Perceived Occupational Noise Exposure and Depression in Young Finnish Adults
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Association of Depressive Symptoms with Perceived Occupational Noise Exposure
3.1.1. Pre-Existing Depressive Symptoms (Using GBI) at Age 17 and Perceived Noise Exposure at Work as Young Adults
3.1.2. Pre-Existing Depressive Symptoms (Using MPNI) at Age 14 and 17 and Perceived Noise Exposure at Work as Young Adults
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
MPNI Score at Age 14 | Regression Coefficient Beta (95% CI) | ||||||||
---|---|---|---|---|---|---|---|---|---|
All | Male | Female | |||||||
Model a (n = 746) | Model b (n = 745) | Model c (n = 652) | Model a (n = 347) | Model b (n = 347) | Model c (n = 294) | Model a (n = 399) | Model b (n = 398) | Model c (n = 358) | |
R2 for the model | 0.0842 | 0.1023 | 0.1200 | 0.0164 | 0.0370 | 0.0691 | 0.0056 | 0.0534 | 0.0696 |
Perceived noise at work | |||||||||
Never | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. |
Daily | 0.06 (−0.02, 0.14) | 0.06 (−0.03, 0.14) | 0.05 (−0,04, 0.13) | 0.09 (−0.01, 0.20) | 0.11 (0.01, 0.22) * | 0.08 (−0.04, 0.19) | 0.01 (−0.13, 0.14) | −0.02 (−0.15, 0.12) | −0.01 (−0.16, 0.13) |
Weekly | 0.01 (−0.09, 0.10) | −0.00 (−0.10, 0.09) | −0.00 (−0.12, 0.11) | −0.00 (−0.11, 0.11) | 0.01 (−0.11, 0.12) | −0.02 (−0.15, 0.11) | 0.03 (−0.15, 0.21) | 0.02 (−0.17, 0.21) | 0.01 (−0.20, 0.22) |
Occasionally | −0.02 (−0.09, 0.04) | −0.03 (−0.09, 0.04) | −0.03 (−0.10, 0.03) | −0.02 (−0.12, 0.08) | −0.00 (−0.11, 0.10) | −0.03 (−0.13, 0.07) | −0.02 (−0.11, 0.06) | −0.03 (−0.12, 0.06) | −0.03 (−0.12, 0.06) |
Age at 14 years survey | 0.03 (−0.01, 0.07) | 0.03 (−0.01, 0.07) | 0.04 (−0.00, 0.08) | 0.03 (−0.03, 0.09) | 0.04 (−0.02, 0.10) | 0.06 (−0.00, 0.12) | 0.03 (−0.02, 0.09) | 0.03 (−0.02, 0.08) | 0.03 (−0.03, 0.08) |
Secondary education | |||||||||
Academic | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. | |||
None | −0.04 (−0.16, 0.08) | −0.04 (−0.17, 0.09) | 0.01 (−0.17, 0.18) | 0.06 (−0.13, 0.26) | −0.12 (−0.26, 0.02) | −0.19 (−0.33, −0.05) * | |||
Vocational | −0.08 (−0.14, −0.01) * | −0.07 (−0.14, −0.00) * | −0.07 (−0.16, 0.02) | −0.07 (−0.16, 0.03) | −0.08 (−0.17, 0.02) | −0.06 (−0.16, 0.04) | |||
Smoking | |||||||||
Never | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. | |||
Former | 0.07 (−0.03, 0.17) | 0.06 (−0.04, 0.17) | 0.05 (−0.09, 0.19) | 0.09 (−0.04, 0.23) | 0.07 (−0.08, 0.22) | 0.00 (−0.17, 0.18) | |||
Occasional | 0.05 (−0.04, 0.14) | 0.06 (−0.03, 0.16) | −0.09 (−0.21, 0.04) | −0.10 (−0.22, 0.02) | 0.16 (0.04, 0.28) * | 0.19 (0.06, 0.31) * | |||
Current | 0.02 (−0.05, 0.09) | 0.02 (−0.05, 0.09) | −0.03 (−0.13, 0.07) | −0.03 (−0.12, 0.07) | 0.06 (−0.04, 0.16) | 0.05 (−0.05, 0.15) | |||
Work conditions | |||||||||
Job support | 0.03 (−0.01, 0.07) | 0.03 (−0.01, 0.07) | 0.02 (−0.06, 0.09) | −0.00 (−0.08, 0.07) | 0.04 (−0.00, 0.09) | 0.05 (−0.00, 0.09) | |||
Job demand | −0.03 (−0.08, 0.01) | −0.02 (−0.07, 0.02) | 0.02 (−0.05, 0.08) | 0.01 (−0.06, 0.08) | −0.06 (−0.11, −0.01) * | −0.04 (−0.10, 0.01) | |||
Job control | −0.02 (−0.06, 0.02) | −0.02 (−0.06, 0.02) | −0.01 (−0.07, 0.05) | −0.00 (−0.06, 0.05) | −0.02 (−0.07, 0.03) | −0.03 (−0.08, 0.02) | |||
