Nutrient Adequacy in Endurance Athletes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Measurements
2.3.1. Demographics, Anthropometry, Type of Sport, and Health History
2.3.2. Dietary Intake Assessment
2.3.3. Dietary Nutritional Adequacy
2.4. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Energy and Macronutrient Intakes
3.3. Micronutrient Intakes
3.4. Proportion of Participants with Inadequate Nutrient Intakes
4. Discussion
5. Conclusions
6. Contribution to the Field Statement
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hinton, P.S.; Sanford, T.C.; Davidson, M.M.; Yakushko, O.F.; Beck, N.C. Nutrient Intakes and Dietary Behaviors of Male and Female Collegiate Athletes. Int. J. Sport Nutr. Exerc. Metab. 2004, 14, 389–405. [Google Scholar] [CrossRef]
- Kirkendall, D. Effect of Nutrition on Performance in Soccer. Med. Sci. Sport. Exerc. 1993, 25, 1370–1374. [Google Scholar] [CrossRef]
- Casazza, G.A.; Tovar, A.P.; Richardson, C.E.; Cortez, A.N.; Davis, B.A. Energy Availability, Macronutrient Intake, and Nutritional Supplementation for Improving Exercise Performance in Endurance Athletes. Tran. Prev. Rehabil. 2018, 17, 215–223. [Google Scholar] [CrossRef]
- Bytomski, J.R. Fueling for Performance. Sport Health 2018, 10, 47–53. [Google Scholar] [CrossRef]
- Saris, W.H.M. The Concept of Energy Homeostasis for Optimal Health During Training. Can. J. Appl. Physiol. 2001, 26, S167–S175. [Google Scholar] [CrossRef]
- Gleeson, M.; Bishop, N. Elite Athlete Immunology: Importance of Nutrition. Int. J. Sports Med. 2000, 21, S44–S50. [Google Scholar] [CrossRef]
- Joy, E.A.; Campbell, D. Stress Fractures in the Female Athlete. Curr. Sport. Med. Rep. 2005, 4, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Mountjoy, M.; Sundgot-Borgen, J.; Burke, L.; Carter, S.; Constantini, N.; Lebrun, C.; Meyer, N.; Sherman, R.; Steffen, K.; Budgett, R.; et al. The IOC Consensus Statement: Beyond the Female Athlete Triad-Relative Energy Deficiency in Sport (RED-S). Br. J. Sport. Med. 2014, 48, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Nunes, C.L.; Matias, C.N.; Santos, D.A.; Morgado, J.P.; Monteiro, C.P.; Sousa, M.; Minderico, C.S.; Rocha, P.M.; St-Onge, M.P.; Sardinha, L.B.; et al. Characterization and Comparison of Nutritional Intake between Preparatory and Competitive Phase of Highly Trained Athletes. Medicina 2018, 54, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, J.A.; Tanaka, H.; Landis, W. An Assessment of Carbohydrate Intake in Collegiate Distance Runners. Int. J. Sport Nutr. 1995, 5, 206–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jagim, A.R.; Zabriskie, H.; Currier, B.; Harty, P.S.; Stecker, R.; Kerksick, C.M. Nutrient Status and Perceptions of Energy and Macronutrient Intake in a Group of Collegiate Female Lacrosse Athletes. J. Int. Soc. Sport. Nutr. 2019, 16, 43. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, V.B.; Ravagnani, C.d.F.C.; Nabuco, H.C.G.; Ravagnani, F.C.d.P.; Fernandes, V.L.S.; Espinosa, M.M. Adequacy of Energy and Macronutrient Intake of Food Supplements for Athletes. Rev. Nutr. 2017, 30, 593–603. [Google Scholar] [CrossRef] [Green Version]
- Sewak, A.; Singla, N.; Jain, R. Physical Activity Level in Relation to the Nutrient Intake of Elite Athletes. Curr. J. Appl. Sci. Technol. 2019, 34, 1–10. [Google Scholar] [CrossRef]
