Architectural Allostatic Overloading: Exploring a Connection between Architectural Form and Allostatic Overloading
Abstract
:1. Introduction
2. Architecturally Mediated Allostatic Overloading
3. Measuring Allostatic Overloading
3.1. Biomarker Assessment
3.1.1. Biomarkers
3.1.2. Combined and Algorithmic Biomarker Indices
3.2. Clinimetric Assessment
3.3. Limitations
4. Application to Architectural Research
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Bellia, L.; Fragliasso, F. Good Places to Live and Sleep Well: A Literature Review about the Role of Architecture in Determining Non-Visual Effects of Light. Int. J. Environ. Res. Public Health 2021, 18, 1002. [Google Scholar] [CrossRef] [PubMed]
- Osibona, O.; Solomon, B.D.; Fecht, D. Lighting in the Home and Health: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 609. [Google Scholar] [CrossRef] [PubMed]
- Altomonte, S.; Allen, J.; Bluyssen, P.M.; Brager, G.; Heschong, L.; Loder, A.; Schiavon, S.; Veitch, J.A.; Wang, L.; Wargocki, P. Ten questions concerning well-being in the built environment. Build. Environ. 2020, 180, 106949. [Google Scholar] [CrossRef]
- Spence, C. Senses of place: Architectural design for the multisensory mind. Cogn. Res. Princ. Implic. 2020, 5, 46. [Google Scholar] [CrossRef]
- Cedeño-Laurent, J.; Williams, A.; MacNaughton, P.; Cao, X.; Eitland, E.; Spengler, J.; Allen, J. Building Evidence for Health: Green Buildings, Current Science, and Future Challenges. Annu. Rev. Public Health 2018, 39, 291–308. [Google Scholar] [CrossRef] [Green Version]
- de Prado Bert, P.; Mercader, E.M.H.; Pujol, J.; Sunyer, J.; Mortamais, M. The Effects of Air Pollution on the Brain: A Review of Studies Interfacing Environmental Epidemiology and Neuroimaging. Curr. Environ. Health Rep. 2018, 5, 351–364. [Google Scholar] [CrossRef] [Green Version]
- Rhoads, W.J.; Pruden, A.; Edwards, M.A. Survey of green building water systems reveals elevated water age and water quality concerns. Environ. Sci. Water Res. Technol. 2016, 2, 164–173. [Google Scholar] [CrossRef] [Green Version]
- Ling, F.; Whitaker, R.; LeChevallier, M.W.; Liu, W.T. Drinking water microbiome assembly induced by water stagnation. Isme J. 2018, 12, 1520–1531. [Google Scholar] [CrossRef] [Green Version]
- Lomas, K.J.; Porritt, S.M. Overheating in buildings: Lessons from research. Build. Res. Inf. 2017, 45, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; de Dear, R.; Hancock, P. Effects of moderate thermal environments on cognitive performance: A multidisciplinary review. Appl. Energy 2019, 236, 760–777. [Google Scholar] [CrossRef]
- Fich, L.B.; Jönsson, P.; Kirkegaard, P.H.; Wallergård, M.; Garde, A.H.; Hansen, Å. Can architectural design alter the physiological reaction to psychosocial stress? A virtual TSST experiment. Physiol. Behav. 2014, 135, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Vartanian, O.; Navarrete, G.; Chatterjee, A.; Fich, L.B.; Gonzalez-Mora, J.L.; Leder, H.; Modroño, C.; Nadal, M.; Rostrup, N.; Skov, M. Architectural design and the brain: Effects of ceiling height and perceived enclosure on beauty judgments and approach-avoidance decisions. J. Environ. Psychol. 2015, 41, 10–18. [Google Scholar] [CrossRef]
- Ergan, S.; Radwan, A.; Zou, Z.; Tseng, H.A.; Han, X. Quantifying Human Experience in Architectural Spaces with Integrated Virtual Reality and Body Sensor Networks. J. Comput. Civ. Eng. 2019, 33. [Google Scholar] [CrossRef]
- Cruz-Garza, J.; Darfler, M.; Rounds, J.; Gao, E.; Kalantari, S. EEG-based Investigation of the Impact of Classroom Design on Cognitive Performance of Students. arXiv 2021, arXiv:2102.03629. [Google Scholar]
- Shemesh, A.; Leisman, G.; Bar, M.; Grobman, Y.J. A neurocognitive study of the emotional impact of geometrical criteria of architectural space. Archit. Sci. Rev. 2021, 64, 1–14. [Google Scholar] [CrossRef]