Noise sensitivity | |||||||||
No | Ref. | Ref. | Ref. | ||||||
Yes | 0.09 (0.03, 0.16) | 0.09 (−0.01, 0.18) | 0.10 (0.01, 0.19) * |
MPNI Score at Age 17 | Regression Coefficient Beta (95% CI) | ||||||||
---|---|---|---|---|---|---|---|---|---|
All | Male | Female | |||||||
Model a (n = 663) | Model b (n = 662) | Model c (n = 661) | Model a (n = 303) | Model b (n = 303) | Model c (n = 302) | Model a (n = 360) | Model b (n = 359) | Model c (n = 359) | |
R2 for the model | 0.0456 | 0.0801 | 0.1357 | 0.0302 | 0.1124 | 0.1897 | 0.0220 | 0.0393 | 0.0871 |
Noise exposure at work | |||||||||
Never | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. |
Daily | 0.13 (−0.04, 0.30) | 0.16 (−0.01, 0.33) | 0.15 (−0.01, 0.31) | 0.12 (−0.12, 0.36) | 0.18 (−0.05, 0.41) | 0.14 (−0.07, 0.35) | 0.14 (−0.09, 0.37) | 0.13 (−0.12, 0.38) | 0.16 (−0.08, 0.40) |
Weekly | −0.11 (−0.25, 0.03) | −0.09 (−0.24, 0.05) | −0.06 (−0.20, 0.08) | −0.16 (−0.34, 0.02) | −0.09 (−0.28, 0.10) | −0.05 (−0.24, 0.13) | −0.04 (−0.26, 0.18) | −0.06 (−0.28, 0.17) | −0.03 (−0.25, 0.20) |
Occasionally | 0.08 (−0.04, 0.20) | 0.11 (−0.01, 0.24) | 0.10 (−0.02, 0.22) | 0.10 (−0.07, 0.26) | 0.17 (−0.00, 0.35) | 0.17 (0.00, 0.34) * | 0.09 (−0.08, 0.25) | 0.09 (−0.08, 0.26) | 0.08 (−0.09, 0.24) |
Age at 17 years survey | 0.03 (−0.05, 0.11) | 0.03 (−0.04, 0.11) | 0.04 (−0.04, 0.12) | −0.08 (−0.19, 0.02) | −0.08 (−0.18, 0.02) | −0.08 (−0.18, 0.02) | 0.11 (0.01, 0.22) * | 0.11 (0.01, 0.21) * | 0.12 (0.01, 0.22) * |
Secondary education | |||||||||
Academic | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. | |||
None | −0.03 (−0.26, 0.20) | −0.02 (−0.24, 0.20) | −0.15 (−0.37, 0.08) | −0.10 (−0.33, 0.12) | 0.06 (−0.41, 0.52) | 0.04 (−0.40, 0.48) | |||
Vocational | −0.10 (−0.21, 0.02) | −0.09 (−0.20, 0.02) | −0.15 (−0.31, 0.01) | −0.11 (−0.26, 0.03) | −0.05 (−0.21, 0.12) | −0.05 (−0.21, 0.10) | |||
Smoking | |||||||||
Never | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. | |||
Former | 0.03 (−0.16, 0.22) | −0.05 (−0.24, 0.13) | 0.04 (−0.22, 0.30) | −0.04 (−0.28, 0.21) | −0.03 (−0.31, 0.24) | −0.13 (−0.39, 0.13) | |||
Occasional | −0.09 (−0.25, 0.07) | −0.08 (−0.26, 0.08) | −0.22 (−0.43, −0.01) * | −0.24 (−0.46, −0.02) * | −0.02 (−0.27, 0.22) | −0.01 (−0.25, 0.24) | |||
Current | −0.16 (−0.28, −0.04) * | −0.17 (−0.29, −0.06) * | −0.19 (−0.36, −0.03) * | −0.19 (−0.35, −0.03) * | −0.12 (−0.28, 0.05) | −0.14 (−0.31, 0.02) | |||
Work conditions | |||||||||
Job support | 0.07 (−0.01, 0.14) | 0.07 (−0.00, 0.14) | 0.08 (−0.04, 0.21) | 0.08 (−0.04, 0.20) | 0.06 (−0.03, 0.15) | 0.06 (−0.03, 0.16) | |||
Job demand | 0.00 (−0.08, 0.09) | 0.01 (−0.07, 0.09) | 0.07 (−0.06, 0.19) | 0.07 (−0.05, 0.19) | −0.03 (−0.14, 0.09) | −0.02 (−0.14, 0.09) | |||
Job control | 0.03 (−0.04, 0.10) | 0.03 (−0.04, 0.10) | 0.07 (−0.04, 0.18) | 0.07 (−0.03, 0.18) | 0.01 (−0.09, 0.10) | −0.00 (−0.10, 0.09) | |||
Noise sensitivity | |||||||||
No | Ref. | Ref. | Ref. | ||||||
Yes | 0.35 (0.23, 0.47) * | 0.42 (0.23, 0.62) * | 0.30 (−0.16, 0.44) |
References
- WHO. Adolescent Mental Health. Available online: https://www.who.int/news-room/fact-sheets/detail/adolescent-mental-health (accessed on 13 January 2023).
