Volatile Organic Compounds: A Promising Tool for Bed Bug Detection
Abstract
:1. Introduction
1.1. Bed Bugs Chemical Ecology
1.2. Volatile Organic Compounds (VOCs)
1.3. Target-Specific Role of VOCs
1.4. VOC-Based Sampling and Analyzing Methods
1.5. VOC Applications
2. Materials and Methods
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reinhardt, K.; Siva-Jothy, M.T. Biology of the bed bugs (Cimicidae). Annu. Rev. Entomol. 2007, 52, 351–374. [Google Scholar] [CrossRef] [Green Version]
- Parola, P.; Izri, A. Bedbugs. N. Engl. J. Med. 2020, 382, 2230–2237. [Google Scholar] [CrossRef] [PubMed]
- Akhoundi, M.; Chebbah, D.; Sereno, D.; Marteau, A.; Jan, J.; Bruel, C.; Elissa, N.; Izri, A. Widespread mutations in voltage-gated sodium channel gene of Cimex lectularius (Hemiptera: Cimicidae) populations in Paris. Int. J. Environ. Res. Public Health 2021, 18, 407. [Google Scholar] [CrossRef]
- Goddard, J.; deShazo, R. Bed bugs (Cimex lectularius) and clinical consequences of their bites. JAMA 2009, 301, 1358–1366. [Google Scholar] [CrossRef] [PubMed]
- Goddard, J.; de Shazo, R. Psychological effects of bed bug attacks (Cimex lectularius L.). Am. J. Med. 2012, 125, 101–103. [Google Scholar] [CrossRef]
- Izri, A.; Marteau, A.; Ferreira, T.; Bruel, C.; Benainous, R.; Dhote, R.; Akhoundi, M. Severe anemia due to bed bugs hyperinfestation. Microb. Pathog. 2020, 149, 104564. [Google Scholar] [CrossRef]
- Kakumanu, M.L.; DeVries, Z.C.; Barbarin, A.M.; Santangelo, R.G.; Schal, C. Bed bugs shape the indoor microbial community composition of infested homes. Sci. Total. Environ. 2020, 743, 140704. [Google Scholar] [CrossRef]
- Doggett, S.L.; Miller, D.M.; Vail, K.; Wilson, M.S. Bed bug impacts: Fiscal impacts. Adv. Biol. Manag. Mod. Bed Bugs 2018, 45, 139–147. [Google Scholar]
- Xie, S.; Hill, A.L.; Rehmann, C.R.; Levy, M.Z. Dynamics of bed bug infestations and control under disclosure policies. Proc. Natl. Acad. Sci. USA 2019, 116, 6473–6481. [Google Scholar] [CrossRef] [Green Version]
- Doggett, S.L.; Russell, R.C. The resurgence of bed bugs, Cimex spp. (hemiptera: Cimicidae) in Australia. In Proceedings of the Sixth International Conference on Urban Pests, Budapest, Hungary, 13–16 July 2008; p. 8200. [Google Scholar]
- Gressier, A.; Galakhoff, N.; Thuillier, P.; Kerlan, V.; Cogulet, V.; Cosse, M.; Daniel, L.; Canevet, M.; Cabon, S.; Le Grand, A.; et al. Bed bug infestation in a French university hospital: Control strategy, financial impact and perspectives. J. Hosp. Infect. 2022, 126, 81–86. [Google Scholar] [CrossRef]
- Pinto, L.J.; Cooper, R.; Kraft, S.K. Bed Bug Handbook. In The Complete Guide to Bed Bugs and Their Control; Pinto & Associates: Mechanicsville, MD, USA, 2007. [Google Scholar]
- Wang, C.; Tsai, W.-T.; Cooper, R.; White, J. Effectiveness of bed bug monitors for detecting and trapping bed bugs in apartments. J. Econ. Entomol. 2011, 104, 274–278. [Google Scholar] [CrossRef] [PubMed]
- Lewis, V.R.; Moore, S.E.; Tabuchi, R.L.; Sutherland, A.M.; Choe, D.-H.; Tsutsui, N.D. Researchers combat resurgence of bed bug in behavioral studies and monitor trials. Calif. Agric. 2013, 67, 172–178. [Google Scholar] [CrossRef] [Green Version]
- Cooper, R. Just encase: Mattress and box-spring encasements can serve as an essential tool in effective bed bug management. Pest Control 2007, 75, 64–75. [Google Scholar]
- Wallner, W.E.; Ellis, T.L. Olfactory Detection of Gypsy Moth Pheromone and Egg Masses 1 by Domestic Canines 2. Environ. Entomol. 1976, 5, 183–186. [Google Scholar] [CrossRef]
- Pfiester, M. Aggregation and Dispersal Behavior of the Common Bedbug, Cimex Lectularius L., and a Method of Detection Using Canines. Master Thesis, University of Florida, Gainesville, FL, USA, 2008. [Google Scholar]
- Cooper, R.; Wang, C.; Singh, N. Accuracy of Trained Canines for Detecting Bed Bugs (Hemiptera: Cimicidae). J. Econ. Entomol. 2014, 107, 2171–2181. [Google Scholar] [CrossRef] [PubMed]
- Vaidyanathan, R.; Feldlaufer, M.F. Bed Bug Detection: Current Technologies and Future Directions. Am. J. Trop. Med. Hyg. 2013, 88, 619–625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doggett, S.L.; Lee, C.-Y. Historical and Contemporary Control Options Against Bed Bugs, Cimex spp. Annu. Rev. Entomol. 2023, 68, 169–190. [Google Scholar] [CrossRef]
- Crawley, S.E.; Borden, J.H. Detection and monitoring of bed bugs (Hemiptera: Cimicidae): Review of the underlying science, existing products and future prospects. Pest Manag. Sci. 2021, 77, 5334–5346. [Google Scholar] [CrossRef]
- Doggett, S.; Miller, D.M.; Lee, C.Y. Advances in the Biology and Management of Modern Bed Bugs; Ulrich, K.R., Karmer, M.H., Feldlaufer, M.F., Eds.; Wiley and Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- El-Ghany, N.M.A. Pheromones and chemical communication in insects. In Pests, Weeds and Diseases in Agricultural Crop and Animal Husbandry Production; Kontogiannatos, D., Kourti, A., Mendes, K.F., Eds.; IntechOpen: London, UK, 2020; Available online: https://www.intechopen.com/chapters/72130 (accessed on 18 May 2022).
