The Representativeness of Outdoor Particulate Matter Concentrations for Estimating Personal Dose and Health Risk Assessment of School Children in Lisbon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Origin
2.3. Exposure Methodology
2.4. Dosimetry Model
2.5. Health Risk Assessment Methodology
3. Results and Discussion
3.1. PM Concentrations
3.2. Ambient vs. Personal Regional Deposited Dose
3.3. Ambient vs. Personal Retained Dose and Clearance
3.4. Linear Regression Analysis
3.5. Impact of Hygroscopicity
3.6. Hazard Quotients
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IARC. Outdoor Air Pollution. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. 2016; Volume 109. Available online: https://www.ncbi.nlm.nih.gov/books/NBK368024/pdf/Bookshelf_NBK368024.pdf (accessed on 10 March 2023).
- Gu, J.; Kraus, U.; Schneider, A.; Hampel, R.; Pitz, M.; Breitner, S.; Wolf, K.; Hänninen, O.; Peters, A.; Cyrys, J. Personal day-time exposure to ultrafine particles in different microenvironments. Int. J. Hyg. Environ. Health 2015, 218, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Kousa, A.; Oglesby, L.; Koistinen, K.; Künzli, N.; Jantunen, M. Exposure chain of urban air PM2.5—Associations between ambient fixed site, residential outdoor, indoor, workplace and personal exposures in four European cities in the EXPOLIS-study. Atmos. Environ. 2002, 36, 3031–3039. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, C.; Jia, X.; Xu, H.; Pan, M.; Xu, N.; Shen, X.; Zhang, J.; Tan, J.; Qian, H.; et al. Personal exposure measurements of school-children to fine particulate matter (PM2.5) in winter of 2013, Shanghai, China. PLoS ONE 2018, 13, e0193586. [Google Scholar] [CrossRef] [PubMed]
- Borgini, A.; Tittarelli, A.; Ricci, C.; Bertoldi, M.; De Saeger, E.; Crosignani, P. Personal exposure to PM2.5 among high-school students in Milan and background measurements: The EuroLifeNet study. Atmos. Environ. 2011, 45, 4147–4151. [Google Scholar] [CrossRef]
- Kim, D.; Sass-Kortsak, A.; Purdham, J.T.; Dales, R.E.; Brook, J.R. Associations between personal exposures and fixed-site ambient measurements of fine particulate matter, nitrogen dioxide, and carbon monoxide in Toronto, Canada. J. Expo. Sci. Environ. Epidemiol. 2006, 16, 172–183. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, B.; Jayaratne, R.; Thompson, H.; Buonanno, G.; Mazaheri, M.; Nyarku, M.; Lin, W.; Pereira, M.L.; Cyrys, J.; Peters, A.; et al. Utility of outdoor central site monitoring in assessing exposure of school children to ultrafine particles. Sci. Total Environ. 2023, 859 Pt 1, 160162. [Google Scholar] [CrossRef] [PubMed]
- Morawska, L.; Afshari, A.; Bae, G.N.; Buonanno, G.; Chao, C.Y.H.; Hänninen, O.; Hofmann, W.; Isaxon, C.; Jayaratne, E.R.; Pasanen, P.; et al. Indoor aerosols: From personal exposure to risk assessment. Indoor Air 2013, 23, 462–487. [Google Scholar] [CrossRef] [PubMed]
- Chatzidiakou, L.; Krause, A.; Popoola, O.A.M.; Di Antonio, A.; Kellaway, M.; Han, Y.; Squires, F.A.; Wang, T.; Zhang, H.; Wang, Q.; et al. Characterising low-cost sensors in highly portable platforms to quantify personal exposure in diverse environments. Atmos. Meas. Tech. 2019, 12, 4643–4657. [Google Scholar] [CrossRef]
