Particle Number Concentration Measurements on Public Transport in Bangkok, Thailand
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andersen, Z.J.; Pedersen, M.; Weinmayr, G.; Stafoggia, M.; Galassi, C.; Jørgensen, J.T.; Sommar, J.N.; Forsberg, B.; Olsson, D.; Oftedal, B.; et al. Long-term exposure to ambient air pollution and incidence of brain tumor: The European Study of Cohorts for Air Pollution Effects (ESCAPE). Neuro-oncology 2018, 20, 420–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jørgensen, J.T.; Johansen, M.S.; Ravnskjær, L.; Andersen, K.K.; Bräuner, E.V.; Loft, S.; Ketzel, M.; Becker, T.; Brandt, J.; Hertel, O.; et al. Long-term exposure to ambient air pollution and incidence of brain tumours: The Danish Nurse Cohort. Neurotoxicology 2016, 55, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Samet, J.M.; Rappold, A.; Graff, D.; Cascio, W.E.; Berntsen, J.H.; Huang, Y.C.T.; Herbst, M.; Bassett, M.; Montilla, T.; Hazucha, M.J.; et al. Concentrated ambient ultrafine particle exposure induces cardiac changes in young healthy volunteers. Am. J. Respir. Crit. Care Med. 2009, 179, 1034–1042. [Google Scholar] [CrossRef] [PubMed]
- Devlin, R.B.; Smith, C.B.; Schmitt, M.T.; Rappold, A.G.; Hinderliter, A.; Graff, D.; Carraway, M.S. Controlled exposure of humans with metabolic syndrome to concentrated ultrafine ambient particulate matter causes cardiovascular effects. Toxicol. Sci. 2014, 140, 61–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, L.; Chen, H.; Hatzopoulou, M.; Jerrett, M.; Kwong, J.C.; Burnett, R.T.; van Donkelaar, A.; Copes, R.; Martin, R.V.; Van Ryswyk, K.; et al. Exposure to ambient ultrafine particles and nitrogen dioxide and incident hypertension and diabetes. Epdemiology 2018, 29, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Song, X.; Han, Y.; Ji, Y.; Gao, S.; Shang, Y.; Lu, S.E.; Zhu, T.; Huang, W. Size-fractioned ultrafine particles and black carbon associated with autonomic dysfunction in subjects with diabetes or impaired glucose tolerance in Shanghai, China. Part. Fibre Toxicol. 2015, 12, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organisation Health Topics Air Pollution. Available online: https://www.who.int/health-topics/air-pollution (accessed on 23 January 2023).
- Loomis, D.; Grosse, Y.; Lauby-Secretan, B.; Ghissassi, F.E.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Baan, R.; Mattock, H.; Straif, K. The carcinogenicity of outdoor pollution. Lancet Oncol. 2013, 14, 1262–1263. [Google Scholar] [CrossRef] [PubMed]
- Beeson, W.L.; Abbey, D.E.; Knutsen, S.F. Long-term concentrations of ambient air pollutants and incident lung cancer in California adults: Results from the AHSMOG study. Adventist Health Study on smog. Environ. Health Perspect. 1998, 106, 813–822. [Google Scholar] [CrossRef] [Green Version]
- Raaschou-Nielsen, O.; Andersen, Z.J.; Beelen, R.; Samoli, E.; Stafoggia, M.; Weinmayr, G.; Hoffmann, B.; Fischer, P.; Nieuwenhuijsen, M.J.; Brunekreef, B.; et al. Air pollution and lung cancer incidence in 17 European cohorts: Prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE). Lancet Oncol. 2013, 14, 81–3822. [Google Scholar] [CrossRef]