- Kessler, R.C. Epidemiology of women and depression. J. Affect. Disord. 2003, 74, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Angold, A.; Costello, E.J.; Worthman, C.W. Puberty and relationship, the large number of respondents in depression: The roles of age, pubertal status, and pubertalWMH2000 (expected to exceed 150,000 people) will timing. Psychol. Med. 1998, 28, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Thapar, A.; Collishaw, S.; Pine, D.S.; Thapar, A.K. Depression in adolescence. Lancet 2012, 379, 1056–1067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shortt, A.L.; Spence, S.H. Risk and Protective Factors for Depression in Youth. Behav. Change 2006, 23, 1–30. [Google Scholar] [CrossRef]
- Sheeber, L.; Allen, N.; Davis, B.; Sorensen, E. Regulation of negative affect during mother-child problem-solving interactions: Adolescent depressive status and family processes. J. Abnorm. Child Psychol. 2000, 28, 467–479. [Google Scholar] [CrossRef]
- Garber, J.; Robinson, N.S.; Valentiner, D. The relation between parenting and adolescent depression: Self-worth as a mediator. J. Adolesc. Res. 1997, 12, 12–33. [Google Scholar] [CrossRef]
- Rappaport, S.M.; Smith, M.T. Environment and disease risks. Science 2010, 330, 460–461. [Google Scholar] [CrossRef] [Green Version]
- Wild, C.P. The exposome: From concept to utility. Int. J. Epidemiol. 2012, 41, 24–32. [Google Scholar] [CrossRef]
- Van Kamp, I.; Persson Waye, K.; Kanninen, K.; Gulliver, J.; Bozzon, A.; Psyllidis, A.; Boshuizen, H.; Selander, J.; van den Hazel, P.; Brambilla, M.; et al. Early environmental quality and life-course mental health effects: The Equal-Life project. Environ. Epidemiol. 2021, 6, e183. [Google Scholar] [CrossRef]
- Moore, T.M.; Visoki, E.; Argabright, S.T.; DiDomenico, G.E.; Sotelo, I.; Wortzel, J.D.; Naeem, A.; Gur, R.C.; Gur, R.E.; Warrier, V.; et al. The Exposome and its Associations with Broad Mental and Physical Health Measures in Early Adolescence. medRxiv 2021. [Google Scholar] [CrossRef]
- Choi, K.W.; Wilson, M.; Ge, T.; Kandola, A.; Patel, C.J.; Lee, S.H.; Smoller, J.W. Integrative analysis of genomic and exposomic influences on youth mental health. J. Child Psychol. Psychiatry 2022, 63, 1196–1205. [Google Scholar] [CrossRef]
- Guite, H.F.; Clark, C.; Ackrill, G. The impact of the physical and urban environment on mental well-being. Public Health 2006, 120, 1117–1126. [Google Scholar] [CrossRef]
- Chiovenda, P.; Pasqualetti, P.; Zappasodi, F.; Ercolani, M.; Milazzo, D.; Tomei, G.; Capozzella, A.; Tomei, F.; Rossini, P.M.; Tecchio, F. Environmental noise-exposed workers: Event-related potentials, neuropsychological and mood assessment. Int. J. Psychophysiol. 2007, 65, 228–237. [Google Scholar] [CrossRef]
- Clark, C.; Crumpler, C.; Notley, H. Evidence for Environmental Noise Effects on Health for the United Kingdom Policy Context: A Systematic Review of the Effects of Environmental Noise on Mental Health, Wellbeing, Quality of Life, Cancer, Dementia, Birth, Reproductive Outcomes, and Cognition. Int. J. Environ. Res. Public Health 2020, 17, 393. [Google Scholar] [CrossRef] [Green Version]
- ISO/TS 15666:2003; Acoustics—Assessment of Noise Annoyance by Means of Social and Socio-Acoustic Surveys. International Standards Organization: Geneva, Switzerland, 2003.