- Siljander, E.; Gries, R.; Khaskin, G.; Gries, G. Identification of the Airborne Aggregation Pheromone of the Common Bed Bug, Cimex Lectularius. J. Chem. Ecol. 2008, 34, 708–718. [Google Scholar] [CrossRef]
- Eom, I.Y.; Risticevic, S.; Pawliszyn, J. Simultaneous sampling and analysis of indoor air infested with Cimex lectularius L. (Hemiptera: Cimicidae) by solid phase microextraction, thin film microextraction and needle trap device. Anal. Chim. Acta. 2012, 716, 2–10. [Google Scholar] [CrossRef]
- Cannon, C.; Stejskal, S.; Perrault, K.A. The volatile organic compound profile from Cimex lectularius in relation to bed bug detection canines. Forensic Chem. 2020, 18, 100214. [Google Scholar] [CrossRef]
- Benoit, J.B.; Attardo, G.M. Mechanisms that contribute to the establishment and persistence of bed bug infestations. Terr. Arthropod Rev. 2013, 6, 227–246. [Google Scholar] [CrossRef]
- Crawley, S.E. The Chemical Ecology of Bed Bugs (Cimex lectularius L.) and the Impact of a Neurotoxic Insecticide on Physiology and Behavior. Theses Diss.-Entomol. 2016, 32, 25–49. Available online: https://uknowledge.uky.edu/entomology_etds/32 (accessed on 23 March 2017).
- Suchy, J.T.; Lewis, V.R. Host-Seeking Behavior in the Bed Bug, Cimex lectularius. Insects 2011, 2, 22–35. [Google Scholar] [CrossRef]
- Aak, A.; Rukke, B.A.; Soleng, A.; Rosnes, M.K. Questing activity in bed bug populations: Male and female responses to host signals. Physiol. Entomol. 2014, 39, 199–207. [Google Scholar] [CrossRef] [Green Version]
- Anderson, J.F.; Ferrandino, F.J.; McKnight, S.; Nolen, J.; Miller, J. A carbon dioxide, heat and chemical lure trap for the bed bug, Cimex lectularius. Med. Veter. Entomol. 2009, 23, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Gibb, T.; Bennett, G.W.; McKnight, S. Bed Bug (Heteroptera: Cimicidae) Attraction to Pitfall Traps Baited With Carbon Dioxide, Heat, and Chemical Lure. J. Econ. Entomol. 2009, 102, 1580–1585. [Google Scholar] [CrossRef]
- Wang, C.; Gibb, T.; Bennett, G.W. Evaluation of two least toxic integrated pest management programs for managing bed bugs (Heteroptera: Cimicidae) with discussion of a bed bug intercepting device. J. Med. Entomol. 2009, 46, 566–571. [Google Scholar] [CrossRef] [PubMed]
- Penn, J.M.; Penn, H.J.; Potter, M.F.; Hu, W. Bed Bugs and Hotels: Traveler Insights and Implications for the Industry. Am. Entomol. 2017, 63, 79–88. [Google Scholar] [CrossRef] [Green Version]
- Gallagher, M.; Wysocki, C.; Leyden, J.; Spielman, A.; Sun, X.; Preti, G. Analyses of volatile organic compounds from human skin. Br. J. Dermatol. 2008, 159, 780–791. [Google Scholar] [CrossRef] [Green Version]
- Lehane, M. The Biology of Blood-Sucking in Insects, 2nd ed.; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Harraca, V.; Ryne, C.; Birgersson, G.; Ignell, R. Smelling your way to food: Can bed bugs use our odour? J. Exp. Biol. 2012, 215, 623–629. [Google Scholar] [CrossRef] [Green Version]
- Feldlaufer, M.F.; Domingue, M.J.; Chauhan, K.R.; Aldrich, J.R. 4-oxo-aldehydes from the dorsal abdominal glands of the bed bug (Hemiptera: Cimicidae). J. Med. Entomol. 2010, 47, 140–143. [Google Scholar] [CrossRef]
- Weeks, E.N.; Birkett, M.A.; Cameron, M.M.; Pickett, J.A.; Logan, J.G. Semiochemicals of the common bed bug, Cimex lectularius L. (Hemiptera: Cimicidae), and their potential for use in monitoring and control. Pest Manag. Sci. 2011, 67, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Bitas, V.; Kim, H.S.; Bennett, J.W.; Kang, S. Sniffing on microbes: Diverse roles of microbial volatile organic compounds in plant health. Mol. Plant Microbe Interact 2013, 26, 835–843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulz, S.; Dickschat, J.S. Bacterial volatiles: The smell of small organisms. Nat. Prod. Rep. 2007, 24, 814–842. [Google Scholar] [CrossRef] [PubMed]
- Korpi, A.; Järnberg, J.; Pasanen, A.L. Microbial volatile organic compounds. Crit. Rev. Toxicol. 2009, 39, 139–193. [Google Scholar] [CrossRef]
- Effmert, U.; Kalderás, J.; Warnke, R.; Piechulla, B. Volatile mediated interactions between bacteria and fungi in the soil. J. Chem. Ecol. 2012, 38, 665–703. [Google Scholar] [CrossRef]
- Morath, S.U.; Hung, R.; Bennett, J.W. Fungal volatile organic compounds: A review with emphasis on their biotechnological potential. Fungal Biol. Rev. 2012, 26, 73–83. [Google Scholar] [CrossRef]
- Wilkins, K.; Larsen, K.; Simkus, M. Volatile metabolites from mold growth on building materials and synthetic media. Chemosphere 2000, 41, 437–446. [Google Scholar] [CrossRef]
- Thurston, G.D. Outdoor Air Pollution: Sources, Atmospheric Transport, and Human Health Effects. Inter. Encycl. Public Health 2017, 12, 367–377. [Google Scholar]
- Yew, J.Y.; Chung, H. Insect pheromones: An overview of function, form, and discovery. Prog. Lipid Res. 2015, 59, 88–105. [Google Scholar] [CrossRef]
- Olson, J.F. Sensory and Chemical Basis of Off-Host Aggregation Behavior by Bed Bugs, Cimex lectularius (L.). Ph.D. Thesis, University of Minnesota, Minneapolis, MN, USA, 2015. Available online: http://conservancy.umn.edu/handle/11299/171485 (accessed on 23 September 2016).
- Choe, D.H.; Park, H.; Vo, C.; Knyshov, A. Chemically mediated arrestment of the bed bug, Cimex lectularius, by volatiles associated with exuviae of conspecifics. PLoS ONE 2016, 11, e0159520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wertheim, B.; Van Baalen, E.J.A.; Dicke, M.; Vet, L.E.M. Pheromone-mediated aggregation in non-social arthropods: An evolutionary ecological perspective. Ann. Rev. Entomol. 2005, 50, 321–346. [Google Scholar] [CrossRef] [PubMed]
- Bruno, D.; Grossi, G.; Salvia, R.; Scala, A.; Farina, D.; Grimaldi, A.; Falabella, P. Sensilla morphology and complex expression pattern of odorant binding proteins in the vetch aphid Megoura viciae (Hemiptera: Aphididae). Front. Physiol. 2018, 9, 777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbosa-Cornelio, R.; Cantor, F.; Coy-Barrera, E.; Rodríguez, D. Tools in the Investigation of Volatile Semiochemicals on Insects: From Sampling to Statistical Analysis. Insects 2019, 10, 241. [Google Scholar] [CrossRef] [Green Version]
- Hallem, E.A.; Dahanukar, A.; Carlson, J.R. Insect odor and taste receptors. Annu. Rev. Entomol. 2006, 51, 113–135. [Google Scholar] [CrossRef]
- Levinson, H.Z.; Levinson, A.R.; Müller, B.; Steinbrecht, R.A. Structure of sensilla, olfactory perception, and behaviour of the bedbug, Cimex lectularius, in response to its alarm pheromone. J. Insect Physiol. 1974, 20, 1231–1248. [Google Scholar] [CrossRef]
- Harraca, V.; Ignell, R.; Löfstedt, C.; Ryne, C. Characterization of the antennal olfactory system of the bed bug (Cimex lectularius). Chem. Senses 2010, 35, 195–204. [Google Scholar] [CrossRef] [Green Version]
- Steinbrecht, R.A.; Müller, B. Fine structure of the antennal receptors of the bed bug, Cimex lectularius L. Tissue Cell 1976, 8, 615–636. [Google Scholar] [CrossRef]
- Liu, F.; Chen, Z.; Liu, N. Molecular Basis of Olfactory Chemoreception in the Common Bed Bug, Cimex lectularius. Sci. Rep. 2017, 7, 45531. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Liu, N. Using Single Sensillum Recording to Detect Olfactory Neuron Responses of Bed Bugs to Semiochemicals. J. Vis. Exp. 2016, 107, e53337. [Google Scholar]
- Bohbot, J.B.; Pitts, R. The narrowing olfactory landscape of insect odorant receptors. Front. Ecol. Evol. 2016, 3, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Guidobaldi, F.; May-Concha, I.J.; Guerenstein, P.G. Morphology and physiology of the olfactory system of blood-feeding insects. J. Physiol. Paris 2014, 108, 96–111. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Geng, S.; Zhang, Z.; Zhang, J.; Li, W.; Huang, J.; Lin, W.; Bei, Y.; Lu, Y. Species-specific aggregation pheromones contribute to coexistence in two closely related thrips species. Bull. Entomol. Res. 2019, 109, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Levinson, H.Z.; Levinson, A.R.; Maschwitz, U. Action and composition of the alarm pheromone of the bed bug Cimex lectularius L. Die Nat. 1974, 61, 684–685. [Google Scholar] [CrossRef]
- Prokopy, R.J.; Roitberg, B.D. Joining and avoidance behavior in nonsocial insects. Annu. Rev. Entomol. 2001, 46, 631–665. [Google Scholar] [CrossRef]
- Benoit, J.B.; Del Grosso, N.A.; Yoder, J.A.; Denlinger, D.L. Resistance to dehydration between bouts of blood feeding in the bed bug, Cimex lectularius, is enhanced by water conservation, aggregation, and quiescence. Am. J Trop Med. Hyg. 2007, 76, 987–993. [Google Scholar] [CrossRef] [Green Version]
- Gries, R.; Britton, R.; Holmes, M.; Zhai, H.; Draper, J.; Gries, G. Bed bug aggregation pheromone finally identified. Angew. Chem. Int. Ed. Engl. 2015, 54, 1135–1138. [Google Scholar] [CrossRef] [PubMed]
- Saenz, V.L.; Santangelo, R.G.; Vargo, E.L.; Schal, C. Group living accelerates bed bug (Hemiptera: Cimicidae) development. J. Med. Entomol. 2014, 51, 293–295. [Google Scholar] [CrossRef] [Green Version]
- Damodar, P.; Wal, Y.C.; Perti, S.L. A note on laboratory culturing of bedbugs. Indian J. Malariol. 1962, 16, 227–230. [Google Scholar]
- Liu, Z.; Hu, T.; Guo, H.W.; Liang, X.F.; Cheng, Y.Q. Ultrastructure of the Olfactory Sensilla across the Antennae and Maxillary Palps of Bactrocera dorsalis (Diptera: Tephritidae). Insects 2021, 12, 289. [Google Scholar] [CrossRef] [PubMed]
- Dery, M.; Arriola, K.; Lee, C.Y.; Choe, D.H. Ontogenesis of Aldehyde Pheromones in Two Synanthropic Bed Bug Species (Heteroptera: Cimicidae). Insects 2020, 11, 759. [Google Scholar] [CrossRef]
- Olson, J.F.; Vers, L.M.; Moon, R.D.; Kells, S.A. Two compounds in bed bug feces are sufficient to elicit off-host aggregation by bed bugs, Cimex lectularius. Pest Manag. Sci. 2017, 73, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Gaire, S.; Principato, S.; Schal, C.; DeVries, Z.C. Histamine Excretion by the Common Bed Bug (Hemiptera: Cimicidae). J. Med. Entomol. 2022, 59, 1898–1904. [Google Scholar] [CrossRef]
- Mendki, M.J.; Ganesan, K.; Parashar, B.D.; Sukumaran, D.; Prakash, S. Aggregation responses of Cimex hemipterus F. to semiochemicals identified from their excreta. J. Vector. Borne Dis. 2014, 51, 224–229. [Google Scholar]
- Schildknecht, H.; Holoubek, K.; Weis, K.H.; Kramer, D.H. Defensive Substances of the Arthropods, Their Isolation and Identification. Angew. Chem. Int. Ed. 1964, 2, 73–156. [Google Scholar] [CrossRef]
- Basu, S.; Clark, R.E.; Fu, Z.; Lee, B.W.; Crowder, D.W. Insect alarm pheromones in response to predators: Ecological trade-offs and molecular mechanisms. Insect Biochem. Mol. Biol. 2021, 128, 103514. [Google Scholar] [CrossRef]
- Ryne, C. Homosexual interactions in bed bugs: Alarm pheromones as male recognition signals. Anim. Behav. 2009, 78, 1471–1475. [Google Scholar] [CrossRef]
- Liedtke, H.C.; Åbjörnsson, K.; Harraca, V.; Knudsen, J.T.; Wallin, E.A.; Hedenström, E.; Ryne, C. Alarm Pheromones and Chemical Communication in Nymphs of the Tropical Bed Bug Cimex hemipterus (Hemiptera: Cimicidae). PLoS ONE 2011, 6, e18156. [Google Scholar] [CrossRef]
- Levinson, H.Z.; Bar Ilan, A.R. Assembling and alerting scents produced by the bedbug Cimex lectularius L. Experientia 1971, 27, 102–103. [Google Scholar] [CrossRef]
- Ulrich, K.R.; Feldlaufer, M.F.; Kramer, M.; Leger, R.J.S. Inhibition of the entomopathogenic fungus Metarhizium anisopliae sensu lato in vitro by the bed bug defensive secretions (E)-2-hexenal and (E)-2-octenal. BioControl 2015, 60, 517–526. [Google Scholar] [CrossRef]
- Nufio, C.R.; Papaj, D.R. Host marking behavior in phytophagous insects and parasitoids. Entomol. Exp. Appl. 2001, 99, 273–293. [Google Scholar] [CrossRef] [Green Version]
- Roitberg, B.D.; Prokopy, R.J. Insects that mark host plants. Bioscience 1987, 37, 400–406. [Google Scholar] [CrossRef]
- Leonhardt, S.D.; Menzel, F.; Nehring, V.; Schmitt, T. Ecology and Evolution of Communication in Social Insects. Cell 2016, 164, 1277–1287. [Google Scholar] [CrossRef] [Green Version]
- Morrow, E.H.; Arnqvist, G. Costly traumatic insemination and a female counter-adaptation in bed bugs. Proc. R. Soc. B. 2003, 270, 2377–2381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stutt, A.D.; Siva-Jothy, M.T. Traumatic insemination and sexual conflict in the bed bug Cimex lectularius. PNAS 2001, 98, 5683–5687. [Google Scholar] [CrossRef] [Green Version]
- Reinhardt, K.; Naylor, R.A.; Siva-Jothy, M.T. Situation exploitation: Higher male mating success when female resistance is reduced by feeding. Evolution 2008, 63, 29–39. [Google Scholar] [CrossRef]
- Harraca, V.; Ryne, C.; Ignell, R. Nymphs of the common bed bug (Cimex lectularius) produce anti-aphrodisiac defence against conspecific males. BMC Biol. 2010, 8, 121. [Google Scholar] [CrossRef] [Green Version]
- Czaczkes, T.J.; Grüter, C.; Ratnieks, F.L.W. Trail Pheromones: An Integrative View of Their Role in Social Insect Colony Organizatio. Ann. Rev. Entomol. 2015, 60, 581–599. [Google Scholar] [CrossRef] [Green Version]
- Wilson, E.O. Chemical communication among workers of the fire ant Solenopsis saevissima (Fr. Smith). 3. The experimental induction of social responses. Anim. Behav. 1962, 10, 159–164. [Google Scholar] [CrossRef]
- Chapman, M.G. Variability in trail-following and aggregation in Nodilittorina unifasciata Gray. J. Exp. Mar. Biol. Ecol. 1998, 224, 49–71. [Google Scholar] [CrossRef]
- Funaro, C.F.; Böröczky, K.; Vargo, E.L.; Schal, C. Identification of a queen and king recognition pheromone in the subterranean termite Reticulitermes flavipes. PNAS 2018, 115, 3888–3893. [Google Scholar] [CrossRef] [Green Version]
- Brezolin, A.N.; Martinazzo, J.; Muenchen, D.K.; de Cezaro, A.M.; Rigo, A.A.; Steffens, C.; Steffens, J.; Blassioli-Moraes, M.C.; Borges, M. Tools for detecting insect semiochemicals: A review. Anal. Bioanal. Chem. 2018, 410, 4091–4108. [Google Scholar] [CrossRef] [Green Version]
- Kilpinen, O.; Liu, D.; Adamsen, A.P. Real-time measurement of volatile chemicals released by bed bugs during mating activities. PLoS ONE 2012, 7, e50981. [Google Scholar] [CrossRef] [PubMed]
- MacDougall, S.; Bayansal, F.; Ahmadi, A. Emerging Methods of Monitoring Volatile Organic Compounds for Detection of Plant Pests and Disease. Biosensors 2022, 12, 239. [Google Scholar] [CrossRef]
- Vera, T.; Villanueva, F.; Wimmerová, L.; Tolis, E.I. An overview of methodologies for the determination of volatile organic compounds in indoor air. Appl. Spectrosc. Rev. 2022, 8, 625–674. [Google Scholar] [CrossRef]
- Ulker, O.C.; Ulker, O.; Hiziroglu, S. Volatile Organic Compounds (VOCs) Emitted from Coated Furniture Units. Coatings 2021, 11, 806. [Google Scholar] [CrossRef]
- Stenberg, J.A. A conceptual framework for integrated pest management. Trends Plant Sci. 2017, 22, 759–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prokopy, P. Chapter 139—Integrated Pest management. In Encyclopedia of Insects, 2nd ed.; Resh, V.H., Cardé, R.T., Kogan, K., Eds.; Academic Press: San Diego, CA, USA, 2009; pp. 523–528. [Google Scholar]
- Rodriguez-saona, C.R.; Stelinski, L.L. Behavior-modifying strategies in IPM: Theory and practice. In Integrated Pest Management: Innovation-Development Process; Springer: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Koganemaru, R.; Miller, D.M. The bed bug problem: Past, present, and future control methods. Pestic. Biochem. Physiol. 2013, 106, 177–189. [Google Scholar] [CrossRef]
- Weeks, E.N.I.; Logan, J.G.; Birkett, M.A.; Caulfield, J.C.; Gezan, S.A.; Welham, S.J.; Brugman, V.A.; Pickett, J.A.; Cameron, M.M. Electrophysiologically and behaviourally active semiochemicals identified from bed bug refuge substrate. Sci. Rep. 2020, 10, 4590. [Google Scholar] [CrossRef] [Green Version]
- Singh, N.; Wang, C.; Cooper, R.; Liu, C. Interactions among Carbon Dioxide, Heat, and Chemical Lures in Attracting the Bed Bug, Cimex lectularius L. (Hemiptera: Cimicidae). Psyche J. Entomol. 2012, 51, 273613. [Google Scholar]
- Singh, N.; Wang, C.; Cooper, R. Effectiveness of a Sugar-Yeast Monitor and a Chemical Lure for Detecting Bed Bugs. J. Econ. Entomol. 2015, 108, 1298–1303. [Google Scholar] [CrossRef] [PubMed]
- Gillij, Y.G.; Gleiser, R.M.; Zygadlo, J.A. Mosquito repellent activity of essential oils of aromatic plants growing in Argentina. Bioresour. Technol. 2008, 99, 2507–2515. [Google Scholar] [CrossRef]
- Jaenson, T.G.T.; Palsson, K.; Brog-Karlson, A.K. Evaluation of extracts and oils of tick-repellent plants from Sweden. Med. Veter Entomol. 2005, 19, 345–352. [Google Scholar] [CrossRef]
- Bissinger, B.W.; Roe, R.M. Tick repellents: Past, present, and future. Pestic. Biochem. Physiol. 2010, 96, 63–79. [Google Scholar] [CrossRef]
- Peterson, J.; Coats, A. Insect repellents—Past, present and future. Pestic. Outlook 2001, 12, 154–158. [Google Scholar] [CrossRef]
- Liu, F.; Haynes, K.F.; Appel, A.G.; Liu, N. Antennal olfactory sensilla responses to insect chemical repellents in the common bed bug, Cimex lectularius. J. Chem. Ecol. 2014, 40, 522–533. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. PRISMA Group Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Zhang, A.; Feng, Y.; Larson, N.; Feldlaufer, M. Eucalyptol Detected by aeration from the eggs of the common bed bug (Hemiptera: Cimicidae). J. Econ. Entomol. 2019, 112, 772–775. [Google Scholar] [CrossRef] [PubMed]
- DeVries, Z.C.; Saveer, A.M.; Mick, R.; Schal, C. Bed Bug (Hemiptera: Cimicidae) Attraction to Human Odors: Validation of a Two-Choice Olfactometer. J. Med. Entomol. 2019, 56, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Brattoli, M.; de Gennaro, G.; de Pinto, V.; Loiotile, A.D.; Lovascio, S.; Penza, M. Odour detection methods: Olfactometry and chemical sensors. Sensors 2011, 11, 5290–5322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bax, C.; Sironi, S.; Capelli, L. How can odors be measured? Overview of methods and their applications. Atmosphere 2020, 11, 92. [Google Scholar] [CrossRef] [Green Version]
- Benoit, J.B.; Phillips, S.A.; Croxall, T.J.; Christensen, B.S.; Yoder, J.A.; Denlinger, D.L. Addition of alarm pheromone components improves the effectiveness of desiccant dusts against Cimex lectularius. J. Med. Entomol. 2009, 46, 572–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ulrich, K.R.; Kramer, M.; Feldlaufer, M.F. Ability of bed bug (Hemiptera: Cimicidae) defensive secretions (E)-2-hexenal and (E)-2-octenal to attract adults of the common bed bug Cimex lectularius. Physiol. Entomol. 2016, 41, 103–110. [Google Scholar] [CrossRef]
VOCs | Molecular Formula | Chemical Group | Bed Bug Species | Behavioral Role | References | |
---|---|---|---|---|---|---|
1 | Acetaldehyde | C2H4O | Aldehyde | C. hemipterus | Aggregation | [72] |
C. lectularius | Alarm | [62] | ||||
2 | Benzaldehyde | C7H6O | Aldehyde | C. lectularius | Aggregation | [24] |
C. hemipterus | Aggregation | [72] | ||||
3 | Butanal | C4H8O | Aldehyde | C. lectularius | Aggregation | [65] |
4 | (E)-2-hexenal | C6H10O | Aldehyde | C. hemipterus | Aggregation | [72] |
C. lectularius | Alarm | [62,65] | ||||
5 | Heptanal | C7H14O | Aldehyde | C. lectularius | Sexual * | [91] |
6 | Hexanal | C6H12O | Aldehyde | C. hemipterus | Aggregation | [72] |
7 | Octanal | C8H16O | Aldehyde | C. lectularius | Aggregation | [24] |
C. lectularius | Sexual * | [91] | ||||
8 | Pentanal | C5H10O | Aldehyde | C. lectularius | Aggregation | [65] |
9 | Propanal | C4H8O | Aldehyde | C. lectularius | Sexual * | [91] |
C. hemipterus | Aggregation | [72] | ||||
10 | Nonanal | C9H18O | Aldehyde | C. lectularius | Aggregation | [24] |
C. lectularius | Sexual * | [91] | ||||
11 | Undecanal | C11H22O | Aldehyde | C. lectularius | Sexual * | [91] |
12 | (E)-heptenal | C7H12O | Aldehyde | C. hemipterus | Aggregation | [72] |
13 | (E)-2-octenal | C8H14O | Aldehyde | C. lectularius | Aggregation | [24,49,65,70,91] |
C. hemipterus | Aggregation | [72,76] | ||||
14 | (E,Z)-2,4-Octadienal | C8H12O | Aldehyde | C. lectularius | Aggregation | [24] |
15 | 3-methylthio-propanal | C4H8OS | Aldehyde | C. hemipterus | Aggregation | [72] |
16 | 4-oxo-(E)-2-octenal | C8H12O2 | Aldehyde | C. lectularius | Alarm | [76] |
17 | 4-oxo-(E)-2-hexenal | C6H8O2 | Aldehyde | C. hemipterus | Aggregation | [72] |
18 | Acetophenone | C8H8O | Ketone | C. lectularius | Aggregation | [65] |
19 | Acetone | C3H6O | Ketone | C. lectularius | Sexual * | [91] |
20 | Butan-2-one | C4H8O | Ketone | C. lectularius | Aggregation | [62] |
C. hemipterus | Alarm | [72] | ||||
21 | Geranyl acetone | C13H22O | Ketone | C. lectularius | Aggregation | [24] |
Sexual * | [91] | |||||
22 | Sulcatone (6-Methyl-5-hepten-2-one) | C8H14O | Ketone | C. lectularius | Aggregation | [24] |
23 | 2-octanone | C8H16O | Ketone | C. hemipterus | Aggregation | [72] |
24 | 2-hexanone | C6H12O | Ketone | C. lectularius | Aggregation | [65] |
25 | Acetamide | C2H5NO | Acid | C. hemipterus | Aggregation | [72] |
26 | Hexanoic acid | C6H12O2 | Acid | C. hemipterus | Aggregation | [72] |
27 | Phenyl acetic acid | C8H8O2 | Acid | C. hemipterus | Aggregation | [72] |
28 | 2-methyl propanoic acid | C8H16O3 | Acid | C. hemipterus | Aggregation | [72] |
29 | (E)-2-hexenoic acid | C6H10O2 | Acid | C. hemipterus | Aggregation | [72] |
30 | (E)-2-octenoic acid | C8H14O2 | Acid | C. hemipterus | Aggregation | [72] |
31 | Methyl nonanoate | C10H20O2 | Ester | C. lectularius | Aggregation | [65] |
32 | Ethyl octanoate | C10H20O2 | Ester | C. lectularius | Aggregation | [65] |
33 | Pentyl hexanoate | C11H22O2 | Ester | C. lectularius | Aggregation | [65] |
34 | Benzyl Acetate | C6H5CH2OCOCH3 | Ester | C. lectularius | Aggregation | [24] |
35 | (+) Limonène | C10H16 | Terpene | C. lectularius | Aggregation | [24] |
Sexual * | [91] | |||||
36 | (-) Limonène | C10H16 | Terpene | C. lectularius | Aggregation | [24] |
C. lectularius | Sexual * | [91] | ||||
37 | Verbenone | C10H14O | Terpene | C. lectularius | Aggregation | [65] |
38 | Decanal | C10H20O | Terpene | C. lectularius | Aggregation | [24] |
C. lectularius | Sexual * | [91] | ||||
39 | Benzyl alcohol | C6H5CH2OH | Alcohol | C. lectularius | Aggregation | [24,65] |
Sexual * | [91] | |||||
40 | Diethylene glycol | C4H10O3 | Alcohol | C. hemipterus | Aggregation | [72] |
41 | 2-ethyl-1-hexanol | C8H18O | Alcohol | C. hemipterus | Aggregation | [72] |
42 | 2-propyl-1-pentanol | C8H18O | Alcohol | C. hemipterus | Aggregation | [72] |
43 | 2-isopropyl-5-methyl-cyclohexanone | C10H16O2 | Alcohol | C. hemipterus | Aggregation | [72] |
44 | Tetradecane | C14H30 | Hydrocarbon | C. hemipterus | Aggregation | [72] |
45 | Azulene | C10H8 | Hydrocarbon | C. hemipterus | Aggregation | [72] |
46 | Pyrrolidin-2-one | C4H7NO | Amid | C. hemipterus | Aggregation | [72] |
47 | Tridecane | C13H28 | Alkane | C. hemipterus | Aggregation | [72] |
48 | Dimethyl disulfide | C2H6S2 | Organic Sulfur Compound | C. lectularius | Aggregation | [65] |
49 | Dimethyl trisulfide | C2H6S3 | Organic Sulfur Compound | C. lectularius | Aggregation | [65] |
Trapping Technology | Adsorbent Polymer | References |
---|---|---|
SPME (Solid Phase Micro Extraction) | DVB/CAR/PDMS | [25,70] |
NTD (Needle Trap Device) | HaySep Q divinyl benzene | [25] |
TFME (Thin Film Microextraction) | PDMS | [25] |
Active adsorbent sampling | Poropak Q trap elution | [24] |
Active adsorbent sampling | TENAX TA/Carbograph 5D * | [91] |
SPME | Carboxen/PDMS | [49] |
Active adsorbent sampling | TENAX GR | [65] |
SPME | Carboxen/PDMS | [70] |
Liquid extraction (water/ethanol) | NA | [62] |
Active adsorbent sampling | TENAX GR | [76] |
Methanol extraction | NA | [72] |
SPME | Carbon WR/PDMS | [26] |
Author(s) | Entomological Criteria | Analysing Method | Molecules Identified | ||||
---|---|---|---|---|---|---|---|
Species | Life Stage | Sex | Fed/Unfed | Field/Laboratory | |||
Levinson et al. [62] | C. lectularius | Larva & adult | ♂ & ♀ | Fed | NA | GC-MS | Acetaldehyde; Butan-2-one; (E)-2-hexenal; Sulcatone (6-Methyl-5-hepten-2-one) |
Siljander et al. [24] | C. lectularius | Larva & adult | ♂ & ♀ | Fed | Laboratory | GC-MS | (E)-2-hexenal; Benzaldehyde; Benzyl alcohol; (E,Z)-2,4-Octadienal; Sulcatone (6-Methyl-5-hepten-2-one); Octanal; Limonène; Nonanal; Benzyl Acetate; Decanal; Geranyl acetone ((E)-6,10-Dimethyl-5,9-undecadien-2-one) |
Liedtke et al. [76] | C. hemipterus | Nymph & adult | ♂ & ♀ | Fed | Laboratory | GC-MS | (E)-2-hexenal; 4-oxo-(E)-2- hexenal; (E)-2-octenal; 4-oxo-(E)-2-octenal |
Kilpinen et al. [91] | C. lectularius | Adult | ♂ & ♀ | Fed | Laboratory | GC-MS | Acetone; Propanal; (E)-2-hexenal; Hexanal; Benzaldehyde; Benzyl alcohol; Heptanal; (E)-2-octenal; Sulcatone (6-Methyl-5-hepten-2-one); Octanal; Limonène; Nonanal; Decanal; Undecanal; Geranyl acetone ((E)-6,10-Dimethyl-5,9-undecadien-2-one) |
Eom et al. [25] | C. lectularius | All stages | ♂ & ♀ | NA | Field | GC-MS | Phenyl-1,3,3-trimethylindan; Heptadecane; 2,6,10,14-Tetramethylpentadecane; Hexyl cinnamic aldehyde; Octadecane; Isopropyl myristate; Galaxolide; 7-Methyl-Z-tetradecen-1-ol acetate; 2-Methylhexadecan-1-ol; Methyl hexadecanoate; Dibutyl phthalate; Ethyl hexadecanoate; Isopropyl palmitate; 8-Octadecenal; Methyl 4-hydroxyoctadecanoate; Z-5-methyl-6-heneicosen-11-one |