- Wohleb, E.S. Stress and Neuroimmunology. In Oxford Research Encyclopedia of Neuroscience; Oxford University Press: Oxford, UK, 2021; ISBN 9780190264086. [Google Scholar]
- Karlamangla, A.S.; Singer, B.H.; McEwen, B.S.; Rowe, J.W.; Seeman, T.E. Allostatic load as a predictor of functional decline. MacArthur studies of successful aging. J. Clin. Epidemiol. 2002, 55, 696–710. [Google Scholar] [CrossRef]
- Schnorpfeil, P.; Noll, A.; Schulze, R.; Ehlert, U.; Frey, K.; Fischer, J.E. Allostatic load and work conditions. Soc. Sci. Med. 2003, 57, 647–656. [Google Scholar] [CrossRef]
- Fried, L.P.; Xue, Q.L.; Cappola, A.R.; Ferrucci, L.; Chaves, P.; Varadhan, R.; Guralnik, J.M.; Leng, S.X.; Semba, R.D.; Walston, J.D.; et al. Nonlinear multisystem physiological dysregulation associated with frailty in older women: Implications for etiology and treatment. J. Gerontol. Ser. Biol. Sci. Med. Sci. 2009, 64, 1049–1057. [Google Scholar] [CrossRef] [Green Version]
- Gruenewald, T.L.; Seeman, T.E.; Karlamangla, A.S.; Sarkisian, C.A. Allostatic load and frailty in older adults. J. Am. Geriatr. Soc. 2009, 57, 1525–1531. [Google Scholar] [CrossRef] [Green Version]
- Juster, R.P.; Sindi, S.; Marin, M.F.; Perna, A.; Hashemi, A.; Pruessner, J.C.; Lupien, S.J. A clinical allostatic load index is associated with burnout symptoms and hypocortisolemic profiles in healthy workers. Psychoneuroendocrinology 2011, 36, 797–805. [Google Scholar] [CrossRef]
- Danese, A.; McEwen, B.S. Adverse childhood experiences, allostasis, allostatic load, and age-related disease. Physiol. Behav. 2012, 106, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Hintsa, T.; Elovainio, M.; Jokela, M.; Ahola, K.; Virtanen, M.; Pirkola, S. Is there an independent association between burnout and increased allostatic load? Testing the contribution of psychological distress and depression. J. Health Psychol. 2016, 21, 1576–1586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mariotti, A. The effects of chronic stress on health: New insights into the molecular mechanisms of brain–body communication. Future Sci. OA 2015, 1, FSO23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pahwa, R.; Goyal, A.; Jialal, I. Chronic Inflammation. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Logan, J.G.; Barksdale, D.J. Allostasis and allostatic load: Expanding the discourse on stress and cardiovascular disease. J. Clin. Nurs. 2008, 17, 201–208. [Google Scholar] [CrossRef]
- Mathew, A.; Doorenbos, A.Z.; Li, H.; Jang, M.K.; Park, C.G.; Bronas, U.G. Allostatic Load in Cancer: A Systematic Review and Mini Meta-Analysis. Biol. Res. Nurs. 2021, 23, 341–361. [Google Scholar] [CrossRef]
- Stenvinkel, P.; Chertow, G.M.; Devarajan, P.; Levin, A.; Andreoli, S.P.; Bangalore, S.; Warady, B.A. Chronic Inflammation in Chronic Kidney Disease Progression: Role of Nrf2. Kidney Int. Rep. 2021, 6, 1775–1787. [Google Scholar] [CrossRef]
- Dallio, M.; Sangineto, M.; Romeo, M.; Villani, R.; Romano, A.D.; Loguercio, C.; Serviddio, G.; Federico, A. Immunity as Cornerstone of Non-Alcoholic Fatty Liver Disease: The Contribution of Oxidative Stress in the Disease Progression. Int. J. Mol. Sci. 2021, 22, 436. [Google Scholar] [CrossRef]
- Dhabhar, F.S. Enhancing versus Suppressive Effects of Stress on Immune Function: Implications for Immunoprotection versus Immunopathology. Allergy Asthma Clin. Immunol. Off. J. Can. Soc. Allergy Clin. Immunol. 2008, 4, 2–11. [Google Scholar] [CrossRef] [Green Version]
- Walker, K.A. Inflammation and neurodegeneration: Chronicity matters. Aging 2018, 11, 3–4. [Google Scholar] [CrossRef]
- Zhong, W.; Schröder, T.; Bekkering, J. Biophilic design in architecture and its contributions to health, well-being, and sustainability: A critical review. Front. Archit. Res. 2021, 11, 114–141. [Google Scholar] [CrossRef]
- Salingaros, N.A. Biophilia & Healing Environments; Technical report; Terrapin Bright Green: New York, NY, USA, 2015. [Google Scholar]