- Consonni, D.; Carugno, M.; De Matteis, S.; Nordio, F.; Randi, G.; Bazzano, M.; Caporaso, N.E.; Tucker, M.A.; Bertazzi, P.A.; Pesatori, A.C.; et al. Outdoor particulate matter (PM10) exposure and lung cancer risk in the EAGLE study. PLoS ONE 2018, 13, e0203539. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.W.; Kang, S.C.; Kim, S.Y.; Cho, Y.J.; Hwang, S. Long-term exposure to PM10 increases lung cancer risks: A cohort analysis. Cancer Res. Treat. Off. J. Korean Cancer Assoc. 2022, 54, 1030–1037. [Google Scholar] [CrossRef] [PubMed]
- Krewski, D.; Jerrett, M.; Burnett, R.T.; Ma, R.; Hughes, E.; Shi, Y.; Turner, M.C.; Pope III, C.A.; Thurston, G.; Calle, E.E.; et al. Extended Follow-Up and Spatial Analysis of the American Cancer Society Study Linking Particulate Air Pollution and Mortality; Health Effects Institute: Boston, MA, USA, 2009; pp. 5–114. [Google Scholar]
- Tomczak, A.; Miller, A.B.; Weichenthal, S.A.; To, T.; Wall, C.; van Donkelaar, A.; Martin, R.V.; Crouse, D.L.; Villeneuve, P.J. Long-term exposure to fine particulate matter air pollution and the risk of lung cancer among participants of the Canadian National Breast Screening Study. Int. J. Cancer 2016, 139, 1958–1966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gharibvand, L.; Shavlik, D.; Ghamsary, M.; Beeson, W.L.; Soret, S.; Knutsen, R.; Knutsen, S.F. The association between ambient fine particulate air pollution and lung cancer incidence: Results from the AHSMOG-2 study. Environ. Health Perspect. 2017, 125, 378–384. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhu, D.; Cui, B.; Ding, R.; Shi, X.; He, P. Association between particulate matter air pollution and lung cancer. Thorax 2020, 75, 85–87. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhu, M.; Ji, M.; Fan, J.; Xie, J.; Wei, X.; Jiang, X.; Xu, J.; Chen, L.; Yin, R.; et al. Air pollution, genetic factors, and the risk of lung cancer: A prospective study in the UK Biobank. Am. J. Respir. Crit. Care Med. 2021, 204, 817–825. [Google Scholar] [CrossRef]
- Jinsart, W.; Tamura, K.; Loetkamonwit, S.; Thepanondh, S.; Karita, K.; Yano, E. Roadside particulate air pollution in Bangkok. J. Air Waste Manag. Assoc. 2002, 52, 1102–1110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fold, N.R.; Allison, M.R.; Wood, B.C.; Thao, P.T.; Bonnet, S.; Garivait, S.; Kamens, R.; Pengjan, S. An assessment of annual mortality attributable to ambient PM2.5 in Bangkok, Thailand. Int. J. Environ. Res. Public Health 2020, 17, 7298. [Google Scholar] [CrossRef] [PubMed]
- Ohlwein, S.; Kappeler, R.; Joss, M.K.; Künzli, N.; Hoffmann, B. Health effects of ultrafine particles: A systematic literature review update of epidemiological evidence. Int. J. Public Health 2019, 64, 547–559. [Google Scholar] [CrossRef] [PubMed]
- Schraufnagel, D.E. The health effects of ultrafine particles. Exp. Mol. Med. 2020, 52, 311–317. [Google Scholar] [CrossRef] [Green Version]
- Dionisio, K.L.; Baxter, L.K.; Burke, J.; Özkaynak, H. The importance of the exposure metric in air pollution epidemiology studies: When does it matter, and why? Air Qual. Atmos. Health 2016, 9, 495–502. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Morawska, L.; Birmili, W.; Paasonen, P.; Hu, M.; Kulmala, M.; Harrison, R.M.; Norford, L.; Britter, R. Ultrafine particles in cities. Environ. Int. 2014, 66, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Lavigne, E.; Lima, I.; Hatzopoulou, M.; Van Ryswyk, K.; van Donkelaar, A.; Martin, R.V.; Chen, H.; Stieb, D.M.; Crighton, E.; Burnett, R.T.; et al. Ambient ultrafine particle concentrations and incidence of childhood cancers. Environ. Int. 2020, 145, 106135. [Google Scholar] [CrossRef]
