Comparison of Three Diagnostic Definitions of Metabolic Syndrome and Estimation of Its Prevalence in Mongolia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Sampling, and Population
2.2. Measurements
2.3. Definition of the Metabolic Syndrome
2.4. Socioeconomic Status (SES) Variables
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Expert Panel on Detection E. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 2001, 285, 2486–2497. [Google Scholar] [CrossRef]
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C.; et al. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005, 112, 2735–2752. [Google Scholar] [CrossRef] [Green Version]
- Alberti, K.G.; Zimmet, P.; Shaw, J.; IDF Epidemiology Task Force Consensus Group. The metabolic syndrome—A new worldwide definition. Lancet 2005, 366, 1059–1062. [Google Scholar] [CrossRef]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C.; et al. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grundy, S.M. Metabolic syndrome pandemic. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 629–636. [Google Scholar] [CrossRef] [Green Version]
- Ervin, R.B. Prevalence of metabolic syndrome among adults 20 years of age and over, by sex, age, race and ethnicity, and body mass index: United States, 2003–2006. Natl. Health Stat. Rep. 2009, 13, 1–7. [Google Scholar]
- Pan, W.H.; Yeh, W.T.; Weng, L.C. Epidemiology of metabolic syndrome in Asia. Asia Pac. J. Clin. Nutr. 2008, 17 (Suppl. 1), 37–42. [Google Scholar] [PubMed]
- Ranasinghe, P.; Mathangasinghe, Y.; Jayawardena, R.; Hills, A.P.; Misra, A. Prevalence and trends of metabolic syndrome among adults in the asia-pacific region: A systematic review. BMC Public Health 2017, 17, 101. [Google Scholar] [CrossRef] [Green Version]
- Center for Health Development, Ministry of Health Mongolia, Health indicators-Mongolia; Munkhiin Useg: Ulaanbaatar, Mongolia, 2018.
- World Health Organization. Noncommunicable Diseases Country Profiles. Mongolia. 2018. Available online: https://www.who.int/publications/m/item/noncommunicable-diseases-mng-country-profile-2018 (accessed on 2 August 2022).
- Enkh-Oyun, T.; Kotani, K.; Davaalkham, D.; Davaa, G.; Ganchimeg, U.; Angarmurun, D.; Khuderchuluun, N.; Batzorig, B.; Tsuboi, S.; Ae, R.; et al. Epidemiologic features of metabolic syndrome in a general Mongolian population. Metab. Syndr. Relat. Disord. 2015, 13, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Shiwaku, K.; Nogi, A.; Kitajima, K.; Anuurad, E.; Enkhmaa, B.; Yamasaki, M.; Kim, J.M.; Kim, I.S.; Lee, S.K.; Oyunsuren, T.; et al. Prevalence of the metabolic syndrome using the modified ATP III definitions for workers in Japan, Korea and Mongolia. J. Occup. Health 2005, 47, 126–135. [Google Scholar] [CrossRef] [Green Version]
- Pengpid, S.; Peltzer, K. National trends in metabolic syndrome among adults in Mongolia from three cross-sectional surveys in 2009, 2013 and 2019. Diabetes Metab. Syndr. 2022, 16, 102375. [Google Scholar] [CrossRef]