- Aspinall, P.; Mavros, P.; Coyne, R.; Roe, J. The urban brain: Analysing outdoor physical activity with mobile EEG. Br. J. Sports Med. 2015, 49, 272–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joung, D.; Kim, G.; Choi, Y.; Lim, H.; Park, S.; Woo, J.M.; Park, B.J. The prefrontal cortex activity and psychological effects of viewing forest landscapes in Autumn season. Int. J. Environ. Res. Public Health 2015, 12, 7235–7243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neale, C.; Aspinall, P.; Roe, J.; Tilley, S.; Mavros, P.; Cinderby, S.; Coyne, R.; Thin, N.; Bennett, G.; Thompson, C.W. The Aging Urban Brain: Analyzing Outdoor Physical Activity Using the Emotiv Affectiv Suite in Older People. J. Urban Health 2017, 94, 869–880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coburn, A.; Kardan, O.; Kotabe, H.; Steinberg, J.; Hout, M.C.; Robbins, A.; MacDonald, J.; Hayn-Leichsenring, G.; Berman, M.G. Psychological responses to natural patterns in architecture. J. Environ. Psychol. 2019, 62, 133–145. [Google Scholar] [CrossRef]
- Salingaros, N.A.; Sussman, A. Biometric Pilot-Studies Reveal the Arrangement and Shape of Windows on a Traditional Façade to be Implicitly “Engaging”, Whereas Contemporary Façades are Not. Urban Sci. 2020, 4, 26. [Google Scholar] [CrossRef]
- Yin, J.; Yuan, J.; Arfaei, N.; Catalano, P.J.; Allen, J.G.; Spengler, J.D. Effects of biophilic indoor environment on stress and anxiety recovery: A between-subjects experiment in virtual reality. Environ. Int. 2020, 136, 105427. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.Y.; Chen, P.K. Human response to window views and indoor plants in the workplace. Hortscience 2005, 40, 1354–1359. [Google Scholar] [CrossRef] [Green Version]
- Park, B.J.; Tsunetsugu, Y.; Kasetani, T.; Hirano, H.; Kagawa, T.; Sato, M.; Miyazaki, Y. Physiological effects of Shinrin-yoku (taking in the atmosphere of the forest)—Using salivary cortisol and cerebral activity as indicators. J. Physiol. Anthropol. 2007, 26, 123–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joye, Y. Fractal architecture could be good for you. Nexus Netw. J. 2007, 9, 311–320. [Google Scholar] [CrossRef] [Green Version]
- Söderlund, J.; Newman, P. Biophilic architecture: A review of the rationale and outcomes. AIMS Environ. Sci. 2015, 2, 950–969. [Google Scholar] [CrossRef]
- Gillis, K.; Gatersleben, B. A review of psychological literature on the health and wellbeing benefits of biophilic design. Buildings 2015, 5, 948–963. [Google Scholar] [CrossRef] [Green Version]
- Ryan, C.O.; Browning, W.D.; Clancy, J.O.; Andrews, S.L.; Kallianpurkar, N.B. Biophilic design patterns: Emerging nature-based parameters for health and well-being in the built environment. Archnet-IJAR Int. J. Archit. Res. 2014, 8, 62–76. [Google Scholar] [CrossRef]
- Hagerhall, C.M.; Laike, T.; Taylor, R.P.; Küller, M.; Küller, R.; Martin, T.P. Investigations of human EEG response to viewing fractal patterns. Perception 2008, 37, 1488–1494. [Google Scholar] [CrossRef] [PubMed]
- Chiang, Y.C.; Li, D.; Jane, H.A. Wild or tended nature? The effects of landscape location and vegetation density on physiological and psychological responses. Landsc. Urban Plan. 2017, 167, 72–83. [Google Scholar] [CrossRef]
- Bailey, A.W.; Allen, G.; Herndon, J.; Demastus, C. Cognitive benefits of walking in natural versus built environments. World Leis. J. 2018, 60, 293–305. [Google Scholar] [CrossRef]
- Salingaros, N.; Masden, K. Neuroscience, the natural environment, and building design. Biophilic Des. Theory Sci. Pract. Bringing Build. Life 2008, 59–83. [Google Scholar]
- McEwen, B.S. Allostasis and Allostatic Load: Implications for Neuropsychopharmacology. Neuropsychopharmacology 2000, 22, 108–124. [Google Scholar] [CrossRef] [Green Version]
- Harvard. Understanding the Stress Response. Section: Staying Healthy. 2011. Available online: https://www.health.harvard.edu/staying-healthy/understanding-the-stress-response (accessed on 22 November 2022).
