Synthesis, Characterization and Application of a MIP-polyHIPE for Selective Extraction of Angiotensin II Receptor Antagonists Residues in Natural Waters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Synthesis of MIP-polyHIPE
2.3. Physicochemical Characterization of MIP- and NIP-polyHIPEs
2.4. Analytical Characterization of MIP-polyHIPEs
2.5. Solid-Phase Extraction
2.6. HPLC–UV Analysis
3. Results and Discussion
3.1. Synthesis and Physicochemical Characterization of the MIP- and NIP- polyHIPEs
3.2. Sorption Isotherms
3.3. Sorption Kinetics
3.4. Breakthrough Curves
3.5. Analytical Application for Solid-Phase Extraction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martín-Esteban, A. Recent molecularly imprinted polymer-based sample preparation techniques in environmental analysis. Trends Environ. Anal. Chem. 2016, 9, 8–14. [Google Scholar] [CrossRef]
- Speltini, A.; Scalabrini, A.; Maraschi, F.; Sturini, M.; Profumo, A. Newest applications of molecularly imprinted polymers for extraction of contaminants from environmental and food matrices: A review. Anal. Chim. Acta 2017, 974, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, O.S.; Bedwell, T.S.; Esen, C.; Garcia-Cruz, A.; Piletsky, S.A. Molecularly imprinted polymers in electrochemical and optical sensors. Trends Biotechnol. 2019, 37, 294–309. [Google Scholar] [CrossRef] [PubMed]
- Leibl, N.; Haupt, K.; Gonzato, C.; Duma, L. Molecularly imprinted polymers for chemical sensing: A tutorial review. Chemosensors 2021, 9, 123. [Google Scholar] [CrossRef]
- Alberti, G.; Zanoni, C.; Losi, V.; Magnaghi, L.R.; Biesuz, R. Current Trends in Polymer Based Sensors. Chemosensors 2021, 9, 108. [Google Scholar] [CrossRef]
- Song, Z.; Li, J.; Lu, W.; Li, B.; Yang, G.; Bi, Y.; Arabi, M.; Wang, X.; Ma, J.; Chen, L. Molecularly imprinted polymers based materials and their applications in chromatographic and electro-phoretic separations. Trends Anal. Chem. 2022, 146, 116504. [Google Scholar] [CrossRef]
- Lissant, K.J. The geometry of high-internal-phase-ratio emulsions. J. Colloid Interface Sci. 1966, 22, 462–468. [Google Scholar] [CrossRef]
- Silverstein, M.S. PolyHIPEs: Recent advances in emulsion-templated porous polymers. Prog. Polym. Sci. 2014, 39, 199–234. [Google Scholar] [CrossRef]
- Menner, A.; Powell, R.; Bismarck, A. Open porous polymer foams via inverse emulsion polymerization: Should the definition of high internal phase (ratio) emulsions be extended? Macromolecules 2006, 39, 2034–2035. [Google Scholar] [CrossRef]
- Cameron, N.R. High internal phase emulsion templating as a route to well-defined porous polymers. Polymer 2005, 46, 1439–1449. [Google Scholar] [CrossRef] [Green Version]
- Tripodo, G.; Marrubini, G.; Corti, M.; Brusotti, G.; Milanese, C.; Sorrenti, M.; Catenacci, L.; Massolini, G.; Calleri, E. Acrylate-based poly-high internal phase emulsions for effective enzyme immobilization and activity retention: From computationally-assisted synthesis to pharmaceutical applications. Polym. Chem. 2018, 9, 87–97. [Google Scholar] [CrossRef]
- Corti, M.; Calleri, E.; Perteghella, S.; Ferrara, A.; Tamma, R.; Milanese, C.; Mandracchia, D.; Brusotti, G.; Torre, M.L.; Ribatti, D.; et al. Polyacrylate/polyacrylate-PEG biomaterials obtained by high internal phase emulsions (HIPEs) with tailorable drug release and effective mechanical and biological properties. Mater. Sci. Eng. C 2019, 105, 110060. [Google Scholar] [CrossRef] [PubMed]
- Speltini, A.; Tripodo, G.; Rinaldi, F.; Massolini, G.; Profumo, A.; Calleri, E. Carbon nanotubes-modified poly-high internal phase emulsions for pharmaceuticals pre-concentration and determination. J. Pharm. Biomed. Anal. 2022, 207, 114391. [Google Scholar] [CrossRef] [PubMed]