- Dzhambov, A.M.; Tilov, B.; Makakova-Tilova, D.; Dimitrova, D.D. Pathways and contingencies linking road traffic noise to annoyance, noise sensitivity, and mental ill-health. Noise Health 2019, 21, 248–257. [Google Scholar]
- Eze, I.C.; Foraster, M.; Schaffner, E.; Vienneau, D.; Pieren, R.; Imboden, M.; Wunderli, J.M.; Cajochen, C.; Brink, M.; Röösli, M.; et al. Incidence of depression in relation to transportation noise exposure and noise annoyance in the SAPALDIA study. Environ. Int. 2020, 144, 106014. [Google Scholar] [CrossRef]
- Stansfeld, S.A. Noise, noise sensitivity and psychiatric disorder: Epidemiological and psychophysiological studies. Psychol. Med. Monogr. Suppl. 1992, 22, 1–44. [Google Scholar] [CrossRef] [Green Version]
- Heinonen-Guzejev, M.; Vuorinen, H.S.; Mussalo-Rauhamaa, H.; Heikkilä, K.; Koskenvuo, M.; Kaprio, J. Genetic component of noise sensitivity. Twin Res. Hum. Genet. 2005, 8, 245–249. [Google Scholar] [CrossRef]
- Stansfeld, S.; Clark, C.; Smuk, M.; Gallacher, J.; Babisch, W. Road traffic noise, noise sensitivity, noise annoyance, psychological and physical health and mortality. Environ. Health 2021, 20, 32. [Google Scholar] [CrossRef]
- Kishikawa, H.; Matsui, T.; Uchiyama, I.; Miyakawa, M.; Hiramatsu, K.; Stansfeld, S.A. Noise sensitivity and subjective health: Questionnaire study conducted along trunk roads in Kusatsu, Japan. Noise Health 2009, 11, 111–117. [Google Scholar] [CrossRef]
- Santos, T.J.O.; Tavares, C.E.; Viana, F.P.; Fagundes, R.R. Quality of life of Brazilian industrial workers: A review article. Rev. Bras. Med. Trab. 2020, 18, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.H.; Won, J.U.; Lee, W.; Jung, P.K.; Roh, J. Occupational noise annoyance linked to depressive symptoms and suicidal ideation: A result from nationwide survey of Korea. PLoS ONE 2014, 9, e105321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arabacı, A.; Önler, E. The Effect of Noise Levels in the Operating Room on the Stress Levels and Workload of the Operating Room Team. J. PeriAnesthesia Nurs. 2021, 36, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Zhang, Z.; Yan, H.; Rui, B.; Liu, J. Effects of Occupational Hazards on Job Stress and Mental Health of Factory Workers and Miners: A Propensity Score Analysis. Biomed. Res. Int. 2020, 2020, 1754897. [Google Scholar] [CrossRef] [PubMed]
- Folscher, L.L.; Goldstein, L.N.; Wells, M.; Rees, D. Emergency department noise: Mental activation or mental stress? Emerg. Med. J. 2015, 32, 468–473. [Google Scholar] [CrossRef]
- Sjödin, F.; Kjellberg, A.; Knutsson, A.; Landström, U.; Lindberg, L. Noise and stress effects on preschool personnel. Noise Health 2012, 14, 166–178. [Google Scholar] [CrossRef]
- Van Dijk, F.J.; Souman, A.M.; de Vries, F.F. Non-auditory effects of noise in industry. VI. A final field study in industry. Int. Arch. Occup. Environ. Health 1987, 59, 133–145. [Google Scholar] [CrossRef]
- Naimi, A.I.; Richardson, D.B.; Cole, S.R. Causal Inference in Occupational Epidemiology: Accounting for the Healthy Worker Effect by Using Structural Nested Models. Am. J. Epidemiol. 2013, 178, 1681–1686. [Google Scholar] [CrossRef] [Green Version]
- Li, C.-Y.; Sung, F.-C. A review of the healthy worker effect in occupational epidemiology. Occup. Med. 1999, 49, 225–229. [Google Scholar] [CrossRef] [Green Version]
- Kaprio, J.; Pulkkinen, L.; Rose, R. Genetic and environmental factors in health-related behaviors: Studies on Finnish twins and twin families. Twin Res. 2002, 5, 366–371. [Google Scholar] [CrossRef]
- Kaprio, J. Twin studies in Finland 2006. Twin Res. Hum. Genet. 2006, 9, 772–777. [Google Scholar] [CrossRef]
- Kaprio, J. The Finnish Twin Cohort Study: An update. Twin Res. Hum. Genet. 2013, 16, 157–162. [Google Scholar] [CrossRef] [Green Version]
- Rose, R.J.; Salvatore, J.E.; Aaltonen, S.; Barr, P.B.; Bogl, L.H.; Byers, H.A.; Heikkilä, K.; Korhonen, T.; Latvala, A.; Palviainen, T.; et al. FinnTwin12 Cohort: An Updated Review. Twin Res. Hum. Genet. 2019, 22, 302–311. [Google Scholar] [CrossRef] [Green Version]
- Ranjit, A.; Buchwald, J.; Latvala, A.; Heikkilä, K.; Tuulio-Henriksson, A.; Rose, R.J.; Kaprio, J.; Korhonen, T. Predictive Association of Smoking with Depressive Symptoms: A Longitudinal Study of Adolescent Twins. Prev. Sci. 2019, 20, 1021–1030. [Google Scholar] [CrossRef] [Green Version]
- Salmela-Aro, K.; Read, S.; Vuoksimaa, E.; Korhonen, T.; Dick, D.M.; Kaprio, J.; Rose, R.J. Depressive symptoms and career-related goal appraisals: Genetic and environmental correlations and interactions. Twin Res. Hum. Genet. 2014, 17, 236–243. [Google Scholar] [CrossRef] [Green Version]
- Clark, C.; Gjestland, T.; Lavia, L.; Notley, H.; Michaud, D.; Morinaga, M. Revising ISO/TS 15666—The noise annoyance standard. In Proceedings of the ICBEN 2021, Stockholm, Sweden, 14–17 June 2021. [Google Scholar]
- Heinonen-Guzejev, M.; Vuorinen, H.S.; Kaprio, J.; Heikkilä, K.; Mussalo-Rauhamaa, H.; Koskenvuo, M. Self-report of transportation noise exposure, annoyance and noise sensitivity in relation to noise map information. J. Sound Vib. 2000, 234, 191–206. [Google Scholar] [CrossRef]
- Raw, G.J.; Griffiths, I.D. Individual differences in response to road traffic noise. J. Sound Vib. 1988, 121, 463–471. [Google Scholar] [CrossRef]
- World Health Organization; Regional Office for Europe. Burden of Disease from Environmental Noise: Quantification of Healthy Life Years Lost in Europe. 2011. Available online: https://apps.who.int/iris/handle/10665/326424 (accessed on 13 January 2023).