Mendki et al. [72] | C. hemipterus | Nymph | - | NA | Laboratory | GC-MS | Acetaldehyde; Acetamide; Pyrrolidin-2-one; 2-methyl propanoic acid; (E)-2-hexenal; Hexanal (E)-2-hexenol; 3-methylthio-propanal; Benzaldehyde; Diethylene glycol;(E)-heptenal; (E)-2-hexenoic acid; Hexanoic acid; (E)-2-octenal; Dimethyl trisulfide; Azulene; 2-octanone; 2-ethyl-1-hexanol; 2-propyl-1-pentanol; Phenyl acetic acid; (E)-2-octenoic acid; 2-isopropyl-5-methyl-cyclohexanone (menthone); Tridecane; Tetradecane |
Gries et al. [65] | C. lectularius | Egg, nymph, adult & exuviae | ♂ & ♀ | Fed & ufed | NA | GC-MS | Butanal; Pentanal; Dimethyl disulfide; (E)-2-hexenal; Hexanal; 2-hexanone; Benzaldehyde; Benzyl alcohol; Acetophenone; (E)-2-octenal; Dimethyl trisulfide; Verbenone; Methyl nonanoate; Ethyl octanoate; Pentyl hexanoate |
Choe et al. [49] | C. lectularius | Nymph & adult | ♂ & ♀ | Fed | Laboratory | GC-MS | (E)-2-hexenal; 4-oxo-(E)-2- hexenal; (E)-2-octenal; 4-oxo-(E)-2-octenal |
Olson et al. [70] | C. lectularius | Adult | ♂ & ♀ | Fed | Field | GC-MS | (E)-2-hexenal; (E)-2-octenal |
Zhang et al. [108] | C. lectularius | Egg, nymph & adult | ♂ & ♀ | Fed | Laboratory | GC-MS | (E)-2-hexénal; (E)-2-octénal (adult); Eucalyptol (egg) |
Weeks et al. [99] | C. lectularius | Larva & adult | ♂ & ♀ | Fed | Laboratory | GC-EAG | Hexanal; Heptanal; Benzaldehyde; (RS)-1-Octen-3-ol; Octanal; 3-Carene; β-Phellandrene; (E)-2-Octenal; (3E,5E)-Octadien-2-one; Nonanal; (E)-2-Nonenal; 2-Decanone; Decanal; Dodecane; Nonanoic acid; 2-(2-Butoxyethoxy) ethyl acetate; (E)-2-Undecenal; (S)-Germacrene D |
Cannon et al. [26] | C. lectularius | Egg & adult | NA | Fed | Laboratory | GC-MS | Acetone; (2-aziridinylethyl) amine; toluene; octane; hexanal; N,N-dimethylformamide; ethylbenzene; m-xylene; 2-héxanal; p-xylene; heptanal; α-pinene; 2-butoxyethanol; 4-ethyloctane; 5-methylnonane,2,2,6-trimethyloctane; 2-trifluoroacetoxydodecane; decane; 2-tridecyl ester methoxyacetic acid; α-methylstyrene; benzaldehyde; 2,2-dimethyldecane; 2,2,4,6-6-pentamethylheptane; 3-8-dimethylundecane, α-methyl-α-[4methylpentyl]oxiranmethanol; 1-(2-methoxy-1-methylethoxy)-2-propanol; 2,2-dimethyl-1-octanol; 2,7,10-trimethyldodecane; 5-ethyl-2,2,3-trimethylheptane; 3,6-dimethylundecane; 2,6,8-trimethyldecane; 2-ethyl-1-hexanol; 2,3,4-trimethyldecane; 2,2,7,7-tetramethyloctane; 3,7-dimethyldecane; 4-methylundecane; undecane 2-octenal; 2-hexyl-1-octanol; 6-methyloctadecane; 4-ethyl-2,2,26,6-tetramethylheptane; N-[5-(2-hydroxyphenyl)-1,3,4-thiadiazol-2-yl]benzamide; nonanal; 5-methylundecane; 2,6,10-trimethyldodecane; 3-methylundecane; 9-methylheptadecane; (E)-2-dodecene; dodecane; Z,Z-2,5-pentadecadien-1-ol; 2-methyl-1-hexadecanol; 1-methyl-4-(1-methylethyl)-cyclohexanol; tridecane; 2-azido-2,4,4,6,6,8,8-heptamethylnonane; tetradecane; 3-Hydroxy-2,2,4-trimethylpentyl 2-methylpropanoate; 3-(isobutyryloxy)-1-isopropyl-2,2-dimethylpropyl-2-methylpropanoate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhoundi, M.; Chebbah, D.; Elissa, N.; Brun, S.; Jan, J.; Lacaze, I.; Izri, A. Volatile Organic Compounds: A Promising Tool for Bed Bug Detection. Int. J. Environ. Res. Public Health 2023, 20, 5214. https://doi.org/10.3390/ijerph20065214
Akhoundi M, Chebbah D, Elissa N, Brun S, Jan J, Lacaze I, Izri A. Volatile Organic Compounds: A Promising Tool for Bed Bug Detection. International Journal of Environmental Research and Public Health. 2023; 20(6):5214. https://doi.org/10.3390/ijerph20065214
Chicago/Turabian StyleAkhoundi, Mohammad, Dahlia Chebbah, Nohal Elissa, Sophie Brun, Julie Jan, Isabelle Lacaze, and Arezki Izri. 2023. "Volatile Organic Compounds: A Promising Tool for Bed Bug Detection" International Journal of Environmental Research and Public Health 20, no. 6: 5214. https://doi.org/10.3390/ijerph20065214
APA StyleAkhoundi, M., Chebbah, D., Elissa, N., Brun, S., Jan, J., Lacaze, I., & Izri, A. (2023). Volatile Organic Compounds: A Promising Tool for Bed Bug Detection. International Journal of Environmental Research and Public Health, 20(6), 5214. https://doi.org/10.3390/ijerph20065214