Market Segmentation and Green Development Performance: Evidence from Chinese Cities
Abstract
:1. Introduction
2. Literature Review and Research Hypotheses
3. Methodology and Data Description
3.1. Benchmark Model
3.2. Dynamic Panel and Dynamic Spatial Panel Models
3.3. Spatial Weight Matrix
3.4. Data Description
3.4.1. Explained Variables (Cete): Green Development Performance
3.4.2. Core Explanatory Variables (Mseg): Market Segmentation
3.4.3. Control Variables
- (1)
- Wage level (lnaw). This is expressed by using the average wage of urban workers to take the logarithm [47].
- (2)
- Urbanization level (ps). This is expressed by using the urban population as a share of the total population, as an indicator of urbanization [48].
- (3)
- Fiscal decentralization (fd). This is expressed by using the ratio of the per capita fiscal expenditure in the city to the sum of central, provincial, and urban per capita fiscal expenditure [49].
- (4)
- Environmental Regulation (er). This is expressed by extracting the proportion of the frequency of words involving environmental protection in the work reports released by each urban government (environmental word frequency specifically includes air, PM10, PM2.5, sulfur dioxide, carbon dioxide, low carbon, emission reduction, emissions, pollution, environmental protection, ecology, green, and energy consumption.) in China from 2006–2019, to the total number of full-text words, to indicate the strength of the environmental regulation of local governments [11].
- (5)
- Openness to the outside world (oul). This control variable is expressed by using the proportion of the actual foreign investment that is utilized by cities to the regional GDP [46].
- (6)
- Technology Innovation Level (lnsqt). This is expressed by using the logarithm of the number of patent applications [11].
- (7)
- Government regulation ability (gov). This is expressed by using a government spending to GDP ratio to measure the local government’s ability to intervene in the economy [7].
- (8)
- Population size (lnpop). This is expressed by using China’s urban year-end household population taken as log [50].
- (9)
- Infrastructure level (infs). This is expressed by adopting the measurement of the urban road area per capita, and the average road area per person is calculated according to the year-end household registration population in urban areas [51].
- (10)
- Economic Development Level (lnprgdp). This is expressed by using a logarithm of real GDP per capita [51].
- (11)
- Human capital level (edu). This is expressed using the number of students enrolled in higher education per 10,000 people [52].
3.4.4. Mechanism Variables
3.5. Data Sources and Characteristic Facts Analysis
3.5.1. Data Source
3.5.2. Spatial Correlation Test
4. Empirical Results and Analysis
4.1. Baseline Model and Mediating Effects Regression Results
4.2. Regression Results of Dynamic Panel and Dynamic Spatial Panel Models
4.3. Robustness Analysis
4.4. Analysis of Direct and Indirect Effects
4.5. Heterogeneity in This Analysis
5. Conclusions and Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tombe, T.; Winter, J. Environmental policy and misallocation: The productivity effect of intensity standards. J. Environ. Econ. Manag. 2015, 72, 137–163. [Google Scholar] [CrossRef]
- Shapiro, J.S.; Walker, R. Why Is Pollution from US Manufacturing Declining? The Roles of Environmental Regulation, Productivity, and Trade. Am. Econ. Rev. 2018, 108, 3814–3854. [Google Scholar] [CrossRef] [Green Version]