- Job, R.F.S. Noise sensitivity as a factor of influencing human reaction to noise. Noise Health 1999, 3, 57–68. [Google Scholar]
- Karasek, R.; Brisson, C.; Kawakami, N.; Houtman, I.; Bongers, P.; Amick, B. The Job Content Questionnaire (JCQ): An instrument for internationally comparative assessments of psychosocial job characteristics. J. Occup. Health Psychol. 1998, 3, 322–355. [Google Scholar] [CrossRef]
- Audrain-McGovern, J.; Rodriguez, D.; Kassel, J.D. Adolescent smoking and depression: Evidence for self-medication and peer smoking mediation. Addiction 2009, 104, 1743–1756. [Google Scholar] [CrossRef] [Green Version]
- Chaiton, M.O.; Cohen, J.E.; O’Loughlin, J.; Rehm, J. A systematic review of longitudinal studies on the association between depression and smoking in adolescents. BMC Public Health 2009, 9, 356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaiton, M.; Cohen, J.E.; Rehm, J.; Abdulle, M.; O’Loughlin, J. Confounders or intermediate variables? Testing mechanisms for the relationship between depression and smoking in a longitudinal cohort study. Addict. Behav. 2015, 42, 154–161. [Google Scholar] [CrossRef]
- Park, S.; Romer, D. Associations between smoking and depression in adolescence: An integrative review. J. Korean Acad. Nurs. 2007, 37, 227–241. [Google Scholar] [CrossRef] [PubMed]
- Lemstra, M.; Neudorf, C.; D’Arcy, C.; Kunst, A.; Warren, L.M.; Bennett, N.R. A systematic review of depressed mood and anxiety by SES in youth aged 10–15 years. Can. J. Public Health 2008, 99, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Depue, R.A.; Slater, J.F.; Wolfstetter-Kausch, H.; Klein, D.; Goplerud, E.; Farr, D. A behavioral paradigm for identifying persons at risk for bipolar depressive disorder: A conceptual framework and five validation studies. J. Abnorm. Psychol. 1981, 90, 381–437. [Google Scholar] [CrossRef]
- Depue, R.A. General Behavior Inventory; Department of Psychology, Cornell University: Ithaca, NY, USA, 1987. [Google Scholar]
- Edwards, A.C.; Sihvola, E.; Korhonen, T.; Pulkkinen, L.; Moilanen, I.; Kaprio, J.; Rose, R.J.; Dick, D.M. Depressive symptoms and alcohol use are genetically and environmentally correlated across adolescence. Behav. Genet. 2011, 41, 476–487. [Google Scholar] [CrossRef] [Green Version]
- Bucholz, K.K.; Cadoret, R.; Cloninger, C.R.; Dinwiddie, S.H.; Hesselbrock, V.M.; Nurnberger, J.I., Jr.; Reich, T.; Schmidt, I.; Schuckit, M.A. A new, semi-structured psychiatric interview for use in genetic linkage studies: A report on the reliability of the SSAGA. J. Stud. Alcohol 1994, 55, 149–158. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 4th ed.; American Psychiatric Publishing, Inc.: Washington, DC, USA, 1994. [Google Scholar]
- Pulkkinen, L.; Kaprio, J.; Rose, R.J. Peers, teachers and parents as assessors of the behavioural and emotional problems of twins and their adjustment: The Multidimensional Peer Nomination Inventory. Twin Res. 1999, 2, 274–285. [Google Scholar] [CrossRef]
- Whipp, A.M.; Heinonen-Guzejev, M.; Pietiläinen, K.H.; van Kamp, I.; Kaprio, J. Branched-chain amino acids linked to depression in young adults. Front. Neurosci. 2022, 16, 935858. [Google Scholar] [CrossRef]
- StataCorp. Stata Statistical Software: Release 15; StataCorp LLC.: College Station, TX, USA, 2017. [Google Scholar]
- Abbasi, A.M.; Darvishi, E.; Rodrigues, M.A.; Sayehmiri, K. Gender differences in cognitive performance and psychophysiological responses during noise exposure and different workloads. Appl. Acoust. 2022, 189, 108602. [Google Scholar] [CrossRef]
- Oenning, N.S.X.; Ziegelmann, P.K.; Garcia de Goulart, B.N.; Niedhammer, I. Occupational factors associated with major depressive disorder: A Brazilian population-based study. J. Affect. Disord. 2018, 240, 48–56. [Google Scholar] [CrossRef]
- Sandrock, S.; Schütte, M.; Griefahn, B. Impairing effects of noise in high and low noise sensitive persons working on different mental tasks. Int. Arch. Occup. Environ. Health 2009, 82, 779–785. [Google Scholar] [CrossRef]
- Lim, J.; Kweon, K.; Kim, H.-W.; Woo Cho, S.; Park, J.; Sun Sim, C. Negative Impact of Noise and Noise Sensitivity on Mental Health in Childhood. Noise Health 2018, 20, 199–211. [Google Scholar] [CrossRef]
- Belojevic, G.; Jakovljevic, B. Factors influencing subjective noise sensitivity in an urban population. Noise Health 2001, 4, 17–24. Available online: https://www.noiseandhealth.org/text.asp?2001/4/13/17/31805 (accessed on 13 January 2023).
- Kliuchko, M.; Heinonen-Guzejev, M.; Vuust, P.; Tervaniemi, M.; Brattico, E. A window into the brain mechanisms associated with noise sensitivity. Sci. Rep. 2016, 6, 39236. [Google Scholar] [CrossRef] [Green Version]
- Kliuchko, M.; Puoliväli, T.; Heinonen-Guzejev, M.; Tervaniemi, M.; Toiviainen, P.; Sams, M.; Brattico, E. Neuroanatomical substrate of noise sensitivity. Neuroimage 2018, 167, 309–315. [Google Scholar] [CrossRef] [Green Version]
- Pearsons, K.S.; Bennett, R.L.; Fidell, S. Speech Levels in Various Noise Environments; EPA Report No. 600/1–77–025; Environmental Protection Agency: Washington, DC, USA, 1977. [Google Scholar]
Perceived Noise Exposure at Work | |||||
---|---|---|---|---|---|
Daily | Weekly | Occasionally | Never | Total | |
N = 114 | N = 97 | N = 233 | N = 322 | N = 766 | |
Sex (N, %) | |||||
Male | 73 (64.0%) | 65 (67.0%) | 124 (53.2%) | 101 (31.4%) | 363 (47.4%) |
Female | 41 (36.0%) | 32 (33.0%) | 109 (46.8%) | 221 (68.6%) | 403 (52.6%) |
Age at wave 4 (years) (Mean, SD) | 22.4 (0.7) | 22.3 (0.7) | 22.5 (0.7) | 22.5 (0.8) | 22.4 (0.7) |
Secondary education (N, %) | |||||
None | 7 (6.1%) | 9 (9.3%) | 21 (9.0%) | 11 (3.4%) | 48 (6.3%) |
Vocational | 69 (60.5%) | 44 (45.4%) | 94 (40.3%) | 93 (28.9%) | 300 (39.2%) |
Academic | 38 (33.3%) | 44 (45.4%) | 118 (50.6%) | 218 (67.7%) | 418 (54.6%) |
Smoking status (N, %) | |||||
Never | 43 (37.7%) | 37 (38.1%) | 85 (36.6%) | 153 (47.5%) | 318 (41.6%) |
Former | 15 (13.2%) | 13 (13.4%) | 22 (9.5%) | 30 (9.3%) | 80 (10.5%) |
Occasional | 6 (5.3%) | 7 (7.2%) | 28 (12.1%) | 40 (12.4%) | 81 (10.6%) |
Current | 50 (43.9%) | 40 (41.2%) | 97 (41.8%) | 99 (30.7%) | 286 (37.4%) |
Work conditions (Mean, SD) | |||||
Job support | 2.2 (0.9) | 2.0 (0.8) | 2.0 (0.7) | 2.0 (0.8) | 2.0 (0.8) |
Job demand | 0.3 (0.7) | 0.3 (0.7) | 0.4 (0.7) | 0.6 (0.7) | 0.4 (0.7) |
Job control | 1.5 (0.9) | 1.4 (0.7) | 1.5 (0.8) | 1.6 (0.8) | 1.5 (0.8) |
Current study (N, %) | |||||
No | 83 (73.5%) | 70 (72.9%) | 131 (57.7%) | 147 (45.7%) | 431 (56.9%) |
Only study | 14 (12.4%) | 8 (8.3%) | 24 (10.6%) | 38 (11.8%) | 84 (11.1%) |
Study&work | 16 (14.2%) | 18 (18.8%) | 72 (31.7%) | 137 (42.5%) | 243 (32.1%) |
GBI for age 22 (Mean, SD) | 5.0 (4.8) | 3.6 (3.5) | 4.8 (4.5) | 3.9 (4.2) | 4.3 (4.3) |
GBI for age 17 (Mean, SD) | 5.5 (5.4) | 4.1 (4.1) | 5.3 (5.2) | 4.7 (4.8) | 4.9 (5.0) |
GBI Score at Age 22 | Regression Coefficient Beta (95% CI) | ||||||||
---|---|---|---|---|---|---|---|---|---|
All | Male | Female | |||||||
Model a (n = 757) | Model b (n = 756) | Model c (n = 658) | Model a (n = 360) | Model b (n = 360) | Model c (n = 302) | Model a (n = 397) | Model b (n = 396) | Model c (n = 356) | |
R2 for the model | 0.0468 | 0.1134 | 0.1362 | 0.0253 | 0.0826 | 0.1315 | 0.0360 | 0.131 | 0.1463 |
Perceived noise at work | |||||||||
Never | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. |
Daily | 1.56 (0.54, 2.59) * | 1.20 (0.19, 2.20) * | 1.19 (0.09, 2.29) * | 0.61 (−0.57, 1.78) | 0.42 (−0.82, 1.66) | 0.22 (−1.08, 1.52) | 2.75 (0.98, 4.51) * | 2.07 (0.37, 3.76) * | 2.22 (0.34, 4.09) * |
