: An Analysis Based on Efficiency and Emission Reduction Cost at the City Level. J. Lanzhou Univ. (Soc. Sci.) 2021, 49, 13–22. [Google Scholar]
- Choi, Y.; Zhang, N.; Zhou, P. Efficiency and abatement costs of energy-related CO2 emissions in China: A slacks-based efficiency measure. Appl. Energy 2012, 98, 198–208. [Google Scholar] [CrossRef]
- Wu, D.; Li, S.; Liu, L.; Lin, J.; Zhang, S. Dynamics of pollutants’ shadow price and its driving forces: An analysis on China’s two major pollutants at provincial level. J. Clean. Prod. 2021, 283, 124625. [Google Scholar] [CrossRef]
- Wei, C.; Ni, J.; Du, L. Regional allocation of carbon dioxide abatement in China. China. Econ. Rev. 2012, 23, 552–565. [Google Scholar] [CrossRef]
- Song, J.; Cao, Z.; Zhang, K. Study on the Shadow Price of Carbon Dioxide in China’s Provinces. Price Theory Pract. 2016, 23, 76–79. [Google Scholar]
- Cook, W.D.; Kress, M. Characterizing an equitable allocation of shared costs: A DEA approach. Eur. J. Oper. Res. 1999, 119, 652–661. [Google Scholar] [CrossRef]
- Jahanshahloo, G.R.; Lotfi, F.H.; Shoja, N.; Sanei, M. An alternative approach for equitable allocation of shared costs by using DEA. Appl. Math. Comput. 2004, 153, 267–274. [Google Scholar] [CrossRef]
- Beasley, J.E. Allocating fixed costs and resources via data envelopment analysis. Eur. J. Oper. Res. 2003, 147, 198–216. [Google Scholar] [CrossRef]
- Du, J.; Cook, W.D.; Liang, L.; Zhu, J. Fixed cost and resource allocation based on DEA cross-efficiency. Eur. J. Oper. Res. 2014, 235, 206–214. [Google Scholar] [CrossRef]
- Li, Y.; Yang, M.; Chen, Y.; Dai, Q.; Liang, L. Allocating a fixed cost based on data envelopment analysis and satisfaction degree. Omega-Int. J. Manag. S. 2013, 41, 55–60. [Google Scholar] [CrossRef]
- Li, F.; Zhu, Q.; Liang, L. A new data envelopment analysis based approach for fixed cost allocation. Ann. Oper. Res. 2019, 274, 347–372. [Google Scholar] [CrossRef]
- Petrosjan, L.; Zaccour, G. Time-consistent Shapley value allocation of pollution cost reduction. J. Econ. Dyn. Control. 2003, 27, 381–398. [Google Scholar] [CrossRef]
- Du, J.; Sun, L. A benefit allocation model for the joint prevention and control of air pollution in China: In view of environmental justice. J. Environ. Manag. 2022, 315, 115132. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Tan, Z.; Yu, X.; Zhang, R.; Wei, Y.-M.; Zhang, M.; Sun, H.; Meng, J.; Mi, Z. The health benefits and economic effects of cooperative PM2.5 control: A cost-effectiveness game model. J. Clean. Prod. 2019, 228, 1572–1585. [Google Scholar] [CrossRef]
- Shi, G.-M.; Wang, J.-N.; Fu, F.; Xue, W.-B. A study on transboundary air pollution based on a game theory model: Cases of SO2 emission reductions in the cities of Changsha, Zhuzhou and Xiangtan in China. Atmos. Pollut. Res. 2017, 8, 244–252. [Google Scholar] [CrossRef]