- Lopez, F.J.; Pitarch, E.; Botero-Coy, A.M.; Fabregat-Safont, D.; Ibáñez, M.; Marin, J.M.; Peruga, A.; Ontañón, N.; Martínez-Morcillo, S.; Olalla, A.; et al. Removal efficiency for emerging contaminants in a WWTP from Madrid (Spain) after secondary and tertiary treatment and environmental impact on the Manzanares River. Sci. Total Environ. 2022, 812, 152567. [Google Scholar] [CrossRef]
- Ślósarczyk, K.; Jakóbczyk-Karpierz, S.; Różkowski, J.; Witkowski, A.J. Occurrence of pharmaceuticals and personal care products in the water environment of Poland: A Review. Water 2021, 13, 2283. [Google Scholar] [CrossRef]
- Oberleitner, D.; Schmid, R.; Schulz, W.; Bergmann, A.; Achten, C. Feature-based molecular networking for identification of organic micropollutants including metabolites by non-target analysis applied to riverbank filtration. Anal. Bioanal. Chem. 2021, 413, 5291–5300. [Google Scholar] [CrossRef]
- Zhang, M.; Wei, F.; Zhang, Y.F.; Nie, J.; Feng, Y.Q. Novel polymer monolith microextraction using a poly (methacrylic acid-ethylene glycol dimethacrylate) monolith and its application to simultaneous analysis of several angiotensin II receptor antagonists in human urine by capillary zone electrophoresis. J. Chromatogr. A 2006, 1102, 294–301. [Google Scholar] [CrossRef]
- Mudiam, M.K.R.; Chauhan, A.; Singh, A.K.; Sharma, V.P.; Saxena, P.N. Molecularly imprinted SPE combined with dispersive liquid–liquid microextraction for selective analysis of telmisartan in biological and formulation samples. Bioanalysis 2016, 5, 847–858. [Google Scholar] [CrossRef]
- Brusotti, G.; Calleri, E.; Milanese, C.; Catenacci, L.; Marrubini, G.; Sorrenti, M.; Girella, A.; Massolini, G.; Tripodo, G. Rational design of functionalized polyacrylate-based high internal phase emulsion materials for analytical and biomedical uses. Polym. Chem. 2016, 7, 7436–7445. [Google Scholar] [CrossRef]
- Kimmins, S.D.; Wyman, P.; Cameron, N.R. Photopolymerised methacrylate-based emulsion-templated porous polymers. React. Funct. Polym. 2012, 72, 947–954. [Google Scholar] [CrossRef]
- Ganewatta, N.; El Rassi, Z. Monolithic capillary columns consisting of poly (glycidyl methacrylate-co-ethylene glycol dimethacrylate) and their diol derivatives with incorporated hydroxyl functionalized multiwalled carbon nanotubes for reversed-phase capillary electrochromatography. Analyst 2018, 143, 270–279. [Google Scholar] [CrossRef] [PubMed]
- Feczkó, T.; Trif, L.; Németh, B.; Horák, D. Silica-coated poly (glycidyl methacrylate-ethylene dimethacrylate) beads containing organic phase change materials. Thermochim. Acta 2016, 641, 24–28. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, Y.; Guo, X.; Zhang, H. Ambient temperature synthesis of narrow or monodisperse, highly cross-linked, and “living” polymer microspheres by atom transfer radical precipitation polymerization. RSC Adv. 2012, 2, 56515662. [Google Scholar] [CrossRef]
- Wan, Y.; Wang, M.; Fu, Q.; Wang, L.; Wang, D.; Zhang, K.; Xia, Z.; Gao, D. Novel dual functional monomers based molecularly imprinted polymers for selective extraction of myricetin from herbal medicines. J. Chromatogr. B 2018, 1097, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Sankar, S.S.; Lonikar, S.V.; Gilbert, R.D.; Fornes, R.E.; Stejskal, E.O. Solid-state CPMAS 13C-NMR studies of the reaction of an epoxy resin with masked isocyanates. J. Polym. Sci. B Polym. Phys. 1990, 28, 293–302. [Google Scholar] [CrossRef]