- Young, A. The razor’s edge: Distortions and incremental reform in the People’s Republic of China. Q. J. Econ. 2000, 115, 1091–1135. [Google Scholar] [CrossRef] [Green Version]
- Wu, F. Local government competition and industrial structure convergence. In Transition of the Yangtze River Delta; Springer: Tokyo, Japan, 2015; pp. 159–184. [Google Scholar]
- Lu, M.; Chen, Z. Fragmented growth: Why economic opening may worsen domestic market segmentation. Econ. Res. J. 2009, 3, 42–52. [Google Scholar]
- Yu, Y.; Jin, Z.; Li, J.; Jia, L. Low-carbon development path research on China’s power industry based on synergistic emission reduction between CO2 and air pollutants. J. Clean. Prod. 2020, 275, 123097. [Google Scholar] [CrossRef]
- Wang, C.; Zhan, J.; Bai, Y.; Chu, X.; Zhang, F. Measuring carbon emission performance of industrial sectors in the Beijing–Tianjin–Hebei region, China: A stochastic frontier approach. Sci. Total Environ. 2019, 685, 786–794. [Google Scholar] [CrossRef] [PubMed]
- Peretto, P.; Smulders, S. Technological distance, growth and scale effects. Econ. J. 2002, 112, 603–624. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, J.; Zhang, M.; Fan, F. Cross-national knowledge transfer, absorptive capacity, and total factor productivity: The intermediary effect test of international technology spillover. Technol. Anal. Strateg. Manag. 2022, 34, 625–640. [Google Scholar] [CrossRef]
- Fan, F.; Lian, H.; Wang, S. Can regional collaborative innovation improve innovation efficiency? An empirical study of Chinese cities. Growth Chang. 2020, 51, 440–463. [Google Scholar] [CrossRef]
- Lai, A.; Yang, Z.; Cui, L. Can environmental regulations break down domestic market segmentation? Evidence from China. Environ. Sci. Pollut. Res. Int. 2022, 29, 10157–10172. [Google Scholar] [CrossRef]
- Fan, F.; Dai, S.; Zhang, K.; Ke, H. Innovation agglomeration and urban hierarchy: Evidence from Chinese cities. Appl. Econ. 2021, 53, 6300–6318. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, X.; Zhang, M. The influence of environmental regulation on industrial structure upgrading: Based on the strategic interaction behavior of environmental regulation among local governments. Technol. Forecast. Soc. Chang. 2021, 170, 120930. [Google Scholar] [CrossRef]
- Wang, J.; Wu, Q.; Yan, S.; Guo, G.; Peng, S. China’s local governments breaking the land use planning quota: A strategic interaction perspective. Land Use Policy 2020, 92, 104434. [Google Scholar] [CrossRef]
- Melitz, M.J. The impact of trade on intra-industry reallocations and aggregate industry productivity. Econometrica 2003, 71, 1695–1725. [Google Scholar] [CrossRef] [Green Version]
- Cherniwchan, J. Trade liberalization and the environment: Evidence from NAFTA and U.S. manufacturing. J. Int. Econ. 2017, 105, 130–149. [Google Scholar] [CrossRef]
- Li, J.; Lin, B. Does energy and CO2 emissions performance of China benefit from regional integration? Energy Policy 2017, 101, 366–378. [Google Scholar] [CrossRef]
- Ulph, A. Harmonization and optimal environmental policy in a federal system with asymmetric information. J. Environ. Econ. Manag. 2000, 39, 224–241. [Google Scholar] [CrossRef]
- Fredriksson, P.G.; List, J.A.; Millimet, D.L. Bureaucratic corruption, environmental policy and inbound US FDI: Theory and evidence. J. Public Econ. 2003, 87, 1407–1430. [Google Scholar] [CrossRef] [Green Version]
- Chupp, B.A. Environmental constituent interest, green electricity policies, and legislative voting. J. Environ. Econ. Manag. 2011, 62, 254–266. [Google Scholar] [CrossRef]