Weekly | 0.30 (−0.55, 1.16) | 0.06 (−0.78, 0.89) | −0.12 (−1.05, 0.82) | −0.25 (−1.28, 0.77) | −0.39 (−1.39, 0.61) | −0.44 (−1.55, 0.66) | 0.88 (−0.63, 2.39) | 0.42 (−0.99, 1.82) | −0.02 (−1.58, 1.54) |
Occasionally | 1.17 (0.43, 1.92) * | 0.94 (0.22, 1.66) * | 1.01 (0.24, 1.77) | 0.84 (−0.20, 1.88) | 0.67 (−0.40, 1.75) | 1.03 (−0.13, 2.18) | 1.25 (0.19, 2.32) | 1.01 (0.01, 2.00) * | 0.82 (−0.25, 1.89) |
Age at 22 years survey | 0.28 (−0.16, 0.71) | 0.26 (−0.16, 0.68) | 0.14 (−0.33, 0.60) | 0.54 (−0.08, 1.16) | 0.43 (−0.18, 1.05) | 0.29 (−0.41, 0.99) | 0.03 (−0.56, 0.62) | 0.12 (−0.46, 0.70) | 0.03 (−0.61, 0.67) |
Secondary education | |||||||||
Academic | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. | |||
None | 1.67 (0.13, 3.21) * | 1.69 (−0.01, 3.39) | 1.28 (−0.59, 3.15) | 1.38 (−0.58, 3.34) | 1.92 (−0.84, 4.68) | 2.17 (−0.97, 5.31) | |||
Vocational | −0.16 (−0.89, 0.58) | −0.22 (−1.03, 0.59) | −0.28 (−1.22, 0.67) | −0.21 (−1.25, 0.84) | −0.12 (−1.20, 0.96) | −0.17 (−1.32, 0.98) | |||
Smoking | |||||||||
Never | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. | |||
Former | 1.62 (0.42, 2.82) * | 1.46 (0.11, 2.81) * | 1.27 (−0.30, 2.85) | 1.04 (−0.65, 2.74) | 1.81 (−0.00, 3.63) | 1.90 (−0.26, 4.05) | |||
Occasional | 0.03 (−0.82, 0.89) | 0.06 (−0.84, 0.97) | −1.40 (−2.43, −0.37) * | −1.59 (−2.69, −0.49) * | 1.04 (−0.20, 2.29) | 1.05 (−0.23, 2.33) | |||
Current | 1.50 (0.75, 2.26) * | 1.44 (0.58, 2.30) * | 0.72 (−0.30, 1.75) | 0.53 (−0.64, 1.71) | 2.13 (1.02, 3.23) * | 2.11 (0.89, 3.32) * | |||
Work conditions | |||||||||
Job support | 0.56 (0.14, 0.98) * | 0.75 (0.28, 1.23) * | 0.06 (−0.50, 0.62) | 0.32 (−0.37, 1.01) | 0.86 (0.29, 1.43) * | 0.96 (0.33, 1.58) * | |||
Job demand | −0.15 (−0.63, 0.32) | −0.15 (−0.67, 0.37) | −0.05 (−0.90, 0.80) | −0.05 (−1.00, 0.90) | −0.21 (−0.78, 0.35) | −0.18 (−0.80, 0.44) | |||
Job control | 0.48 (0.01, 0.95) * | 0.36 (−0.15, 0.86) | 0.54 (−0.02, 1.10) | 0.34 (−0.28, 0.97) | 0.43 (−0.27, 1.13) | 0.36 (−0.37, 1.09) | |||
Noise sensitivity | |||||||||
No | Ref. | Ref. | Ref. | ||||||
Yes | 1.35 (0.54, 2.17) * | 1.96 (0.68, 3.24) * | 1.05 (−0.04, 2.13) |
GBI Score at Age 17 | Regression Coefficient Beta (95% CI) | ||||||||
---|---|---|---|---|---|---|---|---|---|
All | Male | Female | |||||||
Model a (n = 664) | Model b (n = 663) | Model c (n = 662) | Model a (n = 302) | Model b (n = 302) | Model c (n = 301) | Model a (n = 362) | Model b (n = 361) | Model c (n = 361) | |
R2 for the model | 0.0780 | 0.1221 | 0.1584 | 0.0111 | 0.1115 | 0.1401 | 0.0295 | 0.1157 | 0.1597 |
Perceived noise at work | |||||||||
Never | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. |
Daily | 1.69 (0.45, 2.92) * | 1.36 (0.12, 2.60) * | 1.32 (0.11, 2.53) * | 0.53 (−0.72, 1.78) | 0.61 (−0.65, 1.86) | 0.43 (−0.80, 1.67) | 3.02 (0.70, 5.33) * | 2.18 (−0.15, 4.51) | 2.41 (0.12, 4.70) * |