- Riley, L.; Guthold, R.; Cowan, M.; Savin, S.; Bhatti, L.; Armstrong, T.; Bonita, R. The World Health Organization STEPwise Approach to Noncommunicable Disease Risk-Factor Surveillance: Methods, Challenges, and Opportunities. Am. J. Public Health 2016, 106, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Potts, H.; Baatarsuren, U.; Myanganbayar, M.; Purevdorj, B.; Lkhagvadorj, B.U.; Ganbat, N.; Dorjpalam, A.; Boldbaatar, D.; Tuvdendarjaa, K.; Sampilnorov, D.; et al. Hypertension prevalence and control in Ulaanbaatar, Mongolia. J. Clin. Hypertens. (Greenwich) 2020, 22, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Pickering, T.G.; Hall, J.E.; Appel, L.J.; Falkner, B.E.; Graves, J.; Hill, M.N.; Jones, D.W.; Kurtz, T.; Sheps, S.G.; Roccella, E.J. Recommendations for blood pressure measurement in humans and experimental animals: Part 1: Blood pressure measurement in humans: A statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Circulation 2005, 111, 697–716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kraus, W.E.; Bhapkar, M.; Huffman, K.M.; Pieper, C.F.; Krupa Das, S.; Redman, L.M.; Villareal, D.T.; Rochon, J.; Roberts, S.B.; Ravussin, E.; et al. 2 years of calorie restriction and cardiometabolic risk (CALERIE): Exploratory outcomes of a multicentre, phase 2, randomised controlled trial. Lancet Diabetes Endocrinol. 2019, 7, 673–683. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Zheng, L.; Xu, C.; Li, J.; Zhang, X.; Liu, S.; Hu, D.; Sun, Y. Prevalence of prehypertension, hypertension and, associated risk factors in Mongolian and Han Chinese populations in Northeast China. Int. J. Cardiol. 2008, 128, 250–254. [Google Scholar] [CrossRef] [PubMed]
- Shiwaku, K.; Anuurad, E.; Enkhmaa, B.; Nogi, A.; Kitajima, K.; Shimono, K.; Yamane, Y.; Oyunsuren, T. Overweight Japanese with body mass indexes of 23.0-24.9 have higher risks for obesity-associated disorders: A comparison of Japanese and Mongolians. Int. J. Obes. Relat. Metab. Disord. 2004, 28, 152–158. [Google Scholar] [CrossRef] [Green Version]
- Erikson, R.; Goldthorpe, J.H.; Portocarero, L. Intergenerational class mobility and the convergence thesis: England, France and Sweden. 1979. Br. J. Sociol. 2010, 61 (Suppl. 1), 185–219. [Google Scholar] [CrossRef]
- National Statistics Office of Mongolia. Mongolian Statistical Yearbook. 2018. Available online: https://www.1212.mn/en/statistic/file-library/view/47811309 (accessed on 23 September 2022).
- National Statistics Office of Mongolia. Mongolian Statistical Information Service. Available online: https://www2.1212.mn (accessed on 1 March 2023).
- Chovalopoulou, M.E.; Bertsatos, A.; Papageorgopoulou, C. Age-related changes in the craniofacial region in a modern Greek population sample of known age and sex. Int. J. Legal. Med. 2017, 131, 1103–1111. [Google Scholar] [CrossRef]
- Altman, D.G. Practical Statistics for Medical Research; Chapman & Hall/CRC: London, UK, 1991. [Google Scholar]
- Ulijaszek, S.J.; Kerr, D.A. Anthropometric measurement error and the assessment of nutritional status. Br. J. Nutr. 1999, 82, 165–177. [Google Scholar] [CrossRef] [Green Version]
- Verweij, L.M.; Terwee, C.B.; Proper, K.I.; Hulshof, C.T.; van Mechelen, W. Measurement error of waist circumference: Gaps in knowledge. Public Health Nutr. 2013, 16, 281–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chimeddamba, O.; Peeters, A.; Walls, H.L.; Joyce, C. Noncommunicable Disease Prevention and Control in Mongolia: A Policy Analysis. BMC Public Health 2015, 15, 660. [Google Scholar] [CrossRef] [Green Version]
- The Secretariat of the State Great Khural of Mongolia. Mongolia Sustainable Development Vision 2030. 2016. Available online: https://archive.un-page.org/files/public/20160205_mongolia_sdv_2030.pdf (accessed on 23 September 2022).