- Pacitto, A.; Stabile, L.; Russo, S.; Buonanno, G. Exposure to Submicron Particles and Estimation of the Dose Received by Children in School and Non-School Environments. Atmosphere 2020, 11, 485. [Google Scholar] [CrossRef]
- Almeida, S.M.; Faria, T.; Martins, V.; Canha, N.; Diapouli, E.; Eleftheriadis, K.; Manousakas, M.I. Source apportionment of children daily exposure to particulate matter. Sci. Total Environ. 2022, 835, 155349. [Google Scholar] [CrossRef]
- Chalvatzaki, E.; Chatoutsidou, S.E.; Martins, V.; Faria, T.; Diapouli, E.; Manousakas, M.; Almeida, S.M.; Eleftheriadis, K.; Lazaridis, M. Assessment of the Personal Dose Received by School Children Due to PM10 Air Pollution in Lisbon. Aerosol Air Qual. Res. 2020, 20, 1384–1397. [Google Scholar] [CrossRef]
- Faria, T.; Martins, V.; Correia, C.; Canha, N.; Diapouli, E.; Manousakas, M.; Eleftheriadis, K.; Almeida, S.M. Children’s exposure and dose assessment to particulate matter in Lisbon. Build. Environ. 2020, 171, 106666. [Google Scholar] [CrossRef]
- Faria, T.; Cunha-Lopes, I.; Pilou, M.; Housiadas, C.; Querol, X.; Alves, C.; Almeida, S.M. Children’s exposure to size-fractioned particulate matter: Chemical composition and internal dose. Sci. Total Environ. 2022, 823, 153745. [Google Scholar] [CrossRef] [PubMed]
- Mejía, J.F.; Choy, S.L.; Mengersen, K.; Morawska, L. Methodology for assessing exposure and impacts of air pollutants in school children: Data collection, analysis and health effects—A literature review. Atmos. Environ. 2011, 45, 813–823. [Google Scholar] [CrossRef]
- Chatoutsidou, S.; Pantelaki, C.; Kopanakis, I.; Andreadakis, D.; Petroulakis, S.; Lazaridis, M. Mass concentration and elemental content of PM10 during painting/sketching activities in a university classroom. Int. J. Environ. Sci. Technol. 2020, 18, 1061–1072. [Google Scholar] [CrossRef]
- Chen, Z.; Cui, L.; Cui, X.; Li, X.; Yu, K.; Yue, K.; Dai, Z.; Zhou, J.; Jia, G.; Zhang, J. The association between high ambient air pollution exposure and respiratory health of young children: A cross sectional study in Jinan, China. Sci. Total Environ. 2019, 656, 740–749. [Google Scholar] [CrossRef] [PubMed]
- Madureira, J.; Paciência, I.; Rufo, J.; Severo, M.; Ramos, E.; Barros, H.; Fernandes, E.D.O. Source apportionment of CO2, PM10 and VOCs levels and health risk assessment in naturally ventilated primary schools in Porto, Portugal. Build. Environ. 2016, 96, 198–205. [Google Scholar] [CrossRef]
- Pope, C.A., 3rd; Ezzati, M.; Dockery, D.W. Fine-particulate air pollution and life expectancy in the United States. N. Engl. J. Med. 2009, 360, 376–386. [Google Scholar] [CrossRef]
- Pope, C.A., 3rd; Dockery, D.W. Health effects of fine particulate air pollution: Lines that connect. Air Waste Manag. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef]
- Dai, H.; Huang, G.; Zeng, H.; Zhou, F. PM2.5 volatility prediction by XGBoost-MLP based on GARCH models. J. Clean. Prod. 2022, 356, 131898. [Google Scholar] [CrossRef]
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide. 2021. Available online: https://apps.who.int/iris/handle/10665/345329 (accessed on 10 March 2023).