- Papandreou, D.; Hassapidou, M.; Hourdakis, M.; Papakonstantinou, K.; Tsitskaris, G.; Garefis, A. Dietary Intakes of Elite Athletes. Aristotle Univ. Med. J. 2006, 33, 119–126. [Google Scholar]
- Mielgo-Ayuso, J.; Zourdos, M.C.; Calleja-González, J.; Urdampilleta, A.; Ostojic, S.M. Dietary Intake Habits and Controlled Training on Body Composition and Strength in Elite Female Volleyball Players during the Season. Appl. Physiol. Nutr. Metab. 2015, 40, 827–834. [Google Scholar] [CrossRef]
- Baranauskas, M.; Stukas, R.; Tubelis, L.; Žagminas, K.; Šurkiene, G.; Švedas, E.; Giedraitis, V.R.; Dobrovolskij, V.; Abaravičius, J.A. Nutritional Habits among High-Performance Endurance Athletes. Medicina 2015, 51, 351–362. [Google Scholar] [CrossRef] [PubMed]
- Masson, G.; Lamarche, B. Many Non-Elite Multisport Endurance Athletes Do Not Meet Sports Nutrition Recommendations for Carbohydrates. Appl. Physiol. Nutr. Metab. 2016, 41, 728–734. [Google Scholar] [CrossRef] [PubMed]
- Heaney, S.; O’connor, H.; Gifford, J.; Naughton, G. Comparison of Strategies for Assessing Nutritional Adequacy in Elite Female Athletes’ Dietary Intake. Int. J. Sport Nutr. Exerc. Metab. 2010, 20, 245–256. [Google Scholar] [CrossRef] [PubMed]
- Collins, A.C.; Ward, K.D.; Mirza, B.; Slawson, D.L.; McClanahan, B.S.; Vukadinovich, C. Comparison of Nutritional Intake in US Adolescent Swimmers and Non-Athletes. Health 2012, 04, 873–880. [Google Scholar] [CrossRef] [Green Version]
- Wardenaar, F.; Brinkmans, N.; Ceelen, I.; Van Rooij, B.; Mensink, M.; Witkamp, R.; De Vries, J. Micronutrient Intakes in 553 Dutch Elite and Sub-Elite Athletes: Prevalence of Low and High Intakes in Users and Non-Users of Nutritional Supplements. Nutrients 2017, 9, 142. [Google Scholar] [CrossRef] [Green Version]
- Papadopoulou, S.D.; Papadopoulou, S.K.; Vamvakoudis, E.; Tsitskaris, G. Comparison of Nutritional Intake between Volleyball and Basketball Women Athletes of the Olympic National Teams. Arch. Sci. Med. 2008, 167, 147–152. [Google Scholar]
- Chen, J.D.; Wang, J.F.; Li, K.J.; Zhao, Y.W.; Wang, S.W.; Jiao, Y.; Hou, X.Y. Nutritional Problems and Measures in Elite and Amateur Athletes. Am. J. Clin. Nutr. 1989, 49 (Suppl. 5), 1084–1089. [Google Scholar] [CrossRef] [PubMed]
- Machefer, G.; Groussard, C.; Zouhal, H.; Vincent, S.; Youssef, H.; Faure, H.; Malardé, L.; Gratas-Delamarche, A. Nutritional and Plasmatic Antioxidant Vitamins Status of Ultra Endurance Athletes. J. Am. Coll. Nutr. 2007, 26, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Amirsasan, R.; Dolataabadi, P. Assessment of Vitamin and Mineral Intakes in Paralympic Athletes in Tabriz, Iran. Int. J. Basic Sci. Med. 2017, 2, 123–127. [Google Scholar] [CrossRef] [Green Version]
- Lukaski, H.C. Vitamin and Mineral Status: Effects on Physical Performance. Nutrition 2004, 20, 632–644. [Google Scholar] [CrossRef]
- Sumida, S.; Iwamoto, J.; Kamide, N.; Otani, T. Evaluation of Bone, Nutrition, and Physical Function in Shorinji Kempo Athletes. Open Access J. Sport. Med. 2012, 3, 107–114. [Google Scholar] [CrossRef] [Green Version]
- Madden, R.F.; Shearer, J.; Parnell, J.A. Evaluation of Dietary Intakes and Supplement Use in Paralympic Athletes. Nutrients 2017, 9, 1266. [Google Scholar] [CrossRef] [Green Version]
- JANELLE, K.C.; BARR, S.I. Nutrient Intakes and Eating Behavior See of Vegetarian and Nonvegetarian Women. J. Am. Diet. Assoc. 1995, 95, 180–189. [Google Scholar] [CrossRef]
