Mountain Hiking: Prolonged Eccentric Muscle Contraction during Simulated Downhill Walking Perturbs Sensorimotor Control Loops Needed for Safe Dynamic Foot–Ground Interactions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.2.1. Experiment One
2.2.2. Experiment Two
2.3. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vanpoulle, M.; Lefevre, B.; Soule, B. Mountaineering incidents in France: Analysis of search and rescue interventions on a 10-year period (from 2008 to 2018). J. Mt. Sci. 2021, 18, 446–461. [Google Scholar] [CrossRef]
- Faulhaber, M.; Ruedl, G.; Schneider, F.; Walter, D.; Sterr, R.; Schobersberger, W.; Schwendinger, F.; Pocecco, E. Characteristics of Victims of Fall-Related Accidents during Mountain Hiking. Int. J. Environ. Res. Public Health 2020, 17, 1115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gasser, B. Deathly Accidents While High-Altitude Mountaineering in the Swiss Alps–An Observational Analysis from 2009 to 2021. Int. J. Environ. Res. Public Health 2022, 19, 12498. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, E.; Cesar, G.; Bromfield, M.; Peterson, R.; Valero-Cuevas, F.; Sigward, S. Strength, Multijoint Coordination, and Sensorimotor Processing Are Independent Contributors to Overall Balance Ability. BioMed Res. Int. 2015, 2015, 561243. [Google Scholar] [CrossRef] [Green Version]
- Sozzi, S.; Monti, A.; DeNunzio, A.; Do, M.-C.; Scieppati, M. Sensori-motor integration during stance: Time adaptation of control mechanisms on adding or remobing vision. Hum. Mov. Sci. 2011, 30, 172–189. [Google Scholar] [CrossRef]
- Kabbaligere, R.; Lee, B.; Layne, C. Balancing sensory inputs: Sensory reweighting of ankle proprioception and vision during a bipedal posture task. Gait Posture 2017, 52, 244–250. [Google Scholar] [CrossRef]
- Taube, W.; Gruber, M.; Gollhofer, A. Spinal and supraspinal adaptations associated with balance training and their functional relevance. Acta Physiol. 2008, 193, 101–116. [Google Scholar] [CrossRef]
- Ritzmann, R.; Freyler, K.; Werkhausen, A.; Gollhofer, A. Changes in Balance Strategy and Neuromuscular Control during a Fatiguing Balance Task–A Study in Perturbed Unilateral Stance. Front. Hum. Neurosci. 2016, 10, 289. [Google Scholar] [CrossRef] [Green Version]
- Finley, J.; Dhaher, Y.; Perreault, E. Acceleration dependence and task-specific modulation of short- and medium-latency reflexes in ankle extensors. Physiol. Rep. 2013, 1, e00051. [Google Scholar] [CrossRef]
- Doumas, M.; Valkanidis, T.; Hatzitaki, V. Putting proprioception for balance to the test: Contrasting and combining sway referencing and tendon vibration. Gait Posture 2019, 67, 201–206. [Google Scholar] [CrossRef] [Green Version]
- Manzone, D.; Tremblay, L. Contributions of exercise-induced fatigue versus intertrial tendon vibration on visual-proprioceptive weighting for goal-directed movement. J. Neurophysiol. 2020, 124, 802–814. [Google Scholar] [CrossRef] [PubMed]
- Assländer, L.; Peterka, R. Sensory reweighting dynamics following removal and addition of visual and proprioceptive cues. J. Neurophsiol. 2016, 116, 272–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McIntosh, A.; Beatty, K.; Dwan, L.; Vickers, D. Gait dynamics on an inclined walkway. J. Biomech. 2006, 39, 2491–2502. [Google Scholar] [CrossRef] [PubMed]
- Lay, A.; Hass, C.; Gregor, R. The effects of sloped surface on locomotion: A kinematic and kinetic analysis. J. Biomech. 2006, 39, 1621–1628. [Google Scholar] [CrossRef]