- Grossman, G.M.; Krueger, A.B. Economic growth and the environment. Q. J. Econ. 1995, 110, 353–377. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Shen, J.; Yan, J.; Yang, X.; Hao, Y.; Ran, Q. Corruption, market segmentation and haze pollution: Empirical evidence from China. J. Environ. Plan. Manag. 2023, 66, 642–664. [Google Scholar] [CrossRef]
- Fan, F.; Lian, H.; Liu, X.; Wang, X. Can environmental regulation promote urban green innovation Efficiency? An empirical study based on Chinese cities. J. Clean. Prod. 2021, 287, 125060. [Google Scholar] [CrossRef]
- Lindmark, M. An EKC-pattern in historical perspective: Carbon dioxide emissions, technology, fuel prices and growth in Sweden 1870–1997. Ecol. Econ. 2002, 42, 333–347. [Google Scholar] [CrossRef]
- Zhang, F.; Deng, X.; Phillips, F.; Fang, C.; Wang, C. Impacts of industrial structure and technical progress on carbon emission intensity: Evidence from 281 cities in China. Technol. Forecast. Soc. Chang. 2020, 154, 119949. [Google Scholar] [CrossRef]
- Humphrey, J.; Schmitz, H. How does insertion in global value chains affect upgrading in industrial clusters? Reg. Stud. 2002, 36, 1017–1027. [Google Scholar] [CrossRef]
- Chenery, H.B. Patterns of industrial growth. Am. Econ. Rev. 1960, 50, 624–654. [Google Scholar]
- Javorcik, B.S. Does foreign direct investment increase the productivity of domestic firms? In search of spillovers through backward linkages. Am. Econ. Rev. 2004, 94, 605–627. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Sun, B. The influence of Chinese environmental regulation on corporation innovation and competitiveness. J. Clean. Prod. 2016, 112, 1528–1536. [Google Scholar] [CrossRef]
- Chacholiades, M. International Trade Theory and Policy; McGraw Hill: New York, NY, USA, 1978. [Google Scholar]
- Amore, M.D.; Schneider, C.; Žaldokas, A. Credit supply and corporate innovation. J. Financ. Econ. 2013, 109, 835–855. [Google Scholar] [CrossRef]
- Lin, B.; Chen, Z. Does factor market distortion inhibit the green total factor productivity in China? J. Clean. Prod. 2018, 197, 25–33. [Google Scholar] [CrossRef]
- Han, J.; Miao, J.; Du, G.; Yan, D.; Miao, Z. Can market-oriented reform inhibit carbon dioxide emissions in China? A new perspective from factor market distortion. Sustain. Prod. Consum. 2021, 27, 1498–1513. [Google Scholar] [CrossRef]
- Wang, X.; Wang, L.; Wang, S.; Fan, F.; Ye, X. Marketisation as a channel of international technology diffusion and green total factor productivity: Research on the spillover effect from China’s first-tier cities. Technol. Anal. Strateg. Manag. 2021, 33, 491–504. [Google Scholar] [CrossRef]
- Wu, G.L. Capital misallocation in China: Financial frictions or policy distortions? J. Dev. Econ. 2018, 130, 203–223. [Google Scholar] [CrossRef]
- Baron, R.M.; Kenny, D.A. The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J. Personal. Soc. Psychol. 1986, 51, 1173–1182. [Google Scholar] [CrossRef] [PubMed]
- Elhorst, J.P. Dynamic spatial panels: Models, methods, and inferences. J. Geogr. Syst. 2012, 14, 5–28. [Google Scholar] [CrossRef]
- Elhorst, J.P. MATLAB software for spatial panels. Int. Reg. Sci. Rev. 2014, 37, 389–405. [Google Scholar] [CrossRef] [Green Version]
- Case, A.C.; Rosen, H.S.; Hines, J.R., Jr. Budget spillovers and fiscal policy interdependence. J. Public Econ. 1993, 52, 285–307. [Google Scholar] [CrossRef]
- Jeanty, P.W. Spwmatrix: Stata module to generate, import, and export spatial weights. 2014. Available online: https://econpapers.repec.org/software/bocbocode/s457111.htm (accessed on 26 February 2023).