- National Center for Public Health. Fourth National STEPs Survey on Prevalence of Noncommunicable Disease and Injury Risk Factors-2019; Khukh Mongol Printing: Ulaanbaatar, Mongolia, 2019. [Google Scholar]
- Chimeddamba, O.; Gearon, E.; Stevenson, C.; Liviya Ng, W.; Baasai, B.; Peeters, A. Trends in adult overweight and obesity prevalence in Mongolia, 2005–2013. Obesity 2016, 24, 2194–2201. [Google Scholar] [CrossRef] [PubMed]
- Pengpid, S.; Peltzer, K. National high prevalence, and low awareness, treatment and control of dyslipidaemia among people aged 15–69 years in Mongolia in 2019. Sci. Rep. 2022, 12, 10478. [Google Scholar] [CrossRef]
- Otgontuya, D.; Oum, S.; Palam, E.; Rani, M.; Buckley, B.S. Individual-based primary prevention of cardiovascular disease in Cambodia and Mongolia: Early identification and management of hypertension and diabetes mellitus. BMC Public Health 2012, 12, 254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enkh-Oyun, T.; Kotani, K.; Davaalkham, D.; Uehara, R.; Sadakane, A.; Aoyama, Y.; Tsuboi, S.; Nakamura, Y. Hypertension in Mongolia: An overview. Ethn. Dis. 2013, 23, 363–368. [Google Scholar]
- Suvd, J.; Gerel, B.; Otgooloi, H.; Purevsuren, D.; Zolzaya, H.; Roglic, G.; King, H. Glucose intolerance and associated factors in Mongolia: Results of a national survey. Diabet. Med. 2002, 19, 502–508. [Google Scholar] [CrossRef]
- Manaseki, S. Mongolia: A health system in transition. BMJ 1993, 307, 1609–1611. [Google Scholar] [CrossRef] [Green Version]
- Bromage, S.; Daria, T.; Lander, R.L.; Tsolmon, S.; Houghton, L.A.; Tserennadmid, E.; Gombo, N.; Gibson, R.S.; Ganmaa, D. Diet and Nutrition Status of Mongolian Adults. Nutrients 2020, 12, 1514. [Google Scholar] [CrossRef]
- Mongolia Demographics 2020. Available online: https://www.worldometers.info/demographics/mongolia-demographics/#poplation-pyramid (accessed on 2 August 2022).
- National centre for Non Formal and Distance Education, Ministry of Education, Culture and Science. National Report on the Situation of Adult Learning and Education-Mongolia. 2008. Available online: https://uil.unesco.org/fileadmin/multimedia/uil/confintea/pdf/National_Reports/Asia%20-%20Pacific/Mongolia.pdf (accessed on 23 September 2022).
- Popkin, B.M. Global nutrition dynamics: The world is shifting rapidly toward a diet linked with noncommunicable diseases. Am. J. Clin. Nutr. 2006, 84, 289–298. [Google Scholar] [CrossRef]
- Komatsu, F.; Kagawa, Y.; Kawabata, T.; Kaneko, Y.; Purvee, B.; Otgon, J.; Chimedregzen, U. Dietary habits of Mongolian people, and their influence on lifestyle-related diseases and early aging. Curr. Aging Sci. 2008, 1, 84–100. [Google Scholar] [CrossRef] [PubMed]