- Jalaleddini, K.; Nagamori, A.; Laine, C.; Golkar, M.; Kearney, R.; Valero-Cuevas, F. Physiological tremor increases when skeletal muscle is shortened: Implications for fusimotor control. J. Physiol. 2017, 24, 7331–7346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duchateau, J.; Enoka, R. Neural control of lengthening contractions. J. Exp. Biol. 2016, 219, 197–204. [Google Scholar] [CrossRef] [Green Version]
- Nagamori, A.; Valero-Cuevas, F.; Finley, J. Unilaterla Eccentric Contraction of Plantarflexors Leads to Bilateral Alterations in Leg Dexterity. Front. Physiol. 2016, 7, 582. [Google Scholar] [CrossRef] [Green Version]
- Finley, J.; Dhaher, Y.; Perreault, E. Contributions of feed-forward and feedback strategies at the human ankle during control of unstable loads. Exp. Brain Res. 2012, 217, 53–66. [Google Scholar] [CrossRef] [Green Version]
- Kaminishi, K.; Chiba, R.; Takakusaki, K.; Ota, J. Increase in muscle tone promotes the use of ankle strategies during perturbed stance. Gait Posture 2021, 90, 67–72. [Google Scholar] [CrossRef]
- Lyle, M.; Valero-Cuevas, F.; Gregor, R.; Powers, C. The lower extremity test as a measure of lower extremity dynamical capability. J. Biomech. 2013, 46, 998–1002. [Google Scholar] [CrossRef]
- Lawrence, E.; Fassola, I.; Werner, I.; Leclercq, C.; Valero-Cuevas, F. Qualification of dexterity as the dynamical regulation of instabilities: Comparisons across gender, age, and desease. Front. Neurol. 2014, 5, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goble, D.; Coxon, J.; Van Impe, A.; Geurts, M.; Doumas, M.; Wenderoth, N.; Swinnen, S. Brain Activity during Ankle Proprioceptive Stiumlation Predicts Balance Performance in Young and Older Adults. J. Neurosci. 2011, 31, 16344–16352. [Google Scholar] [CrossRef] [Green Version]
- Koelewijn, A.; Ijspeert, A. Exploring the Contribution of Proprioceptive Reflexes to Balance Control in Perturbed Standing. Front. Bioeng. Biotechnol. 2020, 8, 866. [Google Scholar] [CrossRef]
- Villa-Cha, C.; Riis, S.; Lund, D.; Moller, A.; Farina, D.; Falla, D. Effect of unaccustomed eccentric exercise on proprioception of the knee in weight and non-weight bearing tasks. J. Electromyogr. Kinesiol. 2011, 21, 141–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grose, G.; Manzone, D.; Eschelmuller, G.; Peters, R.; Carpenter, M.; Inglis, T.; Chua, R. The effects of eccentric exercise-induced fatigue on position sense during goal-directed movement. J. Appl. Physiol. 2022, 132, 1005–1019. [Google Scholar] [CrossRef] [PubMed]
- Bottoni, G.; Heinrich, D.; Kofler, P.; Hasler, M.; Nachbauer, W. Effect of Knee Supports on Knee Joint Position Sense after Downhill Walking. A Test Using a Hiking Simulation Method. J. Ergon. 2014, 4, 132. [Google Scholar]
- Faul, F.; Erdfelder, E.; Lang, A.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Rodewald, B.; Schlichting, H. Springen, Gehen, Laufen. Prax. Nat. Phys. 1988, 37, 12–14. [Google Scholar]
- Scherr, J.; Wolfarth, B.; Christle, J.; Pressler, A.; Wagenpfeil, S.; Halle, M. Associations between Borg’s rating of perceived exertion and physiological measures of exercise intensity. Eur. J. Appl. Physiol. 2013, 113, 147–155. [Google Scholar] [CrossRef]
- Raschner, C.; Lembert, S.; Platzer, H.; Patterson, C.; Hilden, T.; Lutz, M. S3-Check–Evaluation and Generation of Normal Values of a Test for Balance Ability and Postural Stability. Sportverl. Sportschad. 2008, 22, 100–105. [Google Scholar] [CrossRef]
- Raschner, C.; Hildebrandt, C.; Mohr, J.; Müller, L. Sex Differences in Balance Among Alpine Ski Racers: Cross-Sectional Age Comparisons. Percept. Mot. Ski. 2017, 124, 1134–1150. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: Abingdon, UK, 1988. [Google Scholar]