- Chalvatzaki, E.; Lazaridis, M. Development and application of a dosimetry model (ExDoM2) for calculating internal dose of specific particle-bound metals in the human body. Inhal. Toxicol. 2015, 27, 308–320. [Google Scholar] [CrossRef] [PubMed]
- Chalvatzaki, E.; Lazaridis, M. A dosimetry model of hygroscopic particle growth in the human respiratory tract. Air Qual. Atmos. Health 2018, 11, 471–482. [Google Scholar] [CrossRef]
- Martins, V.; Faria, T.; Diapouli, E.; Manousakas, M.I.; Eleftheriadis, K.; Viana, M.; Almeida, S.M. Relationship between indoor and outdoor size-fractionated particulate matter in urban microenvironments: Levels, chemical composition and sources. Environ. Res. 2020, 183, 109203. [Google Scholar] [CrossRef] [PubMed]
- Almeida, S.M.; Silva, A.I.; Freitas, M.C.; Dzung, H.M.; Caseiro, A.; Pio, C. Impact of maritime air mass trajectories on the Western European coast urban aerosol. J. Toxicol. Environ. Health Part A 2013, 76, 252–262. [Google Scholar] [CrossRef]
- Qualar. Available online: https://qualar.apambiente.pt/en/downloads (accessed on 10 March 2023).
- ICRP. Human respiratory tract model for radiological protection. ICRP publication 66. Ann. ICRP 1994, 24, 1–482. [Google Scholar]
- ICRP. Occupational Intakes of Radionuclides: Part 1. ICRP Publication 130. Ann. ICRP 2015, 44, 5–188. Available online: https://journals.sagepub.com/doi/pdf/10.1177/ANIB_44_2 (accessed on 10 March 2023). [CrossRef]
- Petters, M.D.; Kreidenweis, S.M. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys. 2007, 7, 1961–1971. [Google Scholar] [CrossRef]
- Carrico, C.M.; Petters, M.D.; Kreidenweis, S.M.; Collett, J.L.; Engling, G.; Malm, W.C. Aerosol hygroscopicity and cloud droplet activation of extracts of filters from biomass burning experiments. J. Geophys. Res. Atmos. 2008, 113, D08206. [Google Scholar] [CrossRef]
- Haddrell, A.E.; Davies, J.F.; Reid, J.P. Dynamics of Particle Size on Inhalation of Environmental Aerosol and Impact on Deposition Fraction. Environ. Sci. Technol. 2015, 49, 14512–14521. [Google Scholar] [CrossRef]
- Köhler, H. The nucleus in and the growth of hygroscopic droplets. Trans. Faraday Soc. 1936, 32, 1152–1161. [Google Scholar] [CrossRef]
- Rissler, J.; Svenningsson, B.; Fors, E.O.; Bilde, M.; Swietlicki, E. An evaluation and comparison of cloud condensation nucleus activity models: Predicting particle critical saturation from growth at subsaturation. J. Geophys. Res. Atmos. 2010, 115, D22208. [Google Scholar] [CrossRef]
- Vu, T.V.; Delgado-Saborit, J.M.; Harrison, R.M. A review of hygroscopic growth factors of submicron aerosols from different sources and its implication for calculation of lung deposition efficiency of ambient aerosols. Air Qual. Atmos. Health 2015, 8, 429–440. [Google Scholar] [CrossRef]
- Vu, T.V.; Ondracek, J.; Zdímal, V.; Schwarz, J.; Delgado-Saborit, J.M.; Harrison, R.M. Physical properties and lung deposition of particles emitted from five major indoor sources. Air Qual. Atmos. Health 2017, 10, 1–14. [Google Scholar] [CrossRef] [PubMed]
- EPA/540/R/070/002; Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment). US EPA: Washington, DC, USA, 2009. Available online: https://www.epa.gov/sites/default/files/2015-09/documents/partf_200901_final.pdf (accessed on 10 March 2023).
- US-EPA. Users’ Guide and Background Technical Document for USEPA Region 9—Preliminary Remediation Goals (PRG) Table. Available online: https://semspub.epa.gov/work/02/103453.pdf (accessed on 10 March 2023).
- Yunesian, M.; Rostami, R.; Zarei, A.; Fazlzadehdavilb, M.; Janjani, H. Exposure to High Levels of PM2.5 and PM10 in the Metropolis of Tehran and the Associated Health Risks during 2016–2017. Microchem. J. 2019, 150, 104174. [Google Scholar] [CrossRef]
- OECD. Education at a Glance 2018: OECD Indicators. Available online: https://www.oecd-ilibrary.org/education/education-at-a-glance-2018_eag-2018-en (accessed on 10 March 2023).