Weekly | 0.31 (−0.78, 1.40) | −0.13 (−1.30, 1.04) | 0.04 (−1.08, 1.16) | −0.37 (−1.67, 0.94) | −0.31 (−1.69, 1.08) | −0.20 (−1.55, 1.15) | 0.85 (−1.07, 2.77) | 0.06 (−1.98, 2.09) | 0.29 (−1.68, 2.27) |
Occasionally | 1.10 (0.19, 2.01) * | 0.78 (−0.12, 1.68) | 0.73 (−0.15, 1.62) | 0.68 (−0.42, 1.79) | 0.98 (−0.19, 2.15) | 0.95 (−0.19, 2.10) | 1.28 (−0.09, 2.66) | 0.57 (−0.69, 1.84) | 0.48 (−0.78, 1.73) |
Age at 17 years survey | 0.09 (−0.47, 0.66) | 0.04 (−0.51, 0.58) | 0.07 (−0.48, 0.61) | −0.07 (−0.69, 0.56) | −0.18 (−0.82, 0.46) | −0.18 (−0.80, 0.44) | 0.21 (−0.61, 1.03) | 0.08 (−0.71, 0.88) | 0.12 (−0.69. 0.93) |
Secondary education | |||||||||
Academic | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. | |||
None | 1.87 (−0.42, 4.17) | 1.95 (−0.32, 4.22) | −0.83 (−2.54, 0.87) | −0.66 (−2.37, 1.04) | 4.83 (0.05, 9.61) * | 4.68 (−0.07, 9.42) | |||
Vocational | −0.55 (−1.40, 0.31) | −0.50 (−1.34, 0.33) | −1.38 (−2.31, −0.44) * | −1.25 (−2.17, −0.32) * | 0.23 (−1.07, 1.54) | 0.17 (−1.10, 1.44) | |||
Smoking | |||||||||
Never | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. | |||
Former | 1.85 (0.45, 3.26) * | 1.33 (−0.06, 2.73) | 1.44 (−0.19, 3.06) | 1.16 (−0.42, 2.74) | 1.66 (−0.73, 4.05) | 0.91 (−1.49, 3.31) | |||
Occasional | 1.20 (−0.04, 2.44) | 1.22 (−0.02, 2.47) | −1.42 (−2.76, −0.09) * | −1.51 (−2.90, −0.11) * | 2.60 (0.84, 4.36) * | 2.73 (1.01, 4.45) * | |||
Current | 1.07 (0.17, 1.97) * | 0.96 (0.07, 1.86) * | 0.29 (−0.72, 1.29) | 0.28 (−0.72, 1.28) | 1.51 (0.11, 2.91) * | 1.28 (−0.12, 2.68) | |||
Work conditions | |||||||||
Job support | 0.61 (0.09, 1.14) * | 0.62 (0.11, 1.12) * | 1.01 (0.29, 1.74) * | 0.98 (0.26, 1.71) * | 0.38 (−0.28, 1.05) | 0.41 (−0.24, 1.05) | |||
Job demand | −0.45 (−1.05, 0.14) | −0.44 (−1.03, 0.15) | 0.19 (−0.61, 0.98) | 0.18 (−0.62, 0.97) | −0.84 (−1.66, −0.03) | −0.81 (−1.62, −0.01) * | |||
Job control | −0.24 (−0.77, 0.29) | −0.26 (−0.78, 0.26) | −0.06 (−0.67, 0.55) | −0.05 (−0.67, 0.56) | −0.39 (−1.18, 0.40) | −0.45 (−1.22, 0.31) | |||
Noise sensitivity | |||||||||
No | Ref. | Ref. | Ref. | ||||||
Yes | 2.11 (1.25, 2.97) * | 1.57 (0.41, 2.74) * | 2.43 (1.24, 3.62) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heinonen-Guzejev, M.; Whipp, A.M.; Wang, Z.; Ranjit, A.; Palviainen, T.; van Kamp, I.; Kaprio, J. Perceived Occupational Noise Exposure and Depression in Young Finnish Adults. Int. J. Environ. Res. Public Health 2023, 20, 4850. https://doi.org/10.3390/ijerph20064850
Heinonen-Guzejev M, Whipp AM, Wang Z, Ranjit A, Palviainen T, van Kamp I, Kaprio J. Perceived Occupational Noise Exposure and Depression in Young Finnish Adults. International Journal of Environmental Research and Public Health. 2023; 20(6):4850. https://doi.org/10.3390/ijerph20064850
Chicago/Turabian StyleHeinonen-Guzejev, Marja, Alyce M. Whipp, Zhiyang Wang, Anu Ranjit, Teemu Palviainen, Irene van Kamp, and Jaakko Kaprio. 2023. "Perceived Occupational Noise Exposure and Depression in Young Finnish Adults" International Journal of Environmental Research and Public Health 20, no. 6: 4850. https://doi.org/10.3390/ijerph20064850