- Proske, U. Exercise, fatigue and proprioception: A retrospective. Exp. Brain Res. 2019, 237, 2447–2459. [Google Scholar] [CrossRef] [PubMed]
- Wilkins, J.; Valovich McLeod, T.; Perrin, D.; Gansneder, B. Performance on the Balance Error Scoring System Decrease After Fatigue. J. Athl. Train. 2004, 39, 156–161. [Google Scholar] [PubMed]
- Granacher, U.; Gruber, M.; Förderer, D.; Strass, D.; Gollhofer, A. Effects of ankle fatigue on functional reflex activity during gait perturbations in young and elderly men. Gait Posture 2010, 32, 107–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosp, S.; Folie, R.; Csapo, R.; Hasler, M.; Nachbauer, W. Eccentric Exervise, Kinesiology Tape, and Balance in Healthy Men. J. Athl. Train. 2017, 52, 636–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franz, J.; Kram, R. The effects of grade and speed on leg muscle activations during walking. Gait Posture 2012, 35, 143–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribot-Ciscar, E.; Hospod, V.; Roll, J.; Aimonetti, J. Fusimotor Drive May Adjust Muscle Spindle Feedback to Task Requirements in Humans. J. Neurophysiol. 2009, 101, 633–640. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, J. Human Spinal Motor Control. Annu. Rev. Neurosci. 2016, 39, 81–101. [Google Scholar] [CrossRef]
- Freyler, K.; Gollhofer, A.; Colin, R.; Brüderlin, U.; Ritzmann, R. Reactive Balance Control in Response to Perturbation in Unilateral Stance: Interaction Effects of Direction, Displacement and Velocity on Compensatory Neuromuscular and Kinematic Responses. PLoS ONE 2015, 10, e0144529. [Google Scholar] [CrossRef]
- Giboin, L.; Tokuno, C.; Kramer, A.; Henry, M.; Gruber, M. Motor learning induces time-dependent plasticity that is observable at the spinal cord level. J. Physiol. 2020, 589, 1943–1963. [Google Scholar] [CrossRef]
- Lawrence, E.; Valero-Cuevas, E.; Reid, N.; Chen, J.; Koziol, N.; Cohn, B.; Valero-Cuevas, F. Training leg dexterity while seated enhances standing balance and postural control more than strength and endurance training alone. In Proceedings of the NASA Human Research Program Investigators’ Workshop “To the Moon: The Next Golden Age of Human Spaceflight”, Galveston, TX, USA, 7–9 February 2023. [Google Scholar]
- Busquets, A.; Ferrer-Uris, B.; Angula-Barroso, R.; Federolf, P. Gymnastics Experience Enhances the Development of Bipedal-Stance Multi-Segmental Coordination and Control During Proprioceptive Reweighting. Front. Psychol. 2021, 12, 661312. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Werner, I.; Valero-Cuevas, F.J.; Federolf, P. Mountain Hiking: Prolonged Eccentric Muscle Contraction during Simulated Downhill Walking Perturbs Sensorimotor Control Loops Needed for Safe Dynamic Foot–Ground Interactions. Int. J. Environ. Res. Public Health 2023, 20, 5424. https://doi.org/10.3390/ijerph20075424
Werner I, Valero-Cuevas FJ, Federolf P. Mountain Hiking: Prolonged Eccentric Muscle Contraction during Simulated Downhill Walking Perturbs Sensorimotor Control Loops Needed for Safe Dynamic Foot–Ground Interactions. International Journal of Environmental Research and Public Health. 2023; 20(7):5424. https://doi.org/10.3390/ijerph20075424
Chicago/Turabian StyleWerner, Inge, Francisco J. Valero-Cuevas, and Peter Federolf. 2023. "Mountain Hiking: Prolonged Eccentric Muscle Contraction during Simulated Downhill Walking Perturbs Sensorimotor Control Loops Needed for Safe Dynamic Foot–Ground Interactions" International Journal of Environmental Research and Public Health 20, no. 7: 5424. https://doi.org/10.3390/ijerph20075424