- Aleksandropoulou, V.; Mitsakou, C.; Housiadas, C.; Lazaridis, M. Particulate Matter Exposure and Dose Relationships Derived from Realistic Exposure Scenarios. Indoor Built Environ. 2008, 17, 237–246. [Google Scholar] [CrossRef]
- Sánchez-Soberón, F.; Mari, M.; Kumar, V.; Rovira, J.; Nadal, M.; Schuhmacher, M. An approach to assess the particulate matter exposure for the population living around a cement plant: Modelling indoor air and particle deposition in the respiratory tract. Environ. Res. 2015, 143 Pt A, 10–18. [Google Scholar] [CrossRef]
- Darquenne, C.; Zeman, K.L.; Sá, R.C.; Cooper, T.K.; Fine, J.M.; Bennett, W.D.; Prisk, G.K. Removal of sedimentation decreases relative deposition of coarse particles in the lung periphery. J. Appl. Physiol. 2013, 115, 546–555. [Google Scholar] [CrossRef]
- Sá, R.C.; Zeman, K.L.; Bennett, W.D.; Prisk, G.K.; Darquenne, C. Effect of Posture on Regional Deposition of Coarse Particles in the Healthy Human Lung. J. Aerosol. Med. Pulm. Drug Deliv. 2015, 28, 423–431. [Google Scholar] [CrossRef]
- Chen, X.-C.; Ward, T.J.; Cao, J.-J.; Lee, S.-C.; Chow, J.C.; Lau, G.N.; Yim, S.H.; Ho, K.-F. Determinants of personal exposure to fine particulate matter (PM2.5) in adult subjects in Hong Kong. Sci. Total Environ. 2018, 628–629, 1165–1177. [Google Scholar] [CrossRef]
- Braniš, M.; Šafránek, J.; Hytychová, A. Indoor and outdoor sources of size-resolved mass concentration of particulate matter in a school gym—Implications for exposure of exercising children. Environ. Sci. Pollut. Res. 2011, 18, 598–609. [Google Scholar] [CrossRef]
- Fromme, H.; Diemer, J.; Dietrich, S.; Cyrys, J.; Heinrich, J.; Lang, W.K.; Kiranoglu, M.; Twardella, D. Chemical and morphological properties of particulate matter (PM10, PM2.5) in school classrooms and outdoor air. Atmos. Environ. 2008, 42, 6597–6605. [Google Scholar] [CrossRef]
- Amato, F.; Rivas, I.; Viana, M.; Moreno, T.; Bouso, L.; Reche, C.; Àlvarez-Pedrerol, M.; Alastuey, A.; Sunyer, J.; Querol, X. Sources of indoor and outdoor PM2.5 concentrations in primary schools. Sci. Total Environ. 2014, 490, 757–765. [Google Scholar] [CrossRef] [PubMed]
- Varghese, S.K.; Gangamma, S. Particle deposition in human respiratory tract: Effect of water-soluble fraction. Aerosol. Air Qual. Res. 2006, 6, 360–379. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, Y.; Lin, Z.; Zhou, Y.; Yan, C.; Zhang, Y.; Zhou, W.; Zhou, W.; Ma, W.; Hua, C.; et al. Deposition potential of 0.003–10 µm ambient particles in the humidified human respiratory tract: Contribution of new particle formation events in Beijing. Ecotoxicol. Environ. Saf. 2022, 243, 114023. [Google Scholar] [CrossRef] [PubMed]
- Winkler-Heil, R.; Ferron, G.; Hofmann, W. Calculation of hygroscopic particle deposition in the human lung. Inhal. Toxicol. 2014, 26, 193–206. [Google Scholar] [CrossRef] [PubMed]
Field Measurements | Scenarios | ||
---|---|---|---|
Sampling Period | Location | Outdoor | Realistic |