- Jia, R.; Shao, S.; Yang, L. High-speed rail and CO2 emissions in urban China: A spatial difference-in-differences approach. Energy Econ. 2021, 99, 105271. [Google Scholar] [CrossRef]
- Jun, Z.; Guiying, W.; Jipeng, Z. The estimation of China’s provincial capital stock: 1952–2000. Econ. Res. J. 2004, 10, 35–44. [Google Scholar]
- Wu, J.; Guo, Z. Research on the convergence of carbon dioxide emissions in China: A continuous dynamic distribution approach. Stat. Res. 2016, 33, 54–60. [Google Scholar]
- Tone, K. A slacks-based measure of super-efficiency in data envelopment analysis. Eur. J. Oper. Res. 2002, 143, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Shen, K.; Li, J. An empirical study on the influencing mechanism of the trade development and economic growth in China. Econ. Res. J. 2003, 5, 32–41. [Google Scholar]
- Shi, B.; Shen, K. Total factor energy efficiency in China under market segmentation: An empirical analysis based on super efficiency DEA method. J. World Econ. 2008, 9, 49–59. (In Chinese) [Google Scholar]
- Bosch, M.; Manacorda, M. Minimum wages and earnings inequality in urban Mexico. Am. Econ. J. Appl. Econ. 2010, 2, 128–149. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Li, Y.; Zhou, Y.; Shi, Y.; Zhu, X. Investigation of a coupling model of coordination between urbanization and the environment. J. Environ. Manag. 2012, 98, 127–133. [Google Scholar] [CrossRef]
- Yang, S.; Li, Z.; Li, J. Fiscal decentralization, preference for government innovation and city innovation: Evidence from China. Chin. Manag. Stud. 2020, 14, 391–409. [Google Scholar] [CrossRef]
- Li, X.; Xu, Y.; Yao, X. Effects of industrial agglomeration on haze pollution: A Chinese city-level study. Energy Policy 2021, 148, 111928. [Google Scholar] [CrossRef]
- Sabir, S.; Qayyum, U.; Majeed, T. FDI and environmental degradation: The role of political institutions in South Asian countries. Environ. Sci. Pollut. Res. 2020, 27, 32544–32553. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, X.; Wang, D.; Zhou, J. Digital economy and carbon emission performance: Evidence at China’s city level. Energy Policy 2022, 165, 112927. [Google Scholar] [CrossRef]
- Hsieh, C.T.; Klenow, P.J. Misallocation and manufacturing TFP in China and India. Q. J. Econ. 2009, 124, 1403–1448. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Ruan, L.; Liu, J.; Huan, H.; Zhang, G.; Feng, Y.; Li, Y. Electricity consumption and economic growth nexus in Beijing: A causal analysis of quarterly sectoral data. Renew. Sustain. Energy Rev. 2018, 82, 2498–2503. [Google Scholar] [CrossRef]
- Arellano, M.; Bond, S. Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Rev. Econ. Stud. 1991, 58, 277–297. [Google Scholar] [CrossRef] [Green Version]
- Blundell, R.; Bond, S. Initial conditions and moment restrictions in dynamic panel data models. J. Econ. 1998, 87, 115–143. [Google Scholar] [CrossRef] [Green Version]
- Caselli, F.; Esquivel, G.; Lefort, F. Reopening the convergence debate: A new look at cross-country growth empirics. J. Econ. Growth 1996, 1, 363–389. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, J.A.; Kukenova, M. Spatial Dynamic Panel Model and System GMM: A Monte Carlo Investigation; International Restructuring Education Network Europe Institute of Economic Research: Brussels, Belgium, 2009. [Google Scholar]
- Lee, L.; Yu, J. A spatial dynamic panel data model with both time and individual fixed effects. Econ. Theory 2010, 26, 564–597. [Google Scholar] [CrossRef] [Green Version]
- Lesage, J.; Pace, R.K. Introduction to Spatial Econometrics; Chapman & Hall, CRC: Boca Raton, FL, USA, 2009. [Google Scholar]