- Zhao, L.; Yuan, L.; Yang, Y.; Xue, J.; Wang, C. A cooperative governance model for SO2 emission rights futures that accounts for GDP and pollutant removal cost. Sustain. Cities Soc. 2021, 66, 102657. [Google Scholar] [CrossRef]
- Qu, Y.; Cang, Y. Cost-benefit allocation of collaborative carbon emissions reduction considering fairness concerns—A case study of the Yangtze River Delta, China. J. Environ. Manag. 2022, 321, 115853. [Google Scholar] [CrossRef]
- Xue, J.; Zhao, L.; Fan, L.; Qian, Y. An interprovincial cooperative game model for air pollution control in China. J. Air. Waste. Manag. Assoc. 2015, 65, 818–827. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Zhao, L.; Xue, J.; Hu, Q.; Xu, X.; Wang, H. A cooperative reduction model for regional air pollution control in China that considers adverse health effects and pollutant reduction costs. Sci. Total. Environ. 2016, 573, 458–469. [Google Scholar] [CrossRef]
- Liu, X.; Yang, M.; Niu, Q.; Wang, Y.; Zhang, J. Cost accounting and sharing of air pollution collaborative emission reduction: A case study of Beijing-Tianjin-Hebei region in China. Urban. Clim. 2022, 43, 101166. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef] [Green Version]
- Dong, F.; Long, R.; Yu, B.; Wang, Y.; Li, J.; Wang, Y.; Dai, Y.; Yang, Q.; Chen, H. How can China allocate CO2 reduction targets at the provincial level considering both equity and efficiency? Evidence from its Copenhagen Accord pledge. Resour. Conserv. Recy. 2018, 130, 31–43. [Google Scholar] [CrossRef]
- Hu, J.-L. Efficient waste and pollution abatements for regions in Japan. Int. J. Sust. Dev. World 2009, 16, 270–285. [Google Scholar]
- Zhou, P.; Ang, B.W.; Poh, K.L. Slacks-based efficiency measures for modeling environmental performance. Ecol. Econ. 2006, 60, 111–118. [Google Scholar] [CrossRef]
- Hu, J.-L.; Lee, Y.-C. Efficient three industrial waste abatement for regions in China. Int. J. Sust. Dev. World 2008, 15, 132–144. [Google Scholar] [CrossRef]
- Wu, J.; Zhu, Q.; Liang, L. CO2 emissions and energy intensity reduction allocation over provincial industrial sectors in China. Appl. Energ. 2016, 166, 282–291. [Google Scholar] [CrossRef]
- OECD Organisation for Economic Co-operation and Development. Measuring Capital-OECD Manual Measurement of Capital Stocks, Consumption of Fixed Capital and Capital Services; OECD Emerging Economies: Paris, France, 2001. [Google Scholar]
- Van Donkelaar, A.; Hammer, M.S.; Bindle, L.; Brauer, M.; Brook, J.R.; Garay, M.J.; Hsu, N.C.; Kalashnikova, O.V.; Kahn, R.A.; Lee, C.; et al. Monthly Global Estimates of Fine Particulate Matter and Their Uncertainty. Environ. Sci. Technol. 2021, 55, 15287–15300. [Google Scholar] [CrossRef]
- Song, J.K.; Chen, R.; Ma, X. Provincial Allocation of Energy Consumption, Air Pollutant and CO2 Emission Quotas in China: Based on aWeighted Environment ZSG-DEA Model. Sustainability 2022, 14, 2243. [Google Scholar] [CrossRef]