- UN. 68% of the World Population Projected to Live in Urban Areas by 2050, Says UN|UN DESA|United Nations Department of Economic and Social Affairs. 2018. [Google Scholar]
- Vardoulakis, S.; Dimitroulopoulou, C.; Thornes, J.; Lai, K.M.; Taylor, J.; Myers, I.; Heaviside, C.; Mavrogianni, A.; Shrubsole, C.; Chalabi, Z.; et al. Impact of climate change on the domestic indoor environment and associated health risks in the UK. Environ. Int. 2015, 85, 299–313. [Google Scholar] [CrossRef] [Green Version]
- Pandya, A.; Lodha, P. Social Connectedness, Excessive Screen Time During COVID-19 and Mental Health: A Review of Current Evidence. Front. Hum. Dyn. 2021, 3, 45. [Google Scholar] [CrossRef]
- Zota, A.R.; Shenassa, E.D.; Morello-Frosch, R. Allostatic load amplifies the effect of blood lead levels on elevated blood pressure among middle-aged U.S. adults: A cross-sectional study. Environ. Health Glob. Access Sci. Source 2013, 12, 64. [Google Scholar] [CrossRef] [Green Version]
- Souza-Talarico, J.N.; Suchecki, D.; Juster, R.P.; Plusquellec, P.; Barbosa Junior, F.; Bunscheit, V.; Marcourakis, T.; de Matos, T.M.; Lupien, S.J. Lead exposure is related to hypercortisolemic profiles and allostatic load in Brazilian older adults. Environ. Res. 2017, 154, 261–268. [Google Scholar] [CrossRef] [PubMed]
- van Deurzen, I.; Rod, N.H.; Christensen, U.; Hansen, Å.M.; Lund, R.; Dich, N. Neighborhood perceptions and allostatic load: Evidence from Denmark. Health Place 2016, 40, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Thomson, E.M. Air Pollution, Stress, and Allostatic Load: Linking Systemic and Central Nervous System Impacts. J. Alzheimer’s Dis. 2019, 69, 597–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jinez, A.M.; Cabriales, E.G.; D’Alonzo, K.; Esquivel, A.U.; Rincón, F.J.L.; González, B.C.S. Social Factors Contributing to the Development of Allostatic Load in Older Adults: A Correlational- Predictive Study. Aquichan 2018, 18, 298–310. [Google Scholar] [CrossRef] [Green Version]
- Riva, M.; Plusquellec, P.; Juster, R.P.; Laouan-Sidi, E.A.; Abdous, B.; Lucas, M.; Dery, S.; Dewailly, E. Household crowding is associated with higher allostatic load among the Inuit. J. Epidemiol. Community Health 2014, 68, 363–369. [Google Scholar] [CrossRef] [Green Version]
- Mair, C.A.; Cutchin, M.P.; Kristen Peek, M. Allostatic load in an environmental riskscape: The role of stressors and gender. Health Place 2011, 17, 978–987. [Google Scholar] [CrossRef] [Green Version]
- Jung, C.C.; Liang, H.H.; Lee, H.L.; Hsu, N.Y.; Su, H.J. Allostatic Load Model Associated with Indoor Environmental Quality and Sick Building Syndrome among Office Workers. PLoS ONE 2014, 9, e95791. [Google Scholar] [CrossRef] [Green Version]
- Beese, S.; Postma, J.; Graves, J.M. Allostatic Load Measurement: A Systematic Review of Reviews, Database Inventory, and Considerations for Neighborhood Research. Int. J. Environ. Res. Public Health 2022, 19, 17006. [Google Scholar] [CrossRef]
- Buschmann, R.N.; Prochaska, J.D.; Cutchin, M.P.; Peek, M.K. Stress and health behaviors as potential mediators of the relationship between neighborhood quality and allostatic load. Ann. Epidemiol. 2018, 28, 356–361. [Google Scholar] [CrossRef]