- Fan, F.; Zhang, K.; Dai, S.; Wang, X. Decoupling analysis and rebound effect between China’s urban innovation capability and resource consumption. Technol. Anal. Strateg. Manag. 2021, volume, 1–15. [Google Scholar] [CrossRef]
- Copeland, B.R.; Taylor, M.S. North-South trade and the environment. Q. J. Econ. 1994, 109, 755–787. [Google Scholar] [CrossRef]
- Fan, F.; Zhang, X. Transformation effect of resource-based cities based on PSM-DID model: An empirical analysis from China. Environ. Impact. Assess. Rev. 2021, 91, 106648. [Google Scholar] [CrossRef]
- Auty, R. Sustaining Development in Mineral Economies: The Resource Curse Thesis; Routledge: Oxfordshire, UK, 2002. [Google Scholar]
- Segal, P. Resource rents, redistribution, and halving global poverty: The resource dividend. World Dev. 2011, 39, 475–489. [Google Scholar] [CrossRef] [Green Version]
Input Variables | Desired Output Variables | Non-Desired Output Variables |
---|---|---|
Capital (10,000 yuan) | GDP (10,000 yuan) | CO2 emissions (10,000 tons) |
Labor force (10,000 people) | Industrial wastewater (10,000 tons) | |
Energy consumption (10,000 tons) | Industrial SO2 (10,000 tons) | |
Industrial fume and dust (10,000 tons) |
Variables | Obs | Mean | St.D | Min | Max |
---|---|---|---|---|---|
lnaw | 3948 | 10.3206 | 0.4068 | 8.1849 | 11.6524 |
ps | 3948 | 0.3569 | 0.2382 | 0.0435 | 1 |
fd | 3948 | 0.3965 | 0.0994 | 0.0853 | 0.8918 |
er | 3948 | 0.0033 | 0.0014 | 0.0002 | 0.0124 |
oul | 3948 | 0.0141 | 0.0178 | 0.00001 | 0.2070 |
Cete | 3948 | 0.3923 | 0.2411 | 0.0479 | 1.2447 |
Mseg | 3948 | 0.3660 | 0.1049 | 0.0409 | 0.8260 |
lnsqt | 3948 | 7.0714 | 1.8090 | 1.6094 | 12.3880 |
ts | 3948 | 0.9143 | 0.5015 | 0.0943 | 5.1683 |
dist | 3948 | 0.5881 | 0.1625 | 0.0025 | 0.9920 |
gov | 3948 | 0.1905 | 0.1368 | 0.0353 | 2.2794 |
lnpop | 3948 | 5.8724 | 0.6952 | 2.8685 | 8.1362 |
infs | 3948 | 15.6799 | 6.9103 | 1.3700 | 60.0700 |
lnprgdp | 3948 | 10.0891 | 0.7776 | 7.8779 | 12.6433 |
edu | 3948 | 4.5235 | 1.1413 | 0.7322 | 7.2120 |
Year | CeteI | Year | CeteI |
---|---|---|---|
2006 | 0.018 *** (4.588) | 2013 | 0.030 *** (7.363) |
2007 | 0.044 *** (10.340) | 2014 | 0.025 *** (6.176) |
2008 | 0.047 *** (10.847) | 2015 | 0.025 *** (6.256) |
2009 | 0.049 *** (11.380) | 2016 | 0.023 *** (5.734) |
2010 | 0.049 *** (11.381) | 2017 | 0.032 *** (7.674) |
2011 | 0.042 *** (9.795) | 2018 | 0.034 *** (8.157) |
2012 | 0.034 *** (8.068) | 2019 | 0.035 *** (8.385) |
Model | AIC | BIC | Log-likelihood |
SAR | −4987.62 | −4811.75 | 2521.81 |
SEM | −4950.32 | −4856.10 | 2490.16 |
SDM | −4950.15 | −4855.15 | 2490.08 |
Hausman test | chi2(14) | Prob ≥ chi2 | |
62.12 | 0.0000 |
Intermediary Variable M = ts | Intermediary Variable M = dist | ||||||||
---|---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | |
OLS | OLS | OLS | OLS | OLS | OLS | OLS | OLS | OLS | |
Cete | Cete | Cete | ts | ts | Cete | dist | dist | Cete | |
Mseg | 0.175 ** | 0.979 *** | 0.791 | 2.150 *** | 2.773 ** | 0.908 *** | 0.0709 * | 0.00306 | 0.979 *** |
[0.0654] | [0.2210] | [0.5998] | [0.3671] | [0.9423] | [0.1944] | [0.0309] | [0.1143] | [0.1927] | |
Msegsq | −0.886 *** | −0.499 | −1.438 *** | −3.003 | −0.838 *** | 0.0769 | −0.880 *** | ||
[0.2373] | [1.4466] | [0.3716] | [2.1896] | [0.2092] | [0.1216] | [0.2085] | |||
Msegtq | −0.280 | 1.214 | |||||||
[1.1284] | [1.6527] | ||||||||
ts | 0.0326 ** | ||||||||
[0.0120] | |||||||||
dist | −0.0769 * | ||||||||
[0.0364] | |||||||||
_cons | 0.203 | 0.949 | 0.0198 | 19.35 *** | 19.25 *** | 0.296 | −6.274 *** | −6.253 *** | 0.468 |
[1.0873] | [1.0640] | [1.0832] | [2.0660] | [2.0685] | [1.0115] | [0.5625] | [0.5623] | [1.0086] | |
City FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Time FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
CV | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
TP | 0.5525 | 0.7476 | 0.5418 | 0.5563 | |||||
N | 3948 | 3948 | 3948 | 3948 | 3948 | 3948 | 3948 | 3948 | 3948 |
adj. R2 | 0.6891 | 0.6890 | 0.6904 | 0.8644 | 0.8644 | 0.6895 | 0.8582 | 0.8582 | 0.6893 |
AIC | −4934.0 | −4933.0 | −4948.6 | −2425.5 | −2424.3 | −4939.0 | −11,145.6 | −11,144.3 | −4935.9 |
BIC | −4852.3 | −4851.4 | −4854.4 | −2337.5 | −2330.1 | −4851.0 | −11,070.2 | −11,062.7 | −4848.0 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Diff-GMM | SYS-GMM | Dynamic SAR-MLE(W1) | Dynamic SAR-SGMM(W1) | |
Cete | Cete | Cete | Cete | |
L.Cete | 0.554 *** | 0.570 *** | 0.6128 *** | 0.559 *** |
[0.0027] | [0.0020] | [0.0144] | [0.0020] | |
W×Cete | 0.4000 *** | 2.119 *** | ||
[0.1191] | [0.0383] | |||
W×L.Cete | −0.5097 ** | −0.641 *** | ||
[0.2084] | [0.0293] | |||
Mseg | 0.794 *** | 0.396 *** | 0.5008 *** | 0.241 *** |
[0.0431] | [0.0296] | [0.1684] | [0.0341] | |
Msegsq | −0.657 *** | −0.261 *** | −0.5392 *** | −0.331 *** |
[0.0486] | [0.0331] | [0.1805] | [0.0398] | |
_cons | −1.524 *** | −0.72 *** | −1.079 *** | |
[0.216] | [0.017] | [0.0209] | ||
TP | 0.6043 | 0.7586 | 0.4644 | 0.364 |
City FE | Yes | Yes | Yes | Yes |
Time FE | Yes | Yes | Yes | Yes |
CV | Yes | Yes | Yes | Yes |
−7.7365 | −7.7031 | −7.6987 | ||
AR(1) [P] | [0.0000] | [0.0000] | [0.0000] | |
1.614 | 1.6396 | 1.5689 | ||
AR(2) [P] | [0.1065] | [0.1011] | [0.1167] | |
270.0106 | 268.4702 | 269.7069 | ||
Sargan[P] | [0.9655] | [1.0000] | [1.0000] | |
N | 3666 | 3666 | 3666 | 3666 |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
Dynamic SAR-MLE (W2) | Dynamic SAR-SGMM(W2) | Dynamic SAR-MLE (W3) | Dynamic SAR-SGMM(W3) | Dynamic SAR-MLE (W4) | Dynamic SAR-SGMM(W4) | |
Cete | Cete | Cete | Cete | Cete | Cete | |
L.Cete | 0.6126 *** | 0.561 *** | 0.6133 *** | 0.569 *** | 0.6131 *** | 0.551 *** |
[0.0144] | [0.0018] | [0.0143] | [0.0020] | [0.0144] | [0.0019] | |
W×Cete | 0.3312 *** | 1.208 *** | 0.0310 * | 0.115 *** | 0.4020 *** | 2.010 *** |
[0.1064] | [0.0229] | [0.0179] | [0.0037] | [0.1130] | [0.0286] | |
W×L.Cete | −0.5459 *** | −0.509 *** | −0.0427 ** | −0.0205 *** | −0.5109 *** | −0.592 *** |
[0.1639] | [0.0225] | [0.0210] | [0.0025] | [0.1899] | [0.0324] | |
Mseg | 0.5083 *** | 0.324 *** | 0.3851 ** | 0.420 *** | 0.5017 *** | 0.256 *** |
[0.1683] | [0.0440] | [0.1890] | [0.0364] | [0.1683] | [0.0377] | |
Msegsq | −0.5500 *** | −0.369 *** | −0.4255 ** | −0.484 *** | −0.5406 *** | −0.364 *** |
[0.1805] | [0.0488] | [0.2020] | [0.0426] | [0.1805] | [0.0418] | |
_cons | −0.788 *** | −0.649 *** | −0.983 *** | |||
[0.0249] | [0.0252] | [0.0263] | ||||
TP | 0.4621 | 0.439 | 0.4525 | 0.4339 | 0.464 | 0.3516 |
City FE | Yes | Yes | Yes | Yes | Yes | Yes |
Time FE | Yes | Yes | Yes | Yes | Yes | Yes |
CV | Yes | Yes | Yes | Yes | Yes | Yes |
−7.6826 | −7.7192 | −7.7035 | ||||
AR(1) [P] | [0.0000] | [0.0000] | [0.0000] | |||
1.6417 | 1.6224 | 1.5025 | ||||
AR(2) [P] | [0.1007] | [0.1047] | [0.1330] | |||
268.3943 | 265.4121 | 257.7253 | ||||
Sargan[P] | [1.0000] | [1.0000] | [1.0000] | |||
N | 3666 | 3666 | 3666 | 3666 | 3666 | 3666 |
W1 | W2 | |||||||
---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
Short-Term Direct Effects | Short-Term Indirect Effects | Long-Term Direct Effects | Long-Term Indirect Effects | Short-Term Direct Effects | Short-Term Indirect Effects | Long-Term Direct Effects | Long-Term Indirect Effects | |
Cete | Cete | Cete | Cete | Cete | Cete | Cete | Cete | |
Mseg | 0.5188 *** | 0.3759 | 1.3386 *** | −0.2361 | 0.5260 *** | 0.2788 * | 1.3588 *** | −0.4594 ** |
[0.1616] | [0.2286] | [0.4168] | [0.3270] | [0.1614] | [0.1638] | [0.4168] | [0.2199] | |
Msegsq | −0.5581 *** | −0.4042 * | −1.4399 *** | 0.2541 | −0.5687 *** | −0.3011 * | −1.4693 *** | 0.4972 ** |
[0.1689] | [0.2440] | [0.4357] | [0.3470] | [0.1689] | [0.1751] | [0.4360] | [0.2328] | |
N | 3666 | 3666 |
W3 | W4 | |||||||
---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
Short-Term Direct Effects | Short-Term Indirect Effects | Long-Term Direct Effects | Long-Term Indirect Effects | Short-Term Direct Effects | Short-Term Indirect Effects | Long-Term Direct Effects | Long-Term Indirect Effects | |
Cete | Cete | Cete | Cete | Cete | Cete | Cete | Cete | |
Mseg | 0.4044 ** | 0.4044 ** | 1.0462 ** | −0.0295 | 0.5198 *** | 0.3759 * | 1.3420 *** | −0.2425 |
[0.1810] | [0.1810] | [0.4682] | [0.0505] | [0.1615] | [0.2187] | [0.4170] | [0.3032] | |
Msegsq | −0.4458 ** | −0.4458 ** | −1.1533 ** | 0.0328 | −0.5596 *** | −0.4047 * | −1.4448 *** | 0.2612 |
[0.1887] | [0.1887] | [0.4881] | [0.0543] | [0.1689] | [0.2336] | [0.4360] | [0.3220] | |
N | 3666 | 3666 |
Eastern Cities | Central Cities | |||||||
---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
OLS | Diff-GMM | SYS- GMM | Dynamic SAR-SGMM(W1) | OLS | Diff- GMM | SYS- GMM | Dynamic SAR-SGMM(W1) | |
Cete | Cete | Cete | Cete | Cete | Cete | Cete | Cete | |
L.Cete | 0.347 *** | 0.516 *** | 0.531 *** | 0.447 *** | 0.529 *** | 0.503 *** | ||
[0.0186] | [0.0210] | [0.0147] | [0.0126] | [0.0185] | [0.0140] | |||
W×Cete | 1.750 *** | 2.049 *** | ||||||
[0.2794] | [0.1692] | |||||||
W×L.Cete | −0.521 *** | −1.114 *** | ||||||
[0.1965] | [0.1618] | |||||||
Mseg | 0.863 * | 0.937 *** | 1.085 *** | 1.202 *** | 2.015 *** | 0.973 *** | 1.013 *** | 0.723 *** |
[0.4801] | [0.3479] | [0.3389] | [0.3764] | [0.3503] | [0.2394] | [0.2328] | [0.2100] | |
Msegsq | −0.804 * | −0.996 *** | −1.001 *** | −1.153 *** | −2.108 *** | −1.135 *** | −1.033 *** | −0.836 *** |
[0.4552] | [0.3524] | [0.3320] | [0.3859] | [0.3836] | [0.2870] | [0.3124] | [0.2592] | |
_cons | 4.544 * | 9.078 *** | 0.122 | −1.316 *** | −2.207 | 2.374 ** | −0.419 * | −1.173 *** |
[2.7090] | [1.2204] | [0.3017] | [0.3270] | [1.9042] | [1.0264] | [0.2445] | [0.2304] | |
TP | 0.5367 | 0.4704 | 0.542 | 0.5212 | 0.4993 | 0.4286 | 0.4903 | 0.4324 |
City FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Time FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
CV | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
−4.7161 | −4.8668 | −4.8844 | −4.1641 | −4.3052 | −4.1487 | |||
AR(1) [P] | [0.0000] | [0.0000] | [0.0000] | [0.0000] | [0.0000] | [0.0000] | ||
1.1674 | 1.6378 | 1.616 | 0.52609 | 0.66333 | 0.93317 | |||
AR(2) [P] | [0.2431] | [0.1015] | [0.1061] | [0.5988] | [0.5071] | [0.3507] | ||
84.32526 | 75.16387 | 67.1353 | 84.18583 | 86.54511 | 83.50581 | |||
Sargan[P] | [1.0000] | [1.0000] | [1.0000] | [1.0000] | [1.0000] | [1.0000] | ||
adj. R2 | 0.7267 | 0.6852 | ||||||
N | 1400 | 1200 | 1300 | 1300 | 1386 | 1188 | 1287 | 1287 |
Western Cities | ||||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
OLS | Diff-GMM | SYS-GMM | Dynamic SAR-SGMM(W1) | |
Cete | Cete | Cete | Cete | |
L.Cete | 0.499 *** | 0.543 *** | 0.554 *** | |
[0.0253] | [0.0212] | [0.0255] | ||
W×Cete | −1.405 *** | |||
[0.3215] | ||||
W×L.Cete | 1.226 *** | |||
[0.4468] | ||||
Mseg | 0.281 | 1.180 *** | 1.340 *** | 0.703 ** |