- Alberti, G.; Amendola, V.; Pesavento, M.; Biesuz, R. Beyond the synthesis of novel solid phases: Review on modelling of sorption phenomena. Coord. Chem. Rev. 2012, 256, 28–45. [Google Scholar] [CrossRef]
- Langmuir, I. The constitution and fundamental properties of solids and liquids. Part I. Solids. J. Am. Chem. Soc. 1916, 38, 2221–2295. [Google Scholar] [CrossRef] [Green Version]
- Zanoni, C.; Rovida, R.; Magnaghi, L.R.; Biesuz, R.; Alberti, G. Voltammetric Detection of Irbesartan by Molecularly Imprinted Polymer (MIP)-Modified Screen-Printed Electrodes. Chemosensors 2022, 10, 517. [Google Scholar] [CrossRef]
- Rovida, R.; Zanoni, C.; Alberti, G.; Magnaghi, L.R.; Biesuz, R. MIP-based screen-printed electrode for Irbesartan sensing. In Proceedings of the 3rd International Electronic Conference on Applied Sciences (ASEC 2022), Virtual, 1–15 December 2022. [Google Scholar]
- Chu, K.H. Fixed bed sorption: Setting the record straight on the Bohart-Adams and Thomas models. J. Hazard. Mater. 2010, 177, 1006–1012. [Google Scholar] [CrossRef]
- Ghorbani, M.; Aghamohammadhassan, M.; Chamsaz, M.; Akhlaghi, H.; Pedramrad, T. Dispersive solid phase microextraction. Trends Anal. Chem. 2019, 118, 793–809. [Google Scholar] [CrossRef]
Sorbent | qmax (mmol/g) | KL (M−1) |
---|---|---|
MIP-polyHIPE (1:100) | 0.05(2) | 2.5(4)∙103 |
MIP-polyHIPE (1:30) | 0.23(7) | 2.1(6)∙103 |
MIP-polyHIPE (1:15) | 0.42(5) | 2.1(4)∙103 |
NIP-polyHIPE | 0.08(4) | 2.5(6)∙103 |
Fitting Model | k (min−1) | R |
---|---|---|
Film diffusion | 0.031(2) | 0.996 |
Particle diffusion | 0.008(1) | 0.983 |
Sample | Sorbent Amount (mg) | Spike (µg L−1) | Mean Recovery (%) a | |
---|---|---|---|---|
MIP-polyHIPE | NIP-polyHIPE | |||
Tap water 1 (250 mL) | 300 | 500 | 94(13) | 30(4) |
Tap water 1 (100 mL) | 50 | 100 | 95(12) | - |
Tap water 1 (100 mL) | 50 | 15 | 96(11) | - |
River water 2 (100 mL) | 50 | 15 | 95(12) | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Speltini, A.; Alberti, G.; Rovida, R.; Milanese, C.; De Soricellis, G.; Rinaldi, F.; Massolini, G.; Gallo, A.; Calleri, E. Synthesis, Characterization and Application of a MIP-polyHIPE for Selective Extraction of Angiotensin II Receptor Antagonists Residues in Natural Waters. Int. J. Environ. Res. Public Health 2023, 20, 4878. https://doi.org/10.3390/ijerph20064878
Speltini A, Alberti G, Rovida R, Milanese C, De Soricellis G, Rinaldi F, Massolini G, Gallo A, Calleri E. Synthesis, Characterization and Application of a MIP-polyHIPE for Selective Extraction of Angiotensin II Receptor Antagonists Residues in Natural Waters. International Journal of Environmental Research and Public Health. 2023; 20(6):4878. https://doi.org/10.3390/ijerph20064878
Chicago/Turabian StyleSpeltini, Andrea, Giancarla Alberti, Riccardo Rovida, Chiara Milanese, Giulia De Soricellis, Francesca Rinaldi, Gabriella Massolini, Angelo Gallo, and Enrica Calleri. 2023. "Synthesis, Characterization and Application of a MIP-polyHIPE for Selective Extraction of Angiotensin II Receptor Antagonists Residues in Natural Waters" International Journal of Environmental Research and Public Health 20, no. 6: 4878. https://doi.org/10.3390/ijerph20064878
APA StyleSpeltini, A., Alberti, G., Rovida, R., Milanese, C., De Soricellis, G., Rinaldi, F., Massolini, G., Gallo, A., & Calleri, E. (2023). Synthesis, Characterization and Application of a MIP-polyHIPE for Selective Extraction of Angiotensin II Receptor Antagonists Residues in Natural Waters. International Journal of Environmental Research and Public Health, 20(6), 4878. https://doi.org/10.3390/ijerph20064878