Indicator | Unit | Mean | Min | Max | St. Dev |
---|---|---|---|---|---|
Population | 104 | 5621.33 | 2502.86 | 9009.47 | 1947.01 |
Capital stock | CNY 108 | 131,793.10 | 55,954.63 | 324,107.90 | 64,029.82 |
Energy consumption | 104 tce | 17,937.82 | 9138.08 | 36,509.90 | 7455.561 |
GDP | CNY 108 | 51,279.52 | 19,074.42 | 134,249.60 | 27,099.53 |
CO2 emissions | 104 tons | 45,353.00 | 21,339.71 | 111,499.60 | 22,757.12 |
NOx emissions | 104 tons | 31.52 | 13.02 | 48.76 | 10.76 |
PM2.5 concentration | µg/m3 | 28.00 | 15.62 | 38.19 | 6.66 |
Province | Input Indicator | Desirable Output Indicator | Undesirable Output Indicator | ||||
---|---|---|---|---|---|---|---|
Population (104) | Capital Stock (CNY 108) | Energy Consumption (104 Tce) | GDP (CNY 108) | CO2 (104 Tons) | NOX (104 Tons) | PM2.5 (µg/m3) | |
Shanghai | 2563 | 95,548.46 | 12,253.76 | 49,392.84 | 27,964.72 | 14.382 | 28.80 |
Jiangsu | 9009 | 323,326.3 | 36,509.9 | 134,249.6 | 111,499.6 | 43.65 | 33.00 |
Zhejiang | 7553 | 195,017.3 | 27,878.63 | 84,446.61 | 52,053.05 | 34.857 | 22.50 |
Anhui | 6066 | 119,380.2 | 17,418.85 | 52,995.77 | 59,183.22 | 38.13 | 35.10 |
Jiangxi | 4472 | 82,843.5 | 11,762.29 | 36,033.66 | 37,299.52 | 25.497 | 24.80 |
Hubei | 5640 | 177,742.4 | 19,259.47 | 59,521.31 | 49,964.75 | 44.82 | 33.30 |
Hunan | 6510 | 164,886.3 | 20,079.43 | 55,913.06 | 34,017.69 | 24.597 | 31.50 |
Chongqing | 3413 | 85,696.74 | 10,272.86 | 33,459.37 | 22,985.98 | 13.02 | 29.70 |
Sichuan | 8541 | 153,974.4 | 24,524.06 | 65,036.16 | 52,304.85 | 34.5 | 15.62 |
Guizhou | 4216 | 72,299.81 | 12,886.01 | 25,002.67 | 38,379.4 | 24.741 | 21.52 |
Yunnan | 4702 | 126,246.2 | 16,499.64 | 36,030.72 | 33,177.54 | 30.996 | 18.63 |
Province | Shadow Price (CNY/Ton) | Emission Intensity (CNY Tons/104) |
---|---|---|
Shanghai | 2024.64 | 0.729 |
Jiangsu | 1192.92 | 1.114 |
Zhejiang | 2596.46 | 0.792 |
Anhui | 1019.24 | 1.438 |
Jiangxi | 1065.75 | 1.385 |
Hubei | 1203.66 | 1.081 |
Hunan | 1431.21 | 0.964 |
Chongqing | 1681.33 | 0.878 |
Sichuan | 1694.14 | 1.024 |
Guizhou | 748.63 | 1.967 |
Yunnan | 1101.18 | 1.257 |
Average value | 1432.65 | 1.148 |
Province or City | Environmental Efficiency | CO2 | NOX | PM2.5 | |||
---|---|---|---|---|---|---|---|
Output Redundancy (104 Tons) | Emission Reduction Potential (%) | Output Redundancy (104 Tons) | Emission Reduction Potential (%) | Output Redundancy (μg/m3) | Emission Reduction Potential (%) | ||
Shanghai | 1.000 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Jiangsu | 1.000 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Zhejiang | 1.000 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Anhui | 0.529 | 29,178.62 | 49.30 | 22.70 | 59.53 | 4.20 | 11.96 |
Jiangxi | 0.518 | 16,898.36 | 45.30 | 15.00 | 58.85 | 3.79 | 15.28 |