- Matthews, J.C.; Wright, M.D.; Navasumrit, P.; Ruchirawat, M.; Shallcross, D.E. Atmospheric potential gradient measurements from a rooftop in Bangkok. J. Phys. Conf. Ser. 2019, 1322, 012029. [Google Scholar] [CrossRef]
- Matthews, J.C.; Navasumrit, P.; Wright, M.D.; Chaisatra, K.; Chompoobut, C.; Arbon, R.; Khan, M.A.H.; Ruchirawat, M.; Shallcross, D.E. Aerosol mass and size-resolved metal content in urban Bangkok, Thailand. Environ. Sci. Pollut. Res. 2022, 29, 79025–79040. [Google Scholar] [CrossRef]
- Ketzel, M.; Wåhlin, P.; Kristensson, A.; Swietlicki, E.; Berkowicz, R.; Nielsen, O.J.; Palmgren, F. Particle size distribution and particle mass measurements at urban, near-city and rural level in the Copenhagen area and Southern Sweden. Atmos. Chem. Phys. 2004, 4, 281–292. [Google Scholar] [CrossRef] [Green Version]
- Karner, A.A.; Eisinger, D.S.; Niemeier, D.A. Near-roadway air quality: Synthesizing the findings from real-world data. Environ. Sci. Technol. 2010, 44, 5334–5344. [Google Scholar] [CrossRef] [PubMed]
- Fruin, S.; Westerdahl, D.; Sax, T.; Sioutas, C.; Fine, P.M. Measurements and predictors of on-road ultrafine particle concentrations and associated pollutants in Los Angeles. Atmos. Environ. 2008, 42, 207–219. [Google Scholar] [CrossRef]
- He, R.; Qiu, Z. Exposure characteristics of ultrafine particles on urban streets and its impact on pedestrians. Environ. Monit. Assess. 2022, 194, 735. [Google Scholar] [CrossRef] [PubMed]
- Pongpiachan, S.; Iijima, A. Assessment of selected metals in the ambient air PM10 in urban sites of Bangkok (Thailand). Environ. Sci. Pollut. Res. 2016, 23, 2948–2961. [Google Scholar] [CrossRef]
- Matthews, J.; Navasumrit, P.; Chaisatra, K.; Chompoobut, C.; Wright, M.; Ruchirawat, M.; Shallcross, D. Aerosol size distribution and metal constituents in three sites in Bangkok. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 4–8 May 2022; p. 19816. [Google Scholar] [CrossRef]
- Maher, B.A.; Ahmed, I.A.; Karloukovski, V.; MacLaren, D.A.; Foulds, P.G.; Allsop, D.; Mann, D.M.; Torres-Jardón, R.; Calderon-Garciduenas, L. Magnetite pollution nanoparticles in the human brain. Proc. Natl. Acad. Sci. USA 2016, 113, 10797–10801. [Google Scholar] [CrossRef] [Green Version]
- Adams, H.S.; Nieuwenhuijsen, M.J.; Colvile, R.N. Determinants of fine particle (PM2.5) personal exposure levels in transport microenvironments, London, UK. Atmos Environ. 2001, 35, 4557–4566. [Google Scholar] [CrossRef]
- Kaur, S.; Nieuwenhuijsen, M.J.; Colvile, R.N. Fine particulate matter and carbon monoxide exposure concentrations in urban street transport microenvironments. Atmos. Environ. 2007, 41, 4781–4810. [Google Scholar] [CrossRef]
- Betancourt, R.M.; Galvis, B.; Balachandran, S.; Ramos-Bonilla, J.P.; Sarmiento, O.L.; Gallo-Murcia, S.M.; Contreras, Y. Exposure to fine particulate, black carbon, and particle number concentration in transportation microenvironments. Atmos. Environ. 2017, 157, 135–145. [Google Scholar] [CrossRef]
- Gulliver, J.; Briggs, D.J. Personal exposure to particulate air pollution in transport microenvironments. Atmos. Environ. 2004, 38, 1–8. [Google Scholar] [CrossRef]
- McNabola, A.; Broderick, B.M.; Gill, L.W. Relative exposure to fine particulate matter and VOCs between transport microenvironments in Dublin: Personal exposure and uptake. Atmos Environ. 2008, 42, 6496–6512. [Google Scholar] [CrossRef]
- Zuurbier, M.; Hoek, G.; Oldenwening, M.; Lenters, V.; Meliefste, K.; Van Den Hazel, P.; Brunekreef, B. Commuters’ exposure to particulate matter air pollution is affected by mode of transport, fuel type, and route. Environ. Health Perspect. 2010, 118, 783–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Briggs, D.J.; de Hoogh, K.; Morris, C.; Gulliver, J. Effects of travel mode on exposures to particulate air pollution. Environ. Int. 2008, 34, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Cepeda, M.; Schoufour, J.; Freak-Poli, R.; Koolhaas, C.M.; Dhana, K.; Bramer, W.M.; Franco, O.H. Levels of ambient air pollution according to mode of transport: A systematic review. Lancet Public Health 2017, 2, e23–e34. [Google Scholar] [CrossRef] [Green Version]
- Jinsart, W.; Kaewmanee, C.; Inoue, M.; Hara, K.; Hasegawa, S.; Karita, K.; Tamura, K.; Yano, E. Driver exposure to particulate matter in Bangkok. J. Air Waste Manag. Assoc. 2012, 62, 64–71. [Google Scholar] [CrossRef] [Green Version]
- Tran, P.T.; Nguyen, T.; Balasubramanian, R. Personal exposure to airborne particles in transport micro-environments and potential health impacts: A tale of two cities. Sustain. Cities Soc. 2020, 63, 102470. [Google Scholar] [CrossRef]
- Chaudhry, S.K.; Elumalai, S.P. The influence of school bus ventilation scenarios over in-cabin PM number concentration and air exchange rates. Atmos. Pollut. Res. 2020, 11, 1396–1407. [Google Scholar] [CrossRef]
- Shallcross, D.E.; Martin, D.; Price, C.S.; Nickless, G.; White, I.R.; Petersson, F.; Britter, R.E.; Tate, J.E.; Tomlin, A.S.; Barlow, J.F.; et al. Short range dispersion experiments using fixed and moving sources. Atmos. Sci. Letts. 2009, 10, 59–65. [Google Scholar] [CrossRef]
- Thornes, J.E.; Hickman, A.; Baker, C.; Cai, X.; Delgado Saborit, J.M. Air quality in enclosed railway stations. Proc. Inst. Civ. Eng.-Transp. 2017, 170, 99–107. [Google Scholar] [CrossRef] [Green Version]
- Andersen, M.H.G.; Johannesson, S.; Fonseca, A.S.; Clausen, P.A.; Saber, A.T.; Roursgaard, M.; Loeschner, K.; Koponen, I.K.; Loft, S.; Vogel, U.; et al. Exposure to air pollution inside electric and diesel-powered passenger trains. Environ. Sci. Technol. 2019, 53, 4579–4587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbasi, S.; Jansson, A.; Sellgren, U.; Olofsson, U. Particle emissions from rail traffic: A literature review. Crit. Rev. Environ. Sci. Technol. 2013, 43, 2511–2544. [Google Scholar] [CrossRef] [Green Version]
- Abramesko, V.; Tartakovsky, L. Ultrafine particle air pollution inside diesel-propelled passenger trains. Environ. Pollut. 2017, 226, 288–296. [Google Scholar] [CrossRef]
- Jeong, C.H.; Traub, A.; Evans, G.J. Exposure to ultrafine particles and black carbon in diesel-powered commuter trains. Atmos. Environment. 2017, 155, 46–52. [Google Scholar] [CrossRef]
- Nieuwenhuijsen, M.J.; Gomez-Perales, J.E.; Colvile, R.N. Levels of particulate air pollution, its elemental composition, determinants and health effects in metro systems. Atmos. Environment. 2007, 41, 7995–8006. [Google Scholar] [CrossRef]
- Vichiensan, V.; Wasuntarasook, V.; Hayashi, Y.; Kii, M.; Prakayaphun, T. Urban rail transit in Bangkok: Chronological development review and impact on residential property value. Sustainability 2022, 14, 284. [Google Scholar] [CrossRef]
- Thailand Ministry of Transport Data Catalogue Home Page. Available online: https://stat.mot.go.th (accessed on 28 May 2021).
- Thailand Office of Transport and Traffic Policy and Planning. Available online: http://www.otp.go.th/uploads/tiny_uploads/ProjectOTP/2560/Projcet01/2.2-TDS_Exsum_EN_Final_20180515.pdf (accessed on 29 September 2021).
- Watcharavitoon, P.; Chio, C.P.; Chan, C.C. Temporal and spatial variations in ambient air quality during 1996–2009 in Bangkok, Thailand. Aerosol Air Qual. Res. 2013, 13, 1741–1754. [Google Scholar] [CrossRef] [Green Version]
- Cheewaphongphan, P.; Hanaoka, T.; Chatani, S. Long-term trend of regional passenger road transport demand and emission estimation under exhaust emission regulation scenario in Thailand. Environ. Res. Commun. 2020, 2, 051009. [Google Scholar] [CrossRef]
- Moreno, T.; Reche, C.; Ahn, K.H.; Eun, H.R.; Kim, W.Y.; Kim, H.S.; Fernandez-Iriarte, A.; Amato, F.; Querol, X. Using miniaturised scanning mobility particle sizers to observe size distribution patterns of quasi-ultrafine aerosols inhaled during city commuting. Environ. Res. 2020, 191, 109978. [Google Scholar] [CrossRef] [PubMed]
- Thailand Pollution Control Department Thailand’s Air Quality and Situation Reports. Available online: air4thai.pcd.go.th/webV2/ (accessed on 3 November 2022).
- Oanh, N.K.; Upadhyay, N.; Zhuang, Y.H.; Hao, Z.P.; Murthy, D.V.S.; Lestari, P.; Villarin, J.T.; Chengchua, K.; Co, H.X.; Dung, N.T.; et al. Particulate air pollution in six Asian cities: Spatial and temporal distributions, and associated sources. Atmos. Environ. 2006, 40, 3367–3380. [Google Scholar] [CrossRef]
- Oanh, N.K.; Kongpran, J.; Hang, N.T.; Parkpian, P.; Hung, N.T.Q.; Lee, S.B.; Bae, G.N. Characterization of gaseous pollutants and PM2. 5 at fixed roadsides and along vehicle traveling routes in Bangkok Metropolitan Region. Atmos. Environ. 2013, 77, 674–685. [Google Scholar] [CrossRef]
- Hämeri, K.; Koponen, I.K.; Aalto, P.P.; Kulmala, M. The Particle Detection Efficiency of the TSI–3007 Condensation Particle Counter. J. Aerosol. Sci. 2002, 33, 1463–1469. [Google Scholar] [CrossRef]
- Royal Thai Government Website. Available online: https://www.thaigov.go.th/news/contents/details/45401 (accessed on 10 March 2023).
- BTS Service Timetable. Available online: https://www.bts.co.th/service/timetable.html (accessed on 10 March 2023).