- Volek, J.S.; Noakes, T.; Phinney, S.D. Rethinking Fat as a Fuel for Endurance Exercise. Eur. J. Sport Sci. 2015, 15, 13–20. [Google Scholar] [CrossRef]
- Vitale, K.; Getzin, A. Nutrition and Supplement Update for the Endurance Athlete: Review and Recommendations. Nutrients 2019, 11, 1289. [Google Scholar] [CrossRef] [Green Version]
- Spano, M. Functional Foods, Beverages, and Ingredients in Athletics. Strength Cond. J. 2010, 32, 79–86. [Google Scholar] [CrossRef] [Green Version]
- McKay, A.K.A.; Stellingwerff, T.; Smith, E.S.; Martin, D.T.; Mujika, I.; Goosey-Tolfrey, V.L.; Sheppard, J.; Burke, L.M. Defining Training and Performance Caliber: A Participant Classification Framework. Int. J. Sport. Physiol. Perform. 2022, 17, 317–331. [Google Scholar] [CrossRef] [PubMed]
- Casey, P.; Goolsby, S.L.; Lensing, S.Y.; Perioff, B.; Bogle, M.L. The Use of Telephone Interview Methodology to Obtain 24-Hour Dietary Recalls. J. Am. Diet. Assoc. 1999, 99, 1406–1411. [Google Scholar] [CrossRef]
- Conway, J.M.; Ingwersen, L.A.; Vinyard, B.T.; Moshfegh, A.J. Effectiveness of the US Department of Agriculture 5-Step Multiple-Pass Method in Assessing Food Intake in Obese and Nonobese Women. Am. J. Clin. Nutr. 2003, 77, 1171–1178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Institute of Medicine (U.S.). Dietary Reference Intakes: The Essential Guide to Nutrient Requirements; The National Academies Press: Washington, DC, USA, 2006. [Google Scholar] [CrossRef] [Green Version]
- Academy of Nutrition and Dietetics Dietitians of Canada. Nutrition and Athletic Performance. Med. Sci. Sport. Exerc. 2016, 48, 543–568. [Google Scholar] [CrossRef]
- USDA; USDHHS. Dietary Guidelines for Americans, 2020–2025; U.S. Department of Agriculture (USDA): Washington, DC, USA; U.S. Department of Health and Human Services (USDHHS): Washington, DC, USA, 2020; pp. 51–61. Available online: https://www.dietaryguidelines.gov/ (accessed on 5 August 2021).
- Lichtenstein, A.H.; Appel, L.J.; Brands, M.; Carnethon, M.; Daniels, S.; Franch, H.A.; Franklin, B.; Kris-Etherton, P.; Harris, W.S.; Howard, B.; et al. Diet and Lifestyle Recommendations Revision 2006: A Scientific Statement from the American Heart Association Nutrition Committee. Circulation 2006, 114, 82–96. [Google Scholar] [CrossRef] [Green Version]
- Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Floride; National Academies Press: Washington, DC, USA, 1997. [Google Scholar]
- Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and its Panel on Folate, Other B Vitamins, and Choline. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline; National Academies Press: Washington, DC, USA, 1998. [Google Scholar]
- National Research Council (U.S.); Institute of Medicine (U.S.). Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids; National Academy Press: Washington, DC, USA, 2000. [Google Scholar]
- Institute of Medicine (U.S.) Panel on Micronutrients. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academy Press: Washington, DC, USA, 2001. [Google Scholar]
- Institute of Medicine (U.S.) Committee to Review Dietary Reference Intakes for Vitamin D and Calcium. Dietary Reference Intakes for Calcium, Vitamin D; National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Institute of Medicine (U.S.) Panel on Macronutrients. Dietary Reference Intakes for Energy, Carbohydrate, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids; National Academies Press: Washington, DC, USA, 2005. [Google Scholar]