16–17/11/17 & 20–22/11/17 | School SA | station (O1) | daily activity profile (R1) |
23–24/11/17 & 27–29/11/17 | School SB | station (O2) | daily activity profile (R2) |
7/12/17 & 11–14/12/17 | School SC | station (O3) | daily activity profile (R3) |
15–19/01/18 | School SD | station (O4) | daily activity profile (R4) |
21–25/05/18 | School SE | station (O5) | daily activity profile (R5) |
Location | PM2.5 | PM10 | ||
---|---|---|---|---|
Indoor | Outdoor | Indoor | Outdoor | |
School SA | 28.6 ± 6.0 | 26.0 ± 4.4 | 38.0 ± 8.5 | 37.1 ± 4.2 |
School SB | 23.6 ± 8.1 | 9.7 ± 7.1 | 51.6 ± 8.4 | 20.7 ± 9.5 |
School SC | 48.3 ± 13.4 | 27.9 ± 11.2 | 89.7 ± 21.6 | 45.0 ± 9.0 |
School SD | 52.9 ± 34.1 | 19.7 ± 12.1 | 109.0 ± 34.3 | 28.3 ± 11.4 |
School SE | 19.5 ± 3.6 | 18.0 ± 10.5 | 32.7 ± 7.5 | 25.2 ± 13.3 |
House * | 16.0 ± 3.6 | - | 20.2 ± 3.8 | - |
Station (O1) | - | 24.3 ± 4.7 | - | 37.4 ± 7.3 |
Station (O2) | - | 11.5 ± 3.1 | - | 20.8 ± 7.9 |
Station (O3) | - | 14.0 ± 6.1 | - | 25.1 ± 6.8 |
Station (O4) | - | 9.9 ± 4.3 | - | 18.1 ± 4.5 |
Station (O5) | - | 10.4 ± 2.4 | - | 16.6 ± 2.5 |
Station ** | - | 10.3 ± 1.2 | - | 18.6 ± 1.3 |
HQ | HQ | ||
---|---|---|---|
PM10 | |||
O1 | 0.41 | R1 | 0.29 |
O2 | 0.23 | R2 | 0.34 |
O3 | 0.28 | R3 | 0.49 |
O4 | 0.20 | R4 | 0.55 |
O5 | 0.18 | R5 | 0.27 |
PM2.5 | |||
O1 | 0.80 | R1 | 0.68 |
O2 | 0.38 | R2 | 0.60 |
O3 | 0.46 | R3 | 0.90 |
O4 | 0.33 | R4 | 0.94 |
O5 | 0.34 | R5 | 0.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chalvatzaki, E.; Chatoutsidou, S.E.; Almeida, S.M.; Morawska, L.; Lazaridis, M. The Representativeness of Outdoor Particulate Matter Concentrations for Estimating Personal Dose and Health Risk Assessment of School Children in Lisbon. Int. J. Environ. Res. Public Health 2023, 20, 5564. https://doi.org/10.3390/ijerph20085564
Chalvatzaki E, Chatoutsidou SE, Almeida SM, Morawska L, Lazaridis M. The Representativeness of Outdoor Particulate Matter Concentrations for Estimating Personal Dose and Health Risk Assessment of School Children in Lisbon. International Journal of Environmental Research and Public Health. 2023; 20(8):5564. https://doi.org/10.3390/ijerph20085564
Chicago/Turabian StyleChalvatzaki, Eleftheria, Sofia Eirini Chatoutsidou, Susana Marta Almeida, Lidia Morawska, and Mihalis Lazaridis. 2023. "The Representativeness of Outdoor Particulate Matter Concentrations for Estimating Personal Dose and Health Risk Assessment of School Children in Lisbon" International Journal of Environmental Research and Public Health 20, no. 8: 5564. https://doi.org/10.3390/ijerph20085564
APA StyleChalvatzaki, E., Chatoutsidou, S. E., Almeida, S. M., Morawska, L., & Lazaridis, M. (2023). The Representativeness of Outdoor Particulate Matter Concentrations for Estimating Personal Dose and Health Risk Assessment of School Children in Lisbon. International Journal of Environmental Research and Public Health, 20(8), 5564. https://doi.org/10.3390/ijerph20085564