- Cheng, Y.H.; Liu, C.C.; Lin, Y. L Levels of ultrafine particles in the Taipei Rapid Transit System. Transp. Res. Part D Transp. Environ. 2009, 14, 479–486. [Google Scholar] [CrossRef]
- Martins, V.; Moreno, T.; Minguillón, M.C.; Amato, F.; de Miguel, E.; Capdevila, M.; Querol, X. Exposure to airborne particulate matter in the subway system. Sci. Total Environ. 2015, 511, 711–722. [Google Scholar] [CrossRef] [Green Version]
- Posselt, K.P.; Neuberger, M.; Köhler, D. Fine and ultrafine particle exposure during commuting by subway in Vienna. Wien Klin Wochenschr. 2019, 131, 374–380. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.D.; Barratt, B.M.; Fuller, G.W.; Kelly, F.J.; Loxham, M.; Nicolosi, E.; Priestman, M.; Tremper, A.H.; Green, D.C. PM2.5 on the London Underground. Environ. Int. 2020, 134, 105188. [Google Scholar] [CrossRef]
- Ongwandee, M.; Chavalparit, O. Commuter exposure to BTEX in public transportation modes in Bangkok, Thailand. J. Environ. Sci. 2010, 22, 397–404. [Google Scholar] [CrossRef]
- Fridell, E.; Björk, A.; Ferm, M.; Ekberg, A. On-board measurements of particulate matter emissions from a passenger train. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit. 2011, 225, 99–106. [Google Scholar] [CrossRef]
- Khan, M.A.H.; Bonifcio, S.; Clowes, J.J.; Foulds, A.; Holland, R.; Matthews, J.C.; Percival, C.J.; Shallcross, D.E. Investigation of biofuel as a potential renewable energy source. Atmosphere 2021, 12, 1289. [Google Scholar] [CrossRef]
- Jedynska, A.; Tromp, P.C.; Houtzager, M.M.; Kooter, I.M. Chemical characterization of biofuel exhaust emissions. Atmos. Environment. 2015, 116, 172–182. [Google Scholar] [CrossRef]
- Robinson, J.F.; Rios de Anda, I.; Moore, F.J.; Gregson, F.K.; Reid, J.P.; Husain, L.; Sear, R.P.; Royall, C.P. How effective are face coverings in reducing transmission of COVID-19? Aerosol. Sci. Technol. 2022, 56, 473–487. [Google Scholar] [CrossRef]
- Huang, W.; Morawska, L. Face masks could raise pollution risks. Nature 2019, 574, 29–30. [Google Scholar] [CrossRef] [Green Version]
- Joo, T.; Takeuchi, M.; Liu, F.; Rivera, M.P.; Barr, J.; Blum, E.S.; Parker, E.; Tipton, J.H.; Varnedoe, J.; Dutta, B.; et al. Evaluation of particle filtration efficiency of commercially available materials for homemade face mask usage. Aerosol. Sci. Technol. 2021, 55, 930–942. [Google Scholar] [CrossRef]
Day | Date | Start Time | Train | MRT | BTS | Bus | Finish | Season |
---|---|---|---|---|---|---|---|---|
Wed AM | 16 May 2018 | 06:34 | 06:48–07:40 | 07:54–08:05 | 08:13–08:34 | 08:40–09:00 | 09:08 | Hot |
Wed PM | 16 May 2018 | 16:17 | 16:27–17:17 | 17:27–17:38 | 17:44–18:10 | 18:20–18:58 | 19:04 | Hot |
Fri AM | 18 May 2018 | 16:34 | 06:45–08:02 | 08:12–08:22 | 08:31–08:52 | 09:02–09:21 | 09:28 | Hot |
Fri PM | 18 May 2018 | 16:06 | 16:30–17:18 | 17:30–17:41 | 17:54–18:15 | 18:24–18:59 | 19:06 | Hot |
Sun PM | 20 May 2018 | 17:00 | 17:12–17:58 | 18:13–18:23 | 18:32–18:53 | 19:02–19:21 | 19:27 | Hot |