Hubei | 0.540 | 15,163.73 | 30.35 | 27.35 | 61.02 | 0.00 | 0.00 |
Hunan | 0.552 | 1497.76 | 4.40 | 8.21 | 33.36 | 0.00 | 0.00 |
Chongqing | 0.579 | 4042.30 | 17.59 | 3.28 | 25.17 | 10.19 | 34.31 |
Sichuan | 1.000 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Guizhou | 0.344 | 24,223.65 | 63.12 | 17.46 | 70.57 | 6.94 | 32.25 |
Yunnan | 0.415 | 10,913.41 | 32.89 | 20.27 | 65.38 | 0.00 | 0.00 |
Average Value | 0.680 | 9265.26 | 22.09 | 10.39 | 33.99 | 2.28 | 8.53 |
Province | CO2 (CNY 108) | NOX (CNY 108) | PM2.5 (CNY 108) | Total Cost (CNY 108) | Proportion in GDP (%) |
---|---|---|---|---|---|
Shanghai | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Jiangsu | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Zhejiang | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Anhui | 3732.58 | 4506.94 | 905.74 | 9145.26 | 17.26 |
Jiangxi | 2332.12 | 3029.38 | 786.57 | 6148.07 | 17.06 |
Hubei | 2211.36 | 4445.89 | 0.00 | 6657.24 | 11.18 |
Hunan | 298.03 | 2258.12 | 0.00 | 2556.15 | 4.57 |
Chongqing | 840.59 | 1203.22 | 1640.06 | 3683.86 | 11.01 |
Sichuan | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Guizhou | 2254.39 | 2520.79 | 1151.93 | 5927.11 | 23.71 |
Yunnan | 1489.15 | 2959.82 | 0.00 | 4448.97 | 12.35 |
Total cost | 13,158.22 | 20,924.14 | 4484.30 | 38,566.66 | 6.10 |
Alliance | SH | JS | ZJ | AH | JX | HB | HN | CQ | SC | GZ | YN | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(SH, JS, ZJ) | 1 | 1 | 1 | — | — | — | — | — | — | — | — | 3.00 | 2.00 |
(SH, JS, AH) | 1 | 1 | — | 0.53 | — | — | — | — | — | — | — | 2.53 | 2.00 |
(SH, JS, JX) | 1 | 1 | — | — | 0.52 | — | — | — | — | — | — | 2.52 | 2.00 |
(SH, JS, HB) | 1 | 1 | — | — | — | 0.54 | — | — | — | — | — | 2.54 | 1.61 |
(SH, JS, HN) | 1 | 1 | — | — | — | — | 0.56 | — | — | — | — | 2.56 | 2.00 |
(SH, JS, CQ) | 1 | 1 | — | — | — | — | — | 0.58 | — | — | — | 2.58 | 2.00 |
(SH, JS, SC) | 1 | 1 | — | — | — | — | — | — | 1 | — | — | 3.00 | 2.00 |
(SH, JS, GZ) | 1 | 1 | — | — | — | — | — | — | — | 0.34 | — | 2.34 | 1.40 |
(SH, JS, YN) | 1 | 1 | — | — | — | — | — | — | — | — | 0.42 | 2.42 | 1.45 |
(SH, ZJ, AH) | 1 | — | 1 | 0.53 | — | — | — | — | — | — | — | 2.53 | 2.00 |
(SH, ZJ, JX) | 1 | — | 1 | — | 0.52 | — | — | — | — | — | — | 2.52 | 2.00 |
(SH, ZJ, HB) | 1 | — | 1 | — | — | 0.55 | — | — | — | — | — | 2.55 | 2.00 |
(SH, ZJ, HN) | 1 | — | 1 | — | — | — | 0.56 | — | — | — | — | 2.56 | 2.00 |
(SH, ZJ, CQ) | 1 | — | 1 | — | — | — | — | 0.58 | — | — | — | 2.58 | 2.00 |
(SH, ZJ, SC) | 1 | — | 1 | — | — | — | — | — | 1 | — | — | 3.00 | 2.00 |
(SH, ZJ, GZ) | 1 | — | 1 | — | — | — | — | — | — | 0.34 | — | 2.34 | 1.45 |
(SH, ZJ, YN) | 1 | — | 1 | — | — | — | — | — | — | — | 0.43 | 2.43 | 1.52 |
(SH, AH, JX) | 1 | — | — | 0.53 | 0.52 | — | — | — | — | — | — | 2.05 | 2.00 |
(SH, AH, HB) | 1 | — | — | 0.53 | — | 1 | — | — | — | — | — | 2.53 | 2.00 |