- Schulz, A.J.; Mentz, G.; Lachance, L.; Zenk, S.N.; Johnson, J.; Stokes, C.; Mandell, R. Do observed or perceived characteristics of the neighborhood environment mediate associations between neighborhood poverty and cumulative biological risk? Health Place 2013, 24, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Cunningham-Myrie, C.A.; Mabile, E.; Govia, I.; Younger, N.O.; Tulloch-Reid, M.K.; McFarlane, S.; Francis, D.; Gordon-Strachan, G.; Wilks, R.; Greene, L.G.; et al. Neighbourhood characteristics and cumulative biological risk: Evidence from the Jamaica Health and Lifestyle Survey 2008: A cross-sectional study. BMJ Open 2018, 8, e021952. [Google Scholar] [CrossRef] [Green Version]
- Egorov, A.I.; Griffin, S.M.; Converse, R.R.; Styles, J.N.; Klein, E.; Scott, J.; Sams, E.A.; Hudgens, E.E.; Wade, T.J. Greater tree cover near residence is associated with reduced allostatic load in residents of central North Carolina. Environ. Res. 2020, 186, 109435. [Google Scholar] [CrossRef] [PubMed]
- Seeman, T.E.; Singer, B.H.; Rowe, J.W.; Horwitz, R.I.; McEwen, B.S. Price of adaptation–allostatic load and its health consequences. MacArthur studies of successful aging. Arch. Intern. Med. 1997, 157, 2259–2268. [Google Scholar] [CrossRef] [PubMed]
- Rodriquez, E.J.; Kim, E.N.; Sumner, A.E.; Nápoles, A.M.; Pérez-Stable, E.J. Allostatic Load: Importance, Markers, and Score Determination in Minority and Disparity Populations. J. Urban Health Bull. N. Y. Acad. Med. 2019, 96, 3–11. [Google Scholar] [CrossRef]
- Gallo, L.C.; Fortmann, A.L.; Mattei, J. Allostatic Load and the Assessment of Cumulative Biological Risk in Biobehavioral Medicine: Challenges and Opportunities. Psychosom. Med. 2014, 76, 478–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribeiro, A.I.; Amaro, J.; Lisi, C.; Fraga, S. Neighborhood Socioeconomic Deprivation and Allostatic Load: A Scoping Review. Int. J. Environ. Res. Public Health 2018, 15, 1092. [Google Scholar] [CrossRef] [Green Version]
- Duong, M.T.; Bingham, B.A.; Aldana, P.C.; Chung, S.T.; Sumner, A.E. Variation in the Calculation of Allostatic Load Score: 21 Examples from NHANES. J. Racial Ethn. Health Disparit. 2017, 4, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.C.; Cavallaro, F.L.; Leon, D.A. A systematic review of allostatic load in relation to socioeconomic position: Poor fidelity and major inconsistencies in biomarkers employed. Soc. Sci. Med. (1982) 2017, 192, 66–73. [Google Scholar] [CrossRef]
- Wiley, J.F.; Bei, B.; Bower, J.E.; Stanton, A.L. Relationship of Psychosocial Resources with Allostatic Load: A Systematic Review. Psychosom. Med. 2017, 79, 283–292. [Google Scholar] [CrossRef] [Green Version]
- Cohen, A.A.; Milot, E.; Yong, J.; Seplaki, C.L.; Fülöp, T.; Bandeen-Roche, K.; Fried, L.P. A novel statistical approach shows evidence for multi-system physiological dysregulation during aging. Mech. Ageing Dev. 2013, 134, 110–117. [Google Scholar] [CrossRef] [Green Version]
- Cohen, A.A.; Milot, E.; Li, Q.; Legault, V.; Fried, L.P.; Ferrucci, L. Cross-population validation of statistical distance as a measure of physiological dysregulation during aging. Exp. Gerontol. 2014, 57, 203–210. [Google Scholar] [CrossRef] [Green Version]
- Carbone, J.T.; Clift, J.; Alexander, N. Measuring allostatic load: Approaches and limitations to algorithm creation. J. Psychosom. Res. 2022, 163, 111050. [Google Scholar] [CrossRef] [PubMed]
- Guidi, J.; Lucente, M.; Sonino, N.; Fava, G.A. Allostatic Load and Its Impact on Health: A Systematic Review. Psychother. Psychosom. 2021, 90, 11–27. [Google Scholar] [CrossRef] [PubMed]
- Fava, G.A.; Sonino, N.; Lucente, M.; Guidi, J. Allostatic Load in Clinical Practice. Clin. Psychol. Sci. 2022, 11, 345–356. [Google Scholar] [CrossRef]
- Fava, G.A.; McEwen, B.S.; Guidi, J.; Gostoli, S.; Offidani, E.; Sonino, N. Clinical characterization of allