Longitudinal Study on the Effect of Onboard Service on Seafarers’ Health Statuses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subject and Variable Sample
2.2. Description of Body Composition Measures
2.3. Methods of Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nenadić, A.; Jašić, D.; Krajnović, A. Sociological Aspects of Seafarers’ Life and Work and Management Styles in Shipping. Tranzicija 2015, 17, 25–40. Available online: https://hrcak.srce.hr/158306 (accessed on 3 November 2022).
- Kim, J.-H.; Jang, S.-N. Seafarers’ Quality of Life: Organizational Culture, Self-Efficacy, and Perceived Fatigue. Int. J. Environ. Res. Public Health 2018, 15, 2150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerkamm, F.; Dengler, D.; Eichler, M.; Materzok-Köppen, D.; Belz, L.; Neumann, F.A.; Zyriax, B.C.; Harth, V.; Oldenburg, M. Measurement Methods of Fatigue, Sleepiness, and Sleep Behaviour Aboard Ships: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 19, 120. [Google Scholar] [CrossRef]
- Slišković, A.; Penezić, Z. Occupational stressors, risks and health in the seafaring population. Rev. Psychol. 2015, 22, 29–39. [Google Scholar] [CrossRef] [Green Version]
- James, S.M.; Honn, K.A.; Gaddameedhi, S.; Van Dongen, H.P. Shift Work: Disrupted Circadian Rhythms and Sleep—Implications for Health and Well-being. Curr. Sleep Med. Rep. 2017, 3, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Allen, P.; Wadsworth, E.; Smith, A. Seafarers’ fatigue: A review of the recent literature. Int. Marit. Health 2008, 59, 81–92. [Google Scholar] [PubMed]
- Oldenburg, M.; Harth, V.; Jensen, H.-J. Overview and prospect: Food and nutrition of seafarers on merchant ships. Int. Marit. Health 2013, 64, 191–194. [Google Scholar] [CrossRef] [Green Version]
- Godinho, M.R.; Ferreira, A.P.; Greco, R.M.; Teixeira, L.R.; Teixeira, M.T.B. Work ability and health of security guards at a public University: A cross-sectional study. Rev. Latino-Am. Enferm. 2016, 24, e2725. [Google Scholar] [CrossRef] [Green Version]
- Tardy, A.-L.; Pouteau, E.; Marquez, D.; Yilmaz, C.; Scholey, A. Vitamins and Minerals for Energy, Fatigue and Cognition: A Narrative Review of the Biochemical and Clinical Evidence. Nutrients 2020, 12, 228. [Google Scholar] [CrossRef] [Green Version]
- Huskisson, E.; Maggini, S.; Ruf, M. The Role of Vitamins and Minerals in Energy Metabolism and Well-Being. J. Int. Med Res. 2007, 35, 277–289. [Google Scholar] [CrossRef]
- Grant, C.L.; Dorrian, J.; Coates, A.M.; Pajcin, M.; Kennaway, D.J.; Wittert, G.A.; Heilbronn, L.K.; Della Vedova, C.; Gupta, C.C.; Banks, S. The impact of meal timing on performance, sleepiness, gastric upset, and hunger during simulated night shift. Ind. Health 2017, 55, 423–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Maritime Organization. Guidelines on Fatigue; International Maritime Organization: London, UK, 2002. [Google Scholar]
- Anderson, E.; Shivakumar, G. Effects of exercise and physical activity on anxiety. Front. Psychiatry 2013, 4, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchholz, A.C.; Bartok, C.; Schoeller, D.A. The Validity of Bioelectrical Impedance Models in Clinical Populations. Nutr. Clin. Pract. 2004, 19, 433–446. [Google Scholar] [CrossRef] [PubMed]
- Böhm, A.; Heitmann, B.L. The use of bioelectrical impedance analysis for body composition in epidemiological studies. Eur. J. Clin. Nutr. 2013, 67, S79–S85. [Google Scholar] [CrossRef] [PubMed]
- Volpe, S.L.; Melanson, E.L.; Kline, G. Validation of bioelectrical impedance analysis to hydrostatic weighing in male body builders. Acta Diabetol. 2010, 47, 55–58. [Google Scholar] [CrossRef]
- Stewart, A.D.; Marfell-Jones, M.J.; Olds, T.; de Ridder, J.H. International Standards for Anthropometric Assessment; International Society for the Advancement in Kinanthropometry (ISAK): Lover Hut, New Zeland, 2011. [Google Scholar]
- Kyle, U.G.; Bosaeus, I.; De Lorenzo, A.D.; Deurenberg, P.; Elia, M.; Gómez, J.M.; Heitmann, B.L.; Kent-Smith, L.; Melchior, J.-C.; Pirlich, M.; et al. Bioelectrical impedance analysis—Part II: Utilization in clinical practice. Clin. Nutr. 2004, 23, 1430–1453. [Google Scholar] [CrossRef]
- Hoeyer, J.L.; Hansen, H.L. Obesity among Danish seafarers. Int. Marit. Health 2005, 56, 48–55. [Google Scholar]
- Hansen, H.L.; Hjarnoe, L.; Jepsen, J.R. Obesity continues to be a major health risk for Danish seafarers and fishermen. Int. Marit. Health 2011, 62, 98–103. [Google Scholar]
- Pougnet, R.; Pougnet, L.; Loddé, B.L.; Canals-Pol, M.L.; Jegaden, D.; Lucas, D.; Dewitte, J.-D. Cardiovascular risk factors in seamen and fishermen: Review of literature. Int. Marit. Health 2013, 64, 107–113. [Google Scholar]
- Rębacz-Maron, E. Selected anthropometric indices of maritime university students. Int. Marit. Health 2015, 66, 145–151. [Google Scholar] [CrossRef] [Green Version]
- Jepsen, J.R.; Rasmussen, H.B. The metabolic syndrome among Danish seafarers: A follow-up study. Int. Marit. Health 2016, 67, 129–136. [Google Scholar] [CrossRef] [Green Version]
- Nittari, G.; Tomassoni, D.; Di Canio, M.; Traini, E.; Pirillo, I.; Minciacchi, A.; Amenta, F. Overweight among seafarers working on board merchant ships. BMC Public Health 2019, 19, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sagaro, G.G.; Di Canio, M.; Amenta, F. Correlation between body mass index and blood pressure in seafarers. Clin. Exp. Hypertens. 2021, 43, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Masood, M.; Aggarwal, A.; Reidpath, D.D. Effect of national culture on BMI: A multilevel analysis of 53 countries. BMC Public Health 2019, 19, 1212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Worldwide Trends in Body-Mass Index, Underweight, Overweight, and Obesity. Available online: https://www.who.int/data/gho/data/indicators/indicator-details/GHO/mean-bmi-(kg-m-)-(age-standardized-estimate) (accessed on 22 November 2022).
- Tannir, H.; Itani, L.; Kreidieh, D.; El Masri, D.; El Ghoch, M. Can Intentional Weight Loss Ameliorate Sarcopenia in Individuals with Obesity? A Longitudinal Interventional Study. Clin. Pract. 2022, 12, 106–112. [Google Scholar] [CrossRef]
- Lee, L.-C.; Hsieh, K.-C.; Wu, C.-S.; Chen, Y.-J.; Chiang, J. Validity of Standing Posture Eight-electrode Bioelectrical Impedance to Estimate Body Composition in Taiwanese Elderly. Int. J. Gerontol. 2014, 8, 137–142. [Google Scholar] [CrossRef] [Green Version]
- Kelly, J.; Metcalfe, J. Validity and reliability of body composition analysis using the tanita BC418-MA Heart Rate Variability in the Detection and Prevention of Overtraining View project Adventure experiences and resilience View project. J. Exerc. Physiol. Online 2012, 15, 74–84. [Google Scholar]
- Verney, J.; Schwartz, C.; Amiche, S.; Pereira, B.; Thivel, D. Comparisons of a Multi-Frequency Bioelectrical Impedance Analysis to the Dual-Energy X-Ray Absorptiometry Scan in Healthy Young Adults Depending on their Physical Activity Level. J. Hum. Kinet. 2015, 47, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Bankovic, V.; Dopsaj, M.; Terzic, Z.; Nesic, G. Descriptive Body Composition Profile in Female Olympic Volleyball Medalists Defined Using Multichannel Bioimpedance Measurement: Rio 2016 Team Case Study. Int. J. Morphol. 2018, 36, 699–708. [Google Scholar] [CrossRef] [Green Version]
- Øvretveit, K. Anthropometric and Physiological Characteristics of Brazilian Jiu-Jitsu Athletes. J. Strength Cond. Res. 2018, 32, 997–1004. [Google Scholar] [CrossRef]
- Herttua, K.; Ahrenfeldt, L.J.; Paljarvi, T. Risk of major chronic diseases in transport, rescue and security industries: A longitudinal register-based study. Occup. Environ. Med. 2022, 79, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, P.; Bouchard, B. The Impact of Aging on Adipose Function and Adipokine Synthesis. Front. Endocrinol. 2019, 10, 137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smee, D.J.; Walker, A.; Rattray, B.; Cooke, J.A.; Serpell, B.G.; Pumpa, K.L. Comparison of Body Composition Assessment Methods in Professional Urban Firefighters. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 282–288. [Google Scholar] [CrossRef]
- Jepsen, J.R.; Zhao, Z.; Van Leeuwen, W.M. Seafarer fatigue: A review of risk factors, consequences for seafarers’ health and safety and options for mitigation. Int. Marit. Health 2015, 66, 106–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattis, J.; Sehgal, A. Circadian Rhythms, Sleep, and Disorders of Aging. Trends Endocrinol. Metab. 2016, 27, 192–203. [Google Scholar] [CrossRef] [Green Version]
- Mander, B.A.; Winer, J.R.; Walker, M.P. Sleep and Human Aging. Neuron 2017, 94, 19–36. [Google Scholar] [CrossRef] [Green Version]
Variable | AM ± SD | M | MIN | MAX | SKEW | KURT | KS |
---|---|---|---|---|---|---|---|
Initial Testing Age (Years) | 33.56 ± 8.49 | 34.56 | 18.77 | 52.15 | 0.20 | −0.78 | 0.10 |
Height (cm) | 183.22 ± 5.58 | 182.00 | 170.00 | 196.00 | 0.12 | −0.02 | 0.13 |
Body Mass (kg) | 93.15 ± 15.36 | 93.90 | 61.30 | 118.80 | −0.19 | −0.76 | 0.09 |
Body Mass Index (kg/m2) | 27.76 ± 4.58 | 27.80 | 20.00 | 35.20 | −0.02 | −1.38 | 0.15 |
Body Fat Percentage (%) | 21.05 ± 7.68 | 22.05 | 5.60 | 33.70 | −0.25 | −1.23 | 0.14 |
Fat Mass (kg) | 20.57 ± 9.93 | 21.00 | 3.40 | 37.50 | 0.05 | −1.36 | 0.14 |
Visceral Fat (Rating) | 7.69 ± 4.96 | 8.00 | 1.00 | 17.00 | 0.00 | −1.34 | 0.13 |
Metabolic Age (Years) | 35.31 ± 17.93 | 41.00 | 12.00 | 63.00 | −0.17 | −1.63 | 0.18 |
Fat-Free Mass (kg) | 72.58 ± 7.34 | 71.90 | 56.40 | 84.70 | −0.30 | −0.22 | 0.10 |
Total Body Water (%) | 51.84 ± 5.15 | 51.15 | 41.60 | 61.30 | 0.01 | −0.66 | 0.13 |
Extracellular Water (%) | 20.62 ± 2.02 | 20.45 | 16.50 | 24.00 | −0.23 | −0.60 | 0.10 |
Intracellular Water (%) | 31.22 ± 3.39 | 30.90 | 24.80 | 38.80 | 0.32 | −0.40 | 0.09 |
Muscle Mass (kg) | 69.00 ± 6.70 | 68.35 | 53.60 | 80.60 | −0.30 | −0.22 | 0.09 |
Skeletal Muscle Index | 9.57 ± 0.89 | 9.64 | 7.84 | 11.23 | −0.18 | −0.94 | 0.15 |
Bone Mass (kg) | 3.57 ± 0.34 | 3.55 | 2.80 | 4.10 | −0.25 | −0.23 | 0.13 |
Basal Metabolic Rate (kcal) | 2151.03 ± 234.09 | 2122.50 | 1668.00 | 2515.00 | −0.17 | −0.51 | 0.12 |
Final Testing Age (years) | 33.76 ± 8.49 | 34.75 | 18.98 | 52.30 | 0.20 | −0.78 | 0.10 |
KS test = 0.23 |
Variable | AM ± SD | M | MIN | MAX | SKEW | KURT | KS |
---|---|---|---|---|---|---|---|
Initial Testing Age (Years) | 35.00 ± 8.08 | 33.63 | 23.18 | 52.28 | 0.41 | −1.02 | 0.12 |
Height (cm) | 183.73 ± 5.94 | 183.00 | 169.00 | 196.00 | −0.18 | −0.36 | 0.13 |
Body Mass (kg) | 89.43 ± 10.82 | 90.40 | 61.30 | 112.40 | −0.22 | −0.37 | 0.10 |
Body Mass Index (kg/m2) | 26.51 ± 3.20 | 26.70 | 20.00 | 34.60 | 0.27 | −0.55 | 0.13 |
Body Fat Percentage (%) | 19.23 ± 5.29 | 19.00 | 5.60 | 29.60 | −0.09 | −0.52 | 0.07 |
Fat Mass (kg) | 17.58 ± 6.33 | 16.30 | 3.40 | 30.90 | 0.24 | −0.62 | 0.09 |
Visceral Fat (Rating) | 6.60 ± 3.44 | 6.00 | 1.00 | 13.00 | 0.26 | −0.97 | 0.11 |
Metabolic Age (Years) | 31.65 ± 13.88 | 31.00 | 12.00 | 56.00 | 0.26 | −1.12 | 0.11 |
Fat-Free Mass (kg) | 71.84 ± 6.63 | 71.20 | 57.90 | 84.70 | 0.12 | −0.49 | 0.08 |
Total Body Water (%) | 51.20 ± 4.99 | 50.60 | 42.50 | 61.30 | 0.28 | −0.62 | 0.09 |
Extracellular Water (%) | 20.20 ± 1.60 | 20.30 | 16.50 | 23.60 | −0.05 | −0.52 | 0.08 |
Intracellular Water (%) | 31.01 ± 3.59 | 30.60 | 25.30 | 38.80 | 0.39 | −0.59 | 0.07 |
Muscle Mass (kg) | 68.30 ± 6.33 | 67.70 | 55.00 | 80.60 | 0.12 | −0.49 | 0.08 |
Skeletal Muscle Index | 9.31 ± 0.83 | 9.21 | 7.84 | 11.33 | 0.10 | −1.08 | 0.14 |
Bone Mass (kg) | 3.55 ± 0.30 | 3.50 | 2.90 | 4.10 | 0.09 | −0.56 | 0.11 |
Basal Metabolic Rate (kcal) | 2112.37 ± 210.75 | 2099.00 | 1668.00 | 2507.00 | 0.11 | −0.56 | 0.08 |
Final Testing Age (Years) | 35.21 ± 8.09 | 33.90 | 23.33 | 52.51 | 0.41 | −1.02 | 0.12 |
KS test = 0.17 |
Variable | CON (N = 36) | EXP (N = 63) | t | p |
---|---|---|---|---|
AM ± SD | AM ± SD | |||
Initial Testing Age (Years) | 33.56 ± 8.49 | 35.00 ± 8.08 | −0.84 | 0.404 |
Height (cm) | 183.22 ± 5.58 | 183.73 ± 5.94 | −0.42 | 0.677 |
Body Mass (kg) | 93.15 ± 15.36 | 89.43 ± 10.82 | 1.41 | 0.162 |
Body Mass Index (kg/m2) | 27.76 ± 4.58 | 26.51 ± 3.20 | 1.60 | 0.114 |
Body Fat Percentage (%) | 21.05 ± 7.68 | 19.23 ± 5.29 | 1.39 | 0.168 |
Fat Mass (kg) | 20.57 ± 9.93 | 17.58 ± 6.33 | 1.83 | 0.070 |
Visceral Fat (Rating) | 7.69 ± 4.96 | 6.60 ± 3.44 | 1.29 | 0.200 |
Metabolic Age (Years) | 35.31 ± 17.93 | 31.65 ± 13.88 | 1.13 | 0.261 |
Fat-Free Mass (kg) | 72.58 ± 7.34 | 71.84 ± 6.63 | 0.51 | 0.613 |
Total Body Water (%) | 51.84 ± 5.15 | 51.20 ± 4.99 | 0.60 | 0.550 |
Extracellular Water (%) | 20.62 ± 2.02 | 20.20 ± 1.60 | 1.14 | 0.255 |
Intracellular Water (%) | 31.22 ± 3.39 | 31.01 ± 3.59 | 0.29 | 0.775 |
Muscle Mass (kg) | 69.00 ± 6.70 | 68.30 ± 6.33 | 0.51 | 0.609 |
Skeletal Muscle Index | 9.57 ± 0.89 | 9.31 ± 0.83 | 1.51 | 0.134 |
Bone Mass (kg) | 3.57 ± 0.34 | 3.55 ± 0.30 | 0.37 | 0.711 |
Basal Metabolic Rate (kcal) | 2151.03 ± 234.09 | 2112.37 ± 210.75 | 0.84 | 0.401 |
Final Testing Age (Years) | 33.76 ± 8.49 | 35.21 ± 8.09 | −0.84 | 0.403 |
Variable | EXPERIMENTAL GROUP (N = 63) | t | p | |
---|---|---|---|---|
INITAL | FINAL | |||
AM ± SD | AM ± SD | |||
Age (Years) | 35.00 ± 8.08 | 35.21 ± 8.09 | −45.04 | 0.000 *** |
Height (cm) | 183.73 ± 5.94 | 183.73 ± 5.94 | ||
Weight (kg) | 89.43 ± 10.82 | 90.93 ± 10.98 | −5.26 | 0.000 *** |
Body Mass Index (kg/m2) | 26.51 ± 3.20 | 26.96 ± 3.25 | −5.30 | 0.000 *** |
Body Fat Percentage (%) | 19.23 ± 5.29 | 21.04 ± 5.16 | −9.62 | 0.000 *** |
Fat Mass (kg) | 17.58 ± 6.33 | 19.52 ± 6.46 | −9.08 | 0.000 *** |
Visceral Fat (Rating) | 6.60 ± 3.44 | 7.33 ± 3.53 | −8.56 | 0.000 *** |
Metabolic Age (Years) | 31.65 ± 13.88 | 36.16 ± 14.27 | −10.77 | 0.000 *** |
Fat-Free Mass (kg) | 71.84 ± 6.63 | 71.41 ± 6.49 | 2.27 | 0.027 * |
Total Body Water (%) | 51.20 ± 4.99 | 50.62 ± 4.88 | 3.39 | 0.001 *** |
Extracellular Water (%) | 20.20 ± 1.60 | 20.23 ± 1.60 | −0.65 | 0.52 |
Intracellular Water (%) | 31.01 ± 3.59 | 30.39 ± 3.47 | 4.34 | 0.000 *** |
Muscle Mass (kg) | 68.30 ± 6.33 | 67.89 ± 6.19 | 2.27 | 0.027 * |
Skeletal Muscle Index | 9.31 ± 0.83 | 9.26 ± 0.84 | 1.63 | 0.11 |
Bone Mass (kg) | 3.55 ± 0.30 | 3.53 ± 0.30 | 1.99 | 0.051 |
Basal Metabolic Rate (kcal) | 2112.37 ± 210.75 | 2105.90 ± 206.95 | 1.09 | 0.28 |
Variable | CON (N = 36) | EXP (N = 63) | t | p |
---|---|---|---|---|
AM ± SD | AM ± SD | |||
Initial Testing Age (Years) | 0.21 ± 0.04 | 0.21 ± 0.04 | 0.35 | 0.731 |
Height (cm) | 0.00 ± 0.00 | 0.00 ± 0.00 | ||
Weight (kg) | −0.54 ± 2.13 | 1.50 ± 2.27 | 4.40 | 0.000 *** |
Body Mass Index (kg/m2) | −0.17 ± 0.62 | 0.45 ± 0.67 | 4.49 | 0.000 *** |
Body Fat Percentage (%) | −0.22 ± 1.29 | 1.81 ± 1.49 | 6.83 | 0.000 *** |
Fat Mass (kg) | −0.41 ± 1.48 | 1.93 ± 1.69 | 6.93 | 0.000 *** |
Visceral Fat (Rating) | −0.25 ± 0.60 | 0.73 ± 0.68 | 7.20 | 0.000 *** |
Metabolic Age (Years) | 0.14 ± 0.96 | 4.51 ± 3.32 | 7.70 | 0.000 *** |
Fat-Free Mass (kg) | −0.13 ± 1.62 | −0.43 ± 1.52 | −0.93 | 0.353 |
Total Body Water (%) | −0.08 ± 1.45 | −0.58 ± 1.36 | −1.74 | 0.085 |
Extracellular Water (%) | −0.07 ± 0.41 | 0.03 ± 0.43 | 1.19 | 0.236 |
Intracellular Water (%) | −0.01 ± 1.08 | −0.61 ± 1.12 | −2.63 | 0.010 |
Muscle Mass (kg) | −0.13 ± 1.54 | −0.41 ± 1.44 | −0.91 | 0.366 |
Skeletal Muscle Index | −0.02 ± 0.27 | −0.05 ± 0.25 | −0.49 | 0.626 |
Bone Mass (kg) | 0.00 ± 0.09 | −0.02 ± 0.09 | −1.19 | 0.235 |
Basal Metabolic Rate (kcal) | −6.72 ± 49.41 | −6.46 ± 46.88 | 0.03 | 0.979 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Russo, A.; Mulić, R.; Kolčić, I.; Maleš, M.; Jerončić Tomić, I.; Pezelj, L. Longitudinal Study on the Effect of Onboard Service on Seafarers’ Health Statuses. Int. J. Environ. Res. Public Health 2023, 20, 4497. https://doi.org/10.3390/ijerph20054497
Russo A, Mulić R, Kolčić I, Maleš M, Jerončić Tomić I, Pezelj L. Longitudinal Study on the Effect of Onboard Service on Seafarers’ Health Statuses. International Journal of Environmental Research and Public Health. 2023; 20(5):4497. https://doi.org/10.3390/ijerph20054497
Chicago/Turabian StyleRusso, Andrea, Rosanda Mulić, Ivana Kolčić, Matko Maleš, Iris Jerončić Tomić, and Luka Pezelj. 2023. "Longitudinal Study on the Effect of Onboard Service on Seafarers’ Health Statuses" International Journal of Environmental Research and Public Health 20, no. 5: 4497. https://doi.org/10.3390/ijerph20054497
APA StyleRusso, A., Mulić, R., Kolčić, I., Maleš, M., Jerončić Tomić, I., & Pezelj, L. (2023). Longitudinal Study on the Effect of Onboard Service on Seafarers’ Health Statuses. International Journal of Environmental Research and Public Health, 20(5), 4497. https://doi.org/10.3390/ijerph20054497