(SH, AH, HN) | 1 | — | — | 0.53 | — | — | 1 | — | — | — | — | 2.53 | 2.00 |
(SH, AH, CQ) | 1 | — | — | 0.53 | — | — | — | 0.58 | — | — | — | 2.11 | 2.00 |
(SH, AH, SC) | 1 | — | — | 0.53 | — | — | — | — | 1 | — | — | 2.53 | 2.00 |
(SH, AH, GZ) | 1 | — | — | 0.53 | — | — | — | — | — | 0.34 | — | 1.87 | 1.58 |
(SH, AH, YN) | 1 | — | — | 0.53 | — | — | — | — | — | — | 1 | 2.53 | 2.00 |
(SH, JX, HB) | 1 | — | — | — | 0.52 | 1 | — | — | — | — | — | 2.52 | 2.00 |
(SH, JX, HN) | 1 | — | — | — | 0.52 | — | 1 | — | — | — | — | 2.52 | 2.00 |
(SH, JX, CQ) | 1 | — | — | — | 0.52 | — | — | 0.58 | — | — | — | 2.10 | 2.00 |
(SH, JX, SC) | 1 | — | — | — | 0.52 | — | — | — | 1 | — | — | 2.52 | 2.00 |
(SH, JX, GZ) | 1 | — | — | — | 0.52 | — | — | — | — | 0.34 | — | 1.86 | 1.60 |
(SH, JX, YN) | 1 | — | — | — | 0.52 | — | — | — | — | — | 1 | 2.52 | 2.00 |
(SH, HB, HN) | 1 | — | — | — | — | 1 | 1 | — | — | — | — | 3.00 | 2.00 |
(SH, HB, CQ) | 1 | — | — | — | — | 1 | — | 0.58 | — | — | — | 2.58 | 2.00 |
(SH, HB, SC) | 1 | — | — | — | — | 0.56 | — | — | 1 | — | — | 2.56 | 2.00 |
(SH, HB, GZ) | 1 | — | — | — | — | 1 | — | — | — | 0.34 | — | 2.34 | 1.60 |
(SH, HB, YN) | 1 | — | — | — | — | 0.79 | — | — | — | — | 1 | 2.79 | 2.00 |
(SH, HN, CQ) | 1 | — | — | — | — | — | 1 | 0.58 | — | — | — | 2.58 | 2.00 |
(SH, HN, SC) | 1 | — | — | — | — | — | 0.57 | — | 1 | — | — | 2.57 | 2.00 |
(SH, HN, GZ) | 1 | — | — | — | — | — | 1 | — | — | 0.34 | — | 2.34 | 1.58 |
(SH, HN, YN) | 1 | — | — | — | — | — | 1 | — | — | — | 1 | 3.00 | 2.00 |
(SH, CQ, SC) | 1 | — | — | — | — | — | — | 0.58 | 1 | — | — | 2.58 | 2.00 |
(SH, CQ, GZ) | 1 | — | — | — | — | — | — | 0.58 | — | 0.34 | — | 1.92 | 2.00 |
(SH, CQ, YN) | 1 | — | — | — | — | — | — | 0.58 | — | — | 1 | 2.58 | 2.00 |
(SH, SC, GZ) | 1 | — | — | — | — | — | — | — | 1 | 0.34 | — | 2.34 | 1.55 |
(SH, SC, YN) | 1 | — | — | — | — | — | — | — | 1 | — | 0.46 | 2.46 | 2.00 |
(SH, GZ, YN) | 1 | — | — | — | — | — | — | — | — | 0.34 | 1 | 2.34 | 2.00 |
Province | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | ||
Shanghai | 0.163 | 0.120 | 0.104 | 0.096 | 0.090 | 0.087 | 0.086 | 0.085 | 0.084 | 0.083 | 0.999 |
Jiangsu | 0.168 | 0.128 | 0.115 | 0.109 | 0.106 | 0.105 | 0.105 | 0.105 | 0.105 | 0.105 | 1.151 |
Zhejiang | 0.172 | 0.133 | 0.119 | 0.112 | 0.109 | 0.107 | 0.107 | 0.106 | 0.106 | 0.105 | 1.177 |
Anhui | 0.186 | 0.155 | 0.149 | 0.150 | 0.154 | 0.159 | 0.164 | 0.171 | 0.177 | 0.185 | 1.650 |
Jiangxi | 0.187 | 0.157 | 0.154 | 0.157 | 0.163 | 0.169 | 0.175 | 0.180 | 0.185 | 0.188 | 1.717 |
Hubei | 0.184 | 0.156 | 0.155 | 0.160 | 0.166 | 0.172 | 0.176 | 0.179 | 0.180 | 0.181 | 1.709 |
Hunan | 0.178 | 0.144 | 0.138 | 0.140 | 0.145 | 0.152 | 0.158 | 0.165 | 0.171 | 0.178 | 1.569 |
Chongqing | 0.188 | 0.153 | 0.145 | 0.144 | 0.146 | 0.150 | 0.154 | 0.159 | 0.165 | 0.170 | 1.575 |