[0.5128] | [0.4326] | [0.3516] | [0.3250] | |
Msegsq | −0.208 | −1.363 ** | −1.960 *** | −1.079 ** |
[0.7561] | [0.5975] | [0.5481] | [0.5178] | |
_cons | −1.629 | −4.660 *** | −0.582 ** | −0.367 |
[2.6008] | [1.6759] | [0.2570] | [0.3969] | |
TP | 0.6755 | 0.4329 | 0.3418 | 0.3258 |
City FE | Yes | Yes | Yes | Yes |
Time FE | Yes | Yes | Yes | Yes |
CV | Yes | Yes | Yes | Yes |
−4.1312 | −3.9273 | −4.1394 | ||
AR(1) [P] | [0.0000] | [0.0001] | [0.0000] | |
−0.22544 | −0.20016 | −0.23941 | ||
AR(2) [P] | [0.8216] | [0.8414] | [0.8108] | |
68.93893 | 55.67243 | 56.32576 | ||
Sargan[P] | [1.0000] | [1.0000] | [1.0000] | |
adj. R2 | 0.5680 | |||
N | 1162 | 996 | 1079 | 1079 |
Resource-Based Cities | Non-Resource-Based Cities | |||||||
---|---|---|---|---|---|---|---|---|
OLS | Diff-GMM | SYS- GMM | Dynamic SAR-SGMM(W1) | OLS | Diff-GMM | SYS- GMM | Dynamic SAR-SGMM(W1) | |
Cete | Cete | Cete | Cete | Cete | Cete | Cete | Cete | |
L.Cete | 0.592 *** | 0.611 *** | 0.621 *** | 0.483 *** | 0.563 *** | 0.533 *** | ||
[0.0125] | [0.0146] | [0.0111] | [0.0053] | [0.0067] | [0.0081] | |||
W×Cete | 1.769 *** | 2.199 *** | ||||||
[0.1033] | [0.1296] | |||||||
W×L.Cete | −1.159 *** | −0.435 *** | ||||||
[0.1019] | [0.0930] | |||||||
Mseg | 0.748 *** | 0.814 *** | 0.605 *** | 0.403 *** | 1.021 *** | −0.0445 | 0.210 * | 0.122 |
[0.2706] | [0.1633] | [0.0757] | [0.0854] | [0.3645] | [0.1354] | [0.1082] | [0.1258] | |
Msegsq | −0.494 * | −0.701 *** | −0.529 *** | −0.445 *** | −1.117 *** | 0.261 | −0.0855 | −0.183 |
[0.2904] | [0.1842] | [0.1039] | [0.1010] | [0.3868] | [0.1615] | [0.1222] | [0.1595] | |
_cons | −0.211 | 0.626 | −0.692 *** | −0.837 *** | −0.0724 | −6.456 *** | −0.139 ** | −0.471 *** |
[1.3461] | [0.7398] | [0.0837] | [0.0898] | [1.7195] | [0.6441] | [0.0611] | [0.0726] | |
TP | 0.7571 | 0.5806 | 0.5718 | 0.4528 | 0.457 | |||
City FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Time FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
CV | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
−4.194 | −4.1917 | −4.1156 | −6.46 | −6.5023 | −6.5748 | |||
AR(1) [P] | [0.0000] | [0.0001] | [0.0000] | [0.0000] | [0.0000] | [0.0000] | ||
0.42692 | 0.49729 | 0.44124 | 1.4391 | 1.6235 | 1.576 | |||
AR(2) [P] | [0.6694] | [0.6190] | [0.6590] | [0.1501] | [0.1045] | [0.1150] | ||
87.44789 | 89.6426 | 87.28543 | 154.1821 | 147.4394 | 145.8696 | |||
Sargan[P] | [1.0000] | [1.0000] | [1.0000] | [1.0000] | [1.0000] | [1.0000] | ||
adj. R2 | 0.5602 | 0.7105 | ||||||
N | 1596 | 1368 | 1482 | 1482 | 2352 | 2016 | 2184 | 2184 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, X.; Liang, B.; Yu, H.; Zhu, H. Market Segmentation and Green Development Performance: Evidence from Chinese Cities. Int. J. Environ. Res. Public Health 2023, 20, 4411. https://doi.org/10.3390/ijerph20054411
Dong X, Liang B, Yu H, Zhu H. Market Segmentation and Green Development Performance: Evidence from Chinese Cities. International Journal of Environmental Research and Public Health. 2023; 20(5):4411. https://doi.org/10.3390/ijerph20054411
Chicago/Turabian StyleDong, Xuebing, Benbo Liang, Haichao Yu, and Hui Zhu. 2023. "Market Segmentation and Green Development Performance: Evidence from Chinese Cities" International Journal of Environmental Research and Public Health 20, no. 5: 4411. https://doi.org/10.3390/ijerph20054411
APA StyleDong, X., Liang, B., Yu, H., & Zhu, H. (2023). Market Segmentation and Green Development Performance: Evidence from Chinese Cities. International Journal of Environmental Research and Public Health, 20(5), 4411. https://doi.org/10.3390/ijerph20054411