- Bener, A.; Zirie, M.; Musallam, M.; Khader, Y.S.; Al-Hamaq, A.O. Prevalence of metabolic syndrome according to Adult Treatment Panel III and International Diabetes Federation criteria: A population-based study. Metab. Syndr. Relat. Disord. 2009, 7, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Bhanushali, C.J.; Kumar, K.; Wutoh, A.K.; Karavatas, S.; Habib, M.J.; Daniel, M.; Lee, E. Association between Lifestyle Factors and Metabolic Syndrome among African Americans in the United States. J. Nutr. Metab. 2013, 2013, 516475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Risk Factors (RF) | NCEP ATP III (2004) | IDF (2005) | JIS (2009) |
---|---|---|---|
Waist circumference (WC) | M ≥ 102 cm F ≥ 88 cm | M ≥ 90 cm F ≥ 80 cm (South Asian cut-points) | M ≥ 90 cm F ≥ 80 cm (South Asian cut-points) |
Blood pressure (BP) | SBP ≥ 130 or DBP ≥ 85 mmHg or on treatment for HPT | SBP ≥ 130 or DBP ≥ 85 mmHg or on treatment for HPT | SBP ≥ 130 or DBP ≥ 85 mmHg or on treatment for HPT |
Fasting blood glucose (FBG) | ≥100 mg/dL or on treatment for elevated glucose | ≥100 mg/dL or previously diagnosed T2DM | ≥100 mg/dL or on treatment for elevated glucose |
Triglycerides (TG) | ≥150 mg/dL or on treatment for TG | ≥150 mg/dL or on treatment for TG | ≥150 mg/dL or on treatment for TG |
HDL-C | M < 40 mg/dL F < 50 mg/dL or on treatment for HDL-C | M < 40 mg/dL F < 50 mg/dL or on treatment for HDL-C | M < 40 mg/dL F < 50 mg/dL or on treatment for HDL-C |
Metabolic syndrome definitions | Any 3 RF or more | WC+ any 2 RF or more | Any 3 RF or more |
Characteristics | Total | Men | Women | p Value |
---|---|---|---|---|
n = 2076 | n = 963 | n = 1113 | ||
Age, mean (SD), yr | 39.9 (13.7) | 39.6 (13.8) | 40.2 (13.6) | 0.860 |
Height, mean (SD), cm | 164.0 (8.6) | 169.9 (7.0) | 158.8 (6.2) | <0.001 |
Weight, mean (SD), kg | 70.4 (14.6) | 75.9 (14.5) | 65.7 (13.1) | <0.001 |
Body mass index, mean (SD) | 26.1 (4.9) | 26.2 (4.6) | 26.0 (5.1) | 0.323 |
Waist circumference, mean (SD), cm | 88.0 (13.4) | 90.9 (13.4) | 85.4 (12.9) | <0.001 |
Systolic blood pressure, mean (SD), mmHg | 123.4 (17.1) | 128.5 (16.1) | 119.0 (16.7) | <0.001 |
Diastolic blood pressure, mean (SD), mmHg | 79.0 (11.4) | 82.4 (11.0) | 76.1 (11.0) | <0.001 |
HDL-C, mean (SD), mg/dL | 58.0 (11.8) | 57.8 (11.8) | 58.1 (11.9) | 0.218 |
Triglycerides, mean (SD), mg/dL | 135.0 (110.1) | 136.7(115.9) | 133.5 (104.8) | 0.308 |
Fasting blood glucose, mean (SD), mg/dL | 95.4 (31.9) | 95.3 (31.1) | 95.4 (32.5) | 0.767 |
Antihypertensive drug, n (%) | 427 (20.6) | 143 (14.8) | 284 (25.5) | <0.001 |
Glucose drug, n (%) | 39 (1.9) | 14 (1.5) | 25 (2.2) | 0.185 |
Cholesterol drug, n (%) | 86 (4.1) | 27 (2.8) | 59 (5.3) | 0.004 |
Components | Diagnostic Criteria | Sensitivity (%) | Specificity (%) | Kappa Coefficient (95% CI) | Agreement |