Sichuan | 0.178 | 0.136 | 0.122 | 0.115 | 0.111 | 0.109 | 0.108 | 0.107 | 0.106 | 0.105 | 1.198 |
Guizhou | 0.257 | 0.248 | 0.250 | 0.255 | 0.260 | 0.265 | 0.269 | 0.273 | 0.275 | 0.277 | 2.629 |
Yunnan | 0.201 | 0.185 | 0.192 | 0.202 | 0.212 | 0.220 | 0.225 | 0.229 | 0.230 | 0.232 | 2.128 |
Province | Contribution Rate | Allocated Cost (CNY 108) | Proportion in GDP (%) |
---|---|---|---|
Shanghai | 0.0571 | 2201.83 | 4.46 |
Jiangsu | 0.0658 | 2535.90 | 1.89 |
Zhejiang | 0.0673 | 2593.76 | 3.07 |
Anhui | 0.0943 | 3636.03 | 6.86 |
Jiangxi | 0.0981 | 3783.26 | 10.50 |
Hubei | 0.0977 | 3766.68 | 6.33 |
Hunan | 0.0897 | 3457.67 | 6.18 |
Chongqing | 0.0900 | 3469.74 | 10.37 |
Sichuan | 0.0684 | 2638.99 | 4.06 |
Guizhou | 0.1502 | 5793.95 | 23.17 |
Yunnan | 0.1216 | 4688.85 | 13.01 |
Total | 1 | 38,566.66 | 6.10 |
Province |
Minimum Cost () (CNY 108) |
Maximum Cost () (CNY 108) |
---|---|---|
Shanghai | 2176.20 | 5686.15 |
Jiangsu | 8079.90 | 12,705.08 |
Zhejiang | 5152.54 | 7822.93 |
Anhui | 1636.56 | 4129.22 |
Jiangxi | 978.50 | 2690.08 |
Hubei | 1455.05 | 3862.82 |
Hunan | 1624.39 | 4426.27 |
Chongqing | 0.00 | 2615.03 |
Sichuan | 2131.21 | 6188.17 |
Guizhou | 0.00 | 1525.55 |
Yunnan | 0.00 | 2198.43 |
Total | 23,234.35 | 53,849.71 |
Province | (CNY 108) | (CNY 108) | (CNY 108) |
---|---|---|---|
Shanghai | 811.89 | 0.00 | 3013.72 |
Jiangsu | 5655.38 | 0.00 | 8191.28 |
Zhejiang | 2558.77 | 0.00 | 5152.54 |
Anhui | 0.00 | 402.48 | 3233.55 |
Jiangxi | 0.00 | 1584.65 | 2198.60 |
Hubei | 0.00 | 134.97 | 3631.71 |
Hunan | 0.00 | 46.11 | 3411.55 |
Chongqing | 0.00 | 1428.21 | 2041.53 |
Sichuan | 1329.21 | 0.00 | 3968.20 |
Guizhou | 0.00 | 4268.40 | 1525.55 |
Yunnan | 0.00 | 2490.43 | 2198.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, J.; Liu, Z.; Chen, R.; Leng, X. Calculation and Allocation of Atmospheric Environment Governance Cost in the Yangtze River Economic Belt of China. Int. J. Environ. Res. Public Health 2023, 20, 4281. https://doi.org/10.3390/ijerph20054281
Song J, Liu Z, Chen R, Leng X. Calculation and Allocation of Atmospheric Environment Governance Cost in the Yangtze River Economic Belt of China. International Journal of Environmental Research and Public Health. 2023; 20(5):4281. https://doi.org/10.3390/ijerph20054281
Chicago/Turabian StyleSong, Jiekun, Zhicheng Liu, Rui Chen, and Xueli Leng. 2023. "Calculation and Allocation of Atmospheric Environment Governance Cost in the Yangtze River Economic Belt of China" International Journal of Environmental Research and Public Health 20, no. 5: 4281. https://doi.org/10.3390/ijerph20054281
APA StyleSong, J., Liu, Z., Chen, R., & Leng, X. (2023). Calculation and Allocation of Atmospheric Environment Governance Cost in the Yangtze River Economic Belt of China. International Journal of Environmental Research and Public Health, 20(5), 4281. https://doi.org/10.3390/ijerph20054281