Wed AM | 23 May 2018 | 06:34 | 06:45–07:41 | 07:50–08:01 | 08:11–08:33 | 08:43–09:05 | 09:11 | Hot |
Fri AM | 25 May 2018 | 06:21 | 06:30–07:44 | 08:12–08:33 | 08:41–09:01 | 09:10–09:34 | 09:41 | Hot |
Fri PM | 25 May 2018 | 16:11 | 16:26–17:42 | 17:53–18:06 | 18:20–18:43 | 18:55–19:19 | 19:26 | Hot |
Wed AM | 30 May 2018 | 07:03 | 07:26–08:46 | 08:55–09:04 | 09:25–09:51 | 10:05–10:22 | 10:30 | Rainy |
Wed PM | 30 May 2018 | 16:10 | 16:34–16:40 | 17:38–17:50 | 17:59–18:24 | 18:30–19:14 | 19:20 | Rainy |
Fri AM | 1 June 2018 | 06:31 | 06:50–08:05 | 08:14–08:26 | 08:36–08:59 | 09:07–09:28 | 09:36 | Rainy |
Fri PM | 1 June 2018 | 16:09 | 16:27–17:08 | 17:19–17:30 | 17:41–18:03 | 18:20–19:07 | 19:13 | Rainy |
Wed AM | 17 October 2018 | 06:35 | 06:44–07:57 | 08:14–08:25 | 08:33–08:55 | 09:09–09:25 | 09:32 | Rainy |
Wed PM | 17 October 2018 | 16:20 | 17:14–18:02 | 18:18–18:30 | 18:42–19:06 | 19:22–19:43 | 19:51 | Rainy |
Thu AM | 25 October 2018 | 07:08 | 07:27–08:28 | 08:43–08:54 | 09:04–09:30 | 09:44–10:01 | 10:09 | Rainy |
Thu PM | 25 October 2018 | 16:20 | 16:29–17:12 | 17:31–17:43 | 17:56–18:19 | 18:34–19:06 | 19:15 | Rainy |
Sat PM | 27 October 2018 | 14:58 | 15:30–16:02 | 17:28–17:40 | 17:50–18:12 | 18:28–18:46 | 18:53 | Rainy |
Thu AM | 1 November 2018 | 06:33 | 06:42–08:31 | 08:47–08:58 | 09:12–09:32 | 09:44–09:59 | 10:07 | Cool |
Thu PM | 1 November 2018 | 16:15 | 16:26–17:11 | 17:26–17:38 | 17:51–18:15 | 18:35–19:20 | 19:21 | Cool |
Number | Minimum | Maximum | Mean | SD | |
---|---|---|---|---|---|
Train | 12 | 0.7 | 3.6 | 2.1 | 1.0 |
MRT | 11 | 1.3 | 5.7 | 2.5 | 1.3 |
BTS | 11 | 0.5 | 3.6 | 1.7 | 1.0 |
Bus | 13 | 0.8 | 4.5 | 2.8 | 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matthews, J.C.; Chompoobut, C.; Navasumrit, P.; Khan, M.A.H.; Wright, M.D.; Ruchirawat, M.; Shallcross, D.E. Particle Number Concentration Measurements on Public Transport in Bangkok, Thailand. Int. J. Environ. Res. Public Health 2023, 20, 5316. https://doi.org/10.3390/ijerph20075316
Matthews JC, Chompoobut C, Navasumrit P, Khan MAH, Wright MD, Ruchirawat M, Shallcross DE. Particle Number Concentration Measurements on Public Transport in Bangkok, Thailand. International Journal of Environmental Research and Public Health. 2023; 20(7):5316. https://doi.org/10.3390/ijerph20075316
Chicago/Turabian StyleMatthews, James C., Chalida Chompoobut, Panida Navasumrit, M. Anwar H. Khan, Matthew D. Wright, Mathuros Ruchirawat, and Dudley E. Shallcross. 2023. "Particle Number Concentration Measurements on Public Transport in Bangkok, Thailand" International Journal of Environmental Research and Public Health 20, no. 7: 5316. https://doi.org/10.3390/ijerph20075316
APA StyleMatthews, J. C., Chompoobut, C., Navasumrit, P., Khan, M. A. H., Wright, M. D., Ruchirawat, M., & Shallcross, D. E. (2023). Particle Number Concentration Measurements on Public Transport in Bangkok, Thailand. International Journal of Environmental Research and Public Health, 20(7), 5316. https://doi.org/10.3390/ijerph20075316