---|---|---|---|---|---|
Men | |||||
WC | NCEP ATP III | 46 | 93 | 0.42 (0.35 to 0.49) | Moderate |
IDF | 41 | 100 | 0.40 (0.36 to 0.45) | Fair | |
JIS | 38 | 92 | 0.29 (0.24 to 0.34) | Fair | |
SBP | NCEP ATP III | 27 | 91 | 0.20 (0.15 to 0.26) | Poor |
IDF | 38 | 88 | 0.28 (0.22 to 0.34) | Fair | |
JIS | 38 | 85 | 0.26 (0.20 to 0.32) | Fair | |
DBP | NCEP ATP III | 26 | 91 | 0.19 (0.13 to 0.25) | Poor |
IDF | 36 | 87 | 0.24 (0.18 to 0.31) | Fair | |
JIS | 37 | 84 | 0.22 (0.16 to 0.28) | Fair | |
FBG | NCEP ATP III | 38 | 92 | 0.34 (0.27 to 0.41) | Fair |
IDF | 44 | 86 | 0.31 (0.24 to 0.38) | Fair | |
JIS | 56 | 87 | 0.44 (0.37 to 0.50) | Moderate | |
TG | NCEP ATP III | 39 | 95 | 0.40 (0.35 to 0.48) | Fair |
IDF | 43 | 88 | 0.33 (0.27 to 0.40) | Fair | |
JIS | 54 | 89 | 0.46 (0.40 to 0.52) | Moderate | |
HDL-C | NCEP ATP III | 70 | 88 | 0.30 (0.21 to 0.38) | Fair |
IDF | 52 | 80 | 0.13 (0.07 to 0.19) | Poor | |
JIS | 80 | 79 | 0.22 (0.16 to 0.28) | Fair | |
Women | |||||
WC | NCEP ATP III | 41 | 90 | 0.33 (0.28 to 0.38) | Fair |
IDF | 38 | 100 | 0.30 (0.26 to 0.33) | Fair | |
JIS | 36 | 91 | 0.21 (0.18 to 0.25) | Fair | |
SBP | NCEP ATP III | 49 | 84 | 0.31 (0.25 to 0.38) | Fair |
IDF | 54 | 82 | 0.34 (0.27 to 0.40) | Fair | |
JIS | 54 | 80 | 0.31 (0.25 to 0.37) | Fair | |
DBP | NCEP ATP III | 47 | 83 | 0.28 (0.21 to 0.34) | Fair |
IDF | 51 | 81 | 0.29 (0.22 to 0.35) | Fair | |
JIS | 52 | 79 | 0.27 (0.21 to 0.33) | Fair | |
FBG | NCEP ATP III | 47 | 86 | 0.35 (0.28 to 0.41) | Fair |
IDF | 46 | 82 | 0.29 (0.22 to 0.35) | Fair | |
JIS | 55 | 83 | 0.39 (0.33 to 0.45) | Fair | |
TG | NCEP ATP III | 47 | 87 | 0.36 (0.30 to 0.42) | Fair |
IDF | 47 | 83 | 0.31 (0.25 to 0.38) | Fair | |
JIS | 55 | 84 | 0.40 (0.34 to 0.46) | Fair | |
HDL-C | NCEP ATP III | 58 | 87 | 0.43 (0.37 to 0.50) | Moderate |
IDF | 53 | 82 | 0.33 (0.27 to 0.40) | Fair | |
JIS | 64 | 83 | 0.43 (0.37 to 0.49) | Moderate |
Characteristics | Men n = 963 | ||
---|---|---|---|
N (%) | Crude OR (95% CI) | Adjusted OR a (95% CI) | |
Age group | |||
<40 | 527 (54.7) | 1.00 | 1.00 |
40–59 | 350 (36.3) | 1.59 (1.17 to 2.17) | 1.44 (1.01 to 2.04) |
60 and over | 86 (8.9) | 1.77 (1.08 to 2.91) | 1.55 (0.87 to 2.78) |
Education | |||
Higher educational attainment | 442 (45.9) | 1.00 | 1.00 |
High school and lower | 521 (54.1) | 0.99 (0.74 to 1.32) | 0.92 (0.65 to 1.30) |
Occupation | |||
Non-manual | 224 (25.3) | 1.00 | 1.00 |
Manual | 407 (42.3) | 1.13 (0.78 to 1.63) | 1.09 (0.72 to 1.66) |
Others/students, retired, unemployed | 312 (32.4) | 1.16 (0.79 to 1.71) | 1.08 (0.68 to 1.73) |
Marital status | |||
Unmarried | 732 (76.0) | 1.00 | 1.00 |
Married | 231 (24.0) | 1.69 (1.17 to 2.44) | 1.38 (0.91 to 2.09) |
Monthly income | |||