- National Academies of Sciences, Engineering, and Medicine. Dietary Reference Intakes for Sodium and Potassium; Stallings, V.A., Harrison, M., Oria, M., Eds.; National Academies Press: Washington, DC, USA, 2019. [Google Scholar] [CrossRef]
- Institute of Medicine (US) Subcommittee on Interpretation and Uses of Dietary Reference Intakes; Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. Dietary Reference Intakes: Applications in Dietary Planning; National Academies Press: Washington, DC, USA, 2003. [Google Scholar]
- Achten, J.; Halson, S.L.; Moseley, L.; Rayson, M.P.; Casey, A.; Jeukendrup, A.E. Higher Dietary Carbohydrate Content during Intensified Running Training Results in Better Maintenance of Performance and Mood State. J. Appl. Physiol. 2004, 96, 1331–1340. [Google Scholar] [CrossRef] [Green Version]
- Burke, L.M. Re-Examining High-Fat Diets for Sports Performance: Did We Call the ‘Nail in the Coffin’ Too Soon? Sport. Med. 2015, 45, 33–49. [Google Scholar] [CrossRef] [Green Version]
- Gavin, J.P.; Myers, S.D.; Willems, M.E.T. Neuromuscular Responses to Mild-Muscle Damaging Eccentric Exercise in a Low Glycogen State. J. Electromyogr. Kinesiol. 2015, 25, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Lowery, L.; Forsythe, C.E. Protein and Overtraining: Potential Applications for Free-Living Athletes. J. Int. Soc. Sport. Nutr. 2006, 3, 42–50. [Google Scholar] [CrossRef] [Green Version]
- Ivy, J.L.; Goforth, H.W.; Damon, B.M.; McCauley, T.R.; Parsons, E.C.; Price, T.B. Early Postexercise Muscle Glycogen Recovery Is Enhanced with a Carbohydrate-Protein Supplement. J. Appl. Physiol. 2002, 93, 1337–1344. [Google Scholar] [CrossRef] [PubMed]
- Ivy, J.L.; Res, P.T.; Sprague, R.C.; Widzer, M.O. Effect of a Carbohydrate-Protein Supplement on Endurance Performance during Exercise of Varying Intensity. Int. J. Sport Nutr. Exerc. Metab. 2003, 13, 382–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wardle, J.; Haase, A.M.; Steptoe, A.; Nillapun, M.; Jonwutiwes, K.; Bellisle, F. Gender Differences in Food Choice: The Contribution of Health Beliefs and Dieting. Ann. Behav. Med. 2004, 27, 107–116. [Google Scholar] [CrossRef]
- Clark, A.; Mach, N. Exercise-Induced Stress Behavior, Gut-Microbiota-Brain Axis and Diet: A Systematic Review for Athletes. J. Int. Soc. Sport. Nutr. 2016, 13, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crowson, M.M.; McClave, S.A. Does the Intestinal Microbiome Impact Athletic Performance? Curr. Gastroenterol. Rep. 2020, 22, 53. [Google Scholar] [CrossRef] [PubMed]
- Thielecke, F.; Blannin, A. Omega-3 Fatty Acids for Sport Performance—Are They Equally Beneficial for Athletes and Amateurs? A Narrative Review. Nutrients 2020, 12, 3712. [Google Scholar] [CrossRef]
- Graybeal, A.J.; Kreutzer, A.; Willis, J.L.; Moss, K.; Braun-Trocchio, R.; Shah, M. Age Drives the Differences in Dietary Supplement Use in Endurance Athletes: A Cross-Sectional Analysis of Cyclists, Runners, and Triathletes. J. Diet. Suppl. 2022, 1–19. [Google Scholar] [CrossRef]
- Graybeal, A.J.; Helms, B.; Couris, K.; Thomas, D.; Johnston, T.; Dahan, V.; Escobedo, N.; Willis, J.L. Improved Physiological Markers of Omega-3 Status and Compliance with Omega-3 Supplementation in Division I Track and Field and Cross-Country Athletes: A Randomized Controlled Crossover Trial. Int. J. Sport Nutr. Exerc. Metab. 2022, 32, 246–255. [Google Scholar] [CrossRef]
- Barnard, N.D.; Goldman, D.M.; Loomis, J.F.; Kahleova, H.; Levin, S.M.; Neabore, S.; Batts, T.C. Plant-Based Diets for Cardiovascular Safety and Performance in Endurance Sports. Nutrients 2019, 11, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibson, J.C.; Stuart-Hill, L.; Martin, S.; Gaul, C. Nutrition Status of Junior Elite Canadian Female Soccer Athletes. Int. J. Sport Nutr. Exerc. Metab. 2011, 21, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, N.R.; DiMarco, N.M.; Langley, S. Position of the American Dietetic Association, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and Athletic Performance. J. Am. Diet. Assoc. 2009, 109, 509–527. [Google Scholar] [CrossRef] [PubMed]
- Manore, M.M. Effect of Physical Activity on Frailty. Am. J. Clin. Nutr. 2000, 72, 598S–606S. [Google Scholar] [CrossRef] [Green Version]
- Watson, T.A.; MacDonald-Wicks, L.K.; Garg, M.L. Oxidative Stress and Antioxidants in Athletes Undertaking Regular Exercise Training. Int. J. Sport Nutr. Exerc. Metab. 2005, 15, 131–146. [Google Scholar] [CrossRef] [PubMed]
- Patlar, S.; Baltaci, A.K.; Mogulkoc, R. Effect of Vitamin A Administration on Free Radicals and Lactate Levels in Individuals Exercised to Exhaustion. Pak. J. Pharm. Sci. 2016, 29, 1531–1534. [Google Scholar] [PubMed]
- Guasch-Ferre, M.; Bhupathiraju, S.N.; Hu, F.B. Use of Metabolomics in Improving Assessment of Dietary Intake. Clin. Chem. 2018, 64, 82–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faber, M.; Spinnler Benade, A.J. Mineral and Vitamin Intake in Field Athletes (Discus-, Hammer-, Javelin-Throwers and Shotputters). Int. J. Sport. Med. 1991, 12, 324–327. [Google Scholar] [CrossRef]
- do Nascimento, M.V.S.; Villa-Nova, T.M.S.; da Silva, D.G.; Nascimento, V.T.; Mendes-Netto, R.S. Nutrient and Food Inadequacies among Athletes: Gender Comparisons. J. Phys. Educ. 2016, 27, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Horvath, P.J.; Eagen, C.K.; Ryer-Calvin, S.D.; Pendergast, D.R. The Effects of Varying Dietary Fat on the Nutrient Intake in Male and Female Runners. J. Am. Coll. Nutr. 2000, 19, 42–51. [Google Scholar] [CrossRef]
- Beard, J.L. Iron Biology in Immune Function, Muscle Metabolism and Neuronal Functioning. J. Nutr. 2001, 131 (Suppl. 2), 568S–580S. [Google Scholar] [CrossRef] [Green Version]
- Sim, M.; Garvican-Lewis, L.A.; Cox, G.R.; Govus, A.; McKay, A.K.A.; Stellingwerff, T.; Peeling, P. Iron Considerations for the Athlete: A Narrative Review. Eur. J. Appl. Physiol. 2019, 119, 1463–1478. [Google Scholar] [CrossRef]
- Lukaski, H.C. Magnesium, Zinc, and Chromium Nutrition and Athletic Performance. Can. J. Appl. Physiol. 2001, 26 (Suppl. 6), 13–22. [Google Scholar] [CrossRef]
- Feng, W.; Mao, G.; Li, Q.; Wang, W.; Chen, Y.; Zhao, T.; Li, F.; Zou, Y.; Wu, H.; Yang, L.; et al. Effects of Chromium Malate on Glycometabolism, Glycometabolism-Related Enzyme Levels and Lipid Metabolism in Type 2 Diabetic Rats: A Dose-Response and Curative Effects Study. J. Diabetes Investig. 2015, 6, 396–407. [Google Scholar] [CrossRef]
- Vally, H.; Misso, N.L.A. Adverse Reactions to the Sulphite Additives. Gastroenterol. Hepatol. Bed Bench 2012, 5, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Kois, N.; Ler, P.; Piechanowska, K.; Sieja, K.; Stolarska, M.; von Mach-Szczypińska, J. Influence of Selenium on Oxidative Stress in Athletes. Review Article. Cent. Eur. J. Sport Sci. Med. 2016, 14, 87–92. [Google Scholar] [CrossRef]
- Penry, J.T.; Manore, M.M. Choline: An Important Micronutrient for Maximal Endurance-Exercise Performance? Int. J. Sport Nutr. Exerc. Metab. 2008, 18, 191–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nair, R.; Maseeh, A. Vitamin D: The Sunshine Vitamin. J. Pharmacol. Pharmacother. 2012, 3, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Heaney, S.; Connor, H.O.; Naughton, G.; Gifford, J. Towards an Understanding of the Barriers to Good Nutrition for Elite Athletes. Int. J. Sport. Sci. Coach. 2008, 3, 391–401. [Google Scholar] [CrossRef]
- Werner, E.N.; Guadagni, A.J.; Pivarnik, J.M.; Werner, E.N.; Guadagni, A.J.; Assessment, J.M.P. Assessment of Nutrition Knowledge in Division I College Athletes. J. Am. Coll. Health 2020, 70, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Larson-Meyer, D.E.; Woolf, K.; Burke, L. Assessment of Nutrient Status in Athletes and the Need for Supplementation. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 139–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | Total Sample (n = 95) | Female (n = 47) | Male (n = 48) | p * |
---|---|---|---|---|
Age (y) | 34.9 ± 12.9 | 33.5 ± 11.0 | 36.2 ± 14.5 | 0.49 |
BMI (kg/m2) | 23.6 ± 3.84 | 23.0 ± 2.81 | 24.2 ± 4.59 | 0.12 |
Race | ||||
White | 87 (91.6) | 41 (87.2) | 46 (95.8) | 0.16 |
Other | 8 (8.4) | 6 (12.8) | 2 (4.2) | |
Ethnicity | ||||
Hispanic | 17 (16.8) | 4 (8.6) | 12 (25.0) | 0.09 |
Non-Hispanic | 79 (83.2) | 43 (91.4) | 36 (75.0) | |
Education | ||||
≤High school | 2 (2.1) | 0 (0.0) | 2 (4.2) | 0.51 |
Some college | 25 (26.4) | 10 (21.3) | 15 (31.2) | |
Bachelor’s degree | 31 (32.6) | 16 (34.0) | 15 (31.3) | |
Graduate degree | 37 (38.9) | 21 (44.7) | 16 (33.3) | |
Endurance Sport | ||||
Cycling | 18 (18.9) | 6 (12.8) | 12 (25.0) | 0.27 |
Running | 47 (49.5) | 24 (51.1) | 23 (47.9) | |
Triathlon | 23 (24.2) | 14 (29.8) | 9 (18.7) | |
Swimming | 2 (2.0) | 0 (0.0) | 2 (4.2) | |
Rowing | 5 (5.3) | 3 (6.3) | 2 (4.2) | |
Smoking | ||||
Yes | 0 (0.0) | 0 (0.0) | 0 (0.0) | 1 |
No | 95 (100.0) | 47 (100.0) | 48 (100.0) | |
Alcohol Consumption | ||||
Yes | 63 (66.3) | 34 (72.3) | 29 (60.4) | 0.28 |
No | 32 (33.7) | 13 (27.7) | 19 (39.6) | |
Vegetarian | ||||
Yes | 7 (7.4) | 6 (12.8) | 1 (2.1) | 0.06 |
No | 88 (92.6) | 41 (87.2) | 47 (97.9) | |
Chronic Condition | ||||
Yes | 61 (64.2) | 30 (63.8) | 31 (64.5) | 1 |
No | 34 (35.8) | 17 (36.2) | 17 (35.4) | |
Medication Use | ||||
Yes | 35 (36.8) | 19 (40.4) | 16 (33.3) | 0.51 |
No | 60 (63.2) | 28 (59.6) | 32 (66.7) | |
Supplement Use | ||||
Yes | 47 (49.5) | 24 (51.1) | 23 (47.9) | 0.84 |
No | 48 (50.5) | 23 (48.9) | 25 (52.1) |
Nutrient | Total Sample (n = 95) | Female (n = 47) | Male (n = 48) | p * |
---|---|---|---|---|
Energy (kcal) | 2283 (1655–2826) | 1998 (1475–2441) | 2539 (1996–3246) | ≤0.0001 |
Protein (% energy) | 18.9 (14.6–23.5) | 18.6 (15.0–22.9) | 18.9 (14.5–24.3) | 0.88 |
Carbohydrate (% energy) | 43.4 (33.7–57.1) | 43.0 (34.8–56.3) | 46.4 (33.0–62.2) | 0.95 |
Total fat (% energy) ⸹ | 34.3 (58.5–42.7) | 33.8 (28.7–44.3) | 34.4 (28.3–41.0) | 0.91 |
SFA (% energy) | 10.1 (7.44–12.4) | 9.53 (7.4–11.7) | 10.2 (7.9–14.0) | 0.36 |
PUFA (% energy) | 4.3 (3.0–7.2) | 4.4 (2.9–7.4) | 4.1 (3.0–6.1) | 0.60 |
MUFA (% energy) | 8.4 (5.5–12.8) | 8.2 (5.0–13.5) | 8.7 (5.8–12.7) | 0.82 |
LA (g) | 7.53 (3.62–13.4) | 7.29 (3.4–13.4) | 7.8 (3.8–13.9) | 0.84 |
ALA (g) | 0.67 (0.38–1.34) | 0.68 (0.39–1.4) | 0.59 (0.37–1.3) | 0.95 |
EPA (g) | 0.00 (0.00–0.1) | 0.00 (0.00–0.01) | 0.00 (0.00–0.01) | 0.84 |
DHA (g) | 0.01 (0.00–0.06) | 0.01 (0.00–0.04) | 0.01 (0.00–0.07) | 0.95 |
Cholesterol (mg) | 286 (138–462) | 217 (118–394) | 369 (204–539) | <0.01 |
Dietary fiber (g) | 27.5 (19.5–36.9) | 28.2 (20.7–36.1) | 27.3 (19.2–38.4) | 0.86 |
Nutrient | Total Sample (n = 95) | Female (n = 47) | Male (n = 48) | p * |
---|---|---|---|---|
Vitamin A (μg) | 543 (220–1065) | 502 (201–744) | 785 (364–1516) | 0.051 |
Vitamin C (mg) | 104 (39.9–202) | 116 (60.1–197) | 101 (38.8–205) | 0.86 |
Vitamin D (μg) | 2.0 (0.37–4.4) | 1.6 (0.25–3.5) | 2.0 (0.38–5.3) | 0.37 |
Vitamin E (mg) | 7.7 (4.2–13.9) | 8.1 (4.3–14.6) | 7.7 (3.8–13.4) | 0.47 |
Vitamin K (μg) | 90.1 (41.2–268) | 90 (43.9–164) | 91 (35.1–452) | 0.57 |
Thiamine (mg) | 1.2 (0.77–1.73) | 1.0 (0.74–1.5) | 1.3 (0.87–1.8) | 0.13 |
Riboflavin (mg) | 1.7 (1.2–2.3) | 1.5 (1.2–2.2) | 1.9 (1.2–2.9) | 0.18 |
Niacin (mg) | 26.6 (15.8–40.6) | 22.4 (15.8–37.4) | 29.2 (15.9–47.2) | 0.12 |
Vitamin B6 (mg) | 1.9 (1.29–2.77) | 1.7 (1.2–2.5) | 2.1 (1.4–2.9) | 0.18 |
Folate (μg) | 283 (138–470) | 258 (131–399) | 352 (142–530) | 0.26 |
Vitamin B12 (μg) | 2.8 (1.6–5.0) | 2.0 (1.2–4.0) | 3.9 (2.2–6.2) | ≤0.001 |
Pantothenic acid (mg) | 3.3 (2.1–5.7) | 3.2 (2.1–5.2) | 3.3 (1.9–6.0) | 0.97 |
Biotin (μg) | 7.9 (3.3–16.7) | 7.9 (3.2–17.9) | 7.9 (3.4–16.7) | 0.82 |
Calcium (mg) | 888 (630–1272) | 911 (551–1298) | 833 (637–1266) | 0.95 |
Copper (mg) | 1.1 (0.72–1.6) | 1.1 (0.62–1.8) | 1.1 (0.76–1.4) | 0.74 |
Manganese (mg) | 1.7 (0.86–2.6) | 1.6 (0.74–2.6) | 1.9 (0.93–2.7) | 0.52 |
Iron (mg) | 15.0 (10.4–19.9) | 11.9 (10.1–17.2) | 17.2 (12.3–21.2) | <0.01 |
Magnesium (mg) | 267 (192–387) | 281 (180–402) | 259 (203–367) | 0.86 |
Phosphorus (mg) | 1027 (712–1443) | 968 (697–1278) | 1069 (732–1780) | 0.13 |
Selenium (μg) | 78.5 (38.7–115.2) | 68.4 (35.5–100) | 95.1 (44.7–143) | 0.02 |
Chromium (μg) | 1.69 (0.33–5.5) | 1.7 (0.26–5.2) | 1.9 (0.62–5.5) | 0.72 |
Molybdenum (μg) | 6.9 (.48–16.6) | 7.2 (2.3–15.0) | 5.7 (0.00–20.5) | 0.76 |
Choline (mg) | 238 (122–389) | 200 (109–332) | 287 (147–509) | 0.03 |
Zinc (mg) | 8.4 (5.7–12.0) | 7.1 (5.4–9.4) | 9.7 (5.8–14.1) | 0.03 |
Potassium (mg) | 2650 (1596–3657) | 2360 (1442–3490) | 3143 (1919–3945) | 0.10 |
Sodium (mg) | 3835 (2785–4658) | 3776 (2451–4463) | 3932 (2935–5422) | 0.06 |
β-carotene (μg) | 1706 (421–6906) | 1706 (874–4136) | 1805 (210–9799) | 0.97 |
Total water (L) | 2.90 (2.14–4.07) | 2.79 (2.14–3.98) | 3.00 (2.15–4.17) | 0.99 |
% Who Did Not Meet Requirement | ||||
---|---|---|---|---|
Nutrient Requirement/d | Total Sample (n = 95) | Female (n = 47) | Male (n = 48) | p * |
Energy € (kcal) | 76.8 | 76.6 | 77.1 | 1.0 |
Protein † (M/F: 1.5 g/kg) | 47.4 | 70.2 | 25.0 | ≤0.0001 |
Carbohydrate † (M/F: 8 g/kg) | 95.8 | 97.9 | 93.8 | 0.62 |
Total fat† (M/F: 20–35% energy) | 47.4 | 46.8 | 47.9 | 1.0 |
Saturated fat ⁋ (M/F: <10% of total energy) | 50.5 | 48.9 | 52.1 | 0.84 |
Linoleic acid ǁ (M: 17 g (19–50 y); 14g (≥51 y)) (F: 12 g (19–50 y); 11g (≥51 y)) | 75.8 | 68.1 | 83.3 | 0.10 |
alpha-linolenic acid ǁ (M: 1.6 g; F: 1.1 g) | 77.9 | 68.1 | 87.5 | 0.03 |
EPA+DHA § (M/F: 0.5 g) | 96.8 | 97.9 | 95.8 | 1.0 |
Dietary cholesterol § (M/F < 300 mg) | 48.4 | 40.4 | 56.3 | 0.15 |
Dietary fiber ǁ (M: 38 g (19–50 y); 30 g (≥51 y)) (F: 25 g (19–50 y); 21 g (≥51 y)) | 49.5 | 27.7 | 70.8 | ≤0.0001 |
Vitamin A ⸸⸹ (M: 625 µg; F: 500 µg) | 46.3 | 48.9 | 43.8 | 0.68 |
Vitamin C ⸸ (M: 75 mg; F: 60 mg) | 30.5 | 23.4 | 37.5 | 0.18 |
Vitamin D ⸸ (M/F: 10 µg) | 93.7 | 95.7 | 91.7 | 0.68 |
Vitamin E ⸸⸹ (M/F: 12 mg) | 71.6 | 68.1 | 75.0 | 0.50 |
Vitamin K ǁ (M: 120 µg; F: 90 µg) | 54.7 | 51.1 | 58.3 | 0.54 |
Thiamine ⸸ (M: 1.0 mg; F: 0.9 mg) | 40.0 | 42.6 | 37.5 | 0.68 |
Riboflavin ⸸ (M: 1.1 mg; F: 0.9 mg) | 18.9 | 14.9 | 22.9 | 0.43 |
Niacin ⸸⸹ (M: 12 mg; F: 11 mg) | 9.5 | 10.6 | 8.3 | 0.74 |
Vitamin B6 ⸸ (M: 1.1 mg (19–50 y); 1.4 mg (≥51 y)) (F: 1.1 mg (19–50 y); 1.3 mg (≥51 y)) | 21.1 | 21.3 | 20.8 | 1.0 |
Folate ⸸⸹ (M/F: 320 µg) | 54.7 | 61.7 | 47.9 | 0.22 |
Vitamin B12 ⸸ (M/F: 2 µg/d) | 34.7 | 46.8 | 22.9 | 0.02 |
Pantothenic acid ǁ (M/F: 5 mg) | 70.5 | 74.5 | 66.7 | 0.50 |
Biotin ǁ (M/F: 30 µg) | 83.2 | 83.0 | 83.3 | 1.0 |
Calcium ⸸ (M: 800 mg (19–70 y); 1000 mg (>70 y)) (F: 800 mg (19–50 y); 1000 mg (≥51 y)) | 42.1 | 42.6 | 41.7 | 1.0 |
Copper ⸸ (M/F: 700 µg) | 24.2 | 25.5 | 22.9 | 0.81 |
Manganese ǁ (M: 2.3 mg; F: 1.8 mg) | 58.9 | 59.6 | 58.3 | 1.0 |
Iron ⸸ (M: 6 mg) (F: 8.1 mg (19–50); 5 mg (≥51 y)) | 11.6 | 14.9 | 8.3 | 0.36 |
Magnesium ⸸ (M: 330 mg (19–30 y); 350 mg (≥31 y)) (F: 255 mg (19–30 y); 265 mg (≥31 y)) | 56.8 | 46.8 | 66.7 | 0.06 |
Phosphorus ⸸ (M/F: 580 mg) | 18.9 | 21.3 | 16.7 | 0.61 |
Selenium ⸸ (M/F: 45 µg) | 32.6 | 38.3 | 27.1 | 0.28 |
Chromium ǁ (M: 35 µg (19–50 y); 30 µg (≥51 y)) (F: 25 µg (19–50 y); 20 µg (≥51 y)) | 91.6 | 89.4 | 93.8 | 0.49 |
Molybdenum ⸸ (M/F: 34 µg) | 93.7 | 95.7 | 91.7 | 0.68 |
Choline ǁ (M: 550 mg; F: 425 mg) | 85.3 | 89.4 | 81.3 | 0.23 |
Zinc ⸸ (M: 9.4 mg; F: 6.8 mg) | 46.3 | 46.8 | 45.8 | 1.0 |
Potassium ǁ (M: 3400 mg; F: 2600 mg) | 56.8 | 55.3 | 58.3 | 0.84 |
Sodium ǁ (M/F: <1500 mg) | 94.7 | 91.5 | 97.9 | 0.20 |
Total water ǁ (M: 3.7 L/d; F: 2.7 L/d) | 57.9 | 44.7 | 70.8 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moss, K.; Kreutzer, A.; Graybeal, A.J.; Zhang, Y.; Braun-Trocchio, R.; Porter, R.R.; Shah, M. Nutrient Adequacy in Endurance Athletes. Int. J. Environ. Res. Public Health 2023, 20, 5469. https://doi.org/10.3390/ijerph20085469
Moss K, Kreutzer A, Graybeal AJ, Zhang Y, Braun-Trocchio R, Porter RR, Shah M. Nutrient Adequacy in Endurance Athletes. International Journal of Environmental Research and Public Health. 2023; 20(8):5469. https://doi.org/10.3390/ijerph20085469
Chicago/Turabian StyleMoss, Kamiah, Andreas Kreutzer, Austin J. Graybeal, Yan Zhang, Robyn Braun-Trocchio, Ryan R. Porter, and Meena Shah. 2023. "Nutrient Adequacy in Endurance Athletes" International Journal of Environmental Research and Public Health 20, no. 8: 5469. https://doi.org/10.3390/ijerph20085469
APA StyleMoss, K., Kreutzer, A., Graybeal, A. J., Zhang, Y., Braun-Trocchio, R., Porter, R. R., & Shah, M. (2023). Nutrient Adequacy in Endurance Athletes. International Journal of Environmental Research and Public Health, 20(8), 5469. https://doi.org/10.3390/ijerph20085469