Upper | 243 (25.2) | 1.00 | 1.00 |
Middle | 295 (30.6) | 1.14 (0.77 to 1.67) | 1.17 (0.79 to 1.74) |
Lower | 425 (44.1) | 1.03 (0.71 to 1.48) | 1.03 (0.70 to 1.51) |
Housing | |||
Apartment | 481 (49.9) | 1.00 | 1.00 |
Ger district | 482 (50.1) | 0.92 (0.69 to 1.23) | 0.96 (0.69 to 1.32) |
Women n = 1113 | |||
Age group | |||
<40 | 599 (53.8) | 1.00 | 1.00 |
40–59 | 399 (35.8) | 2.51 (1.88 to 3.35) | 2.28 (1.68 to 3.09) |
60 and over | 115 (10.3) | 3.89 (2.56 to 5.93) | 3.22 (2.04 to 5.08) |
Education | |||
Higher educational attainment | 606 (54.4) | 1.00 | 1.00 |
High school and lower | 507 (45.6) | 1.33 (1.02 to 1.73) | 1.09 (0.80 to 1.47) |
Occupation | |||
Non-manual | 336 (30.2) | 1.00 | 1.00 |
Manual | 231 (20.8) | 1.16 (0.79 to 1.70) | 0.99 (0.65 to 1.51) |
Others/students, retired, unemployed | 546 (49.1) | 1.39 (1.02 to 1.89) | 1.12 (0.79 to 1.60) |
Marital status | |||
Unmarried | 896 (80.5) | 1.00 | 1.00 |
Married | 217 (19.5) | 2.22 (1.51 to 3.25) | 1.57 (1.04 to 2.36) |
Monthly income | |||
Upper | 200 (18.0) | 1.00 | 1.00 |
Middle | 330 (29.6) | 1.01 (0.68 to 1.50) | 0.95 (0.63 to 1.45) |
Lower | 583 (52.4) | 1.13 (0.79 to 1.63) | 1.02 (0.68 to 1.52) |
Housing | |||
Apartment | 544 (48.9) | 1.00 | 1.00 |
Ger district | 569 (51.1) | 1.03 (0.79 to 1.34) | 1.04 (0.78 to 1.39) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Myagmar-Ochir, E.; Haruyama, Y.; Takaoka, N.; Takahashi, K.; Dashdorj, N.; Dashtseren, M.; Kobashi, G. Comparison of Three Diagnostic Definitions of Metabolic Syndrome and Estimation of Its Prevalence in Mongolia. Int. J. Environ. Res. Public Health 2023, 20, 4956. https://doi.org/10.3390/ijerph20064956
Myagmar-Ochir E, Haruyama Y, Takaoka N, Takahashi K, Dashdorj N, Dashtseren M, Kobashi G. Comparison of Three Diagnostic Definitions of Metabolic Syndrome and Estimation of Its Prevalence in Mongolia. International Journal of Environmental Research and Public Health. 2023; 20(6):4956. https://doi.org/10.3390/ijerph20064956
Chicago/Turabian StyleMyagmar-Ochir, Enkhtuguldur, Yasuo Haruyama, Nobuko Takaoka, Kyo Takahashi, Naranjargal Dashdorj, Myagmartseren Dashtseren, and Gen Kobashi. 2023. "Comparison of Three Diagnostic Definitions of Metabolic Syndrome and Estimation of Its Prevalence in Mongolia" International Journal of Environmental Research and Public Health 20, no. 6: 4956. https://doi.org/10.3390/ijerph20064956
APA StyleMyagmar-Ochir, E., Haruyama, Y., Takaoka, N., Takahashi, K., Dashdorj, N., Dashtseren, M., & Kobashi, G. (2023). Comparison of Three Diagnostic Definitions of Metabolic Syndrome and Estimation of Its Prevalence in Mongolia. International Journal of Environmental Research and Public Health, 20(6), 4956. https://doi.org/10.3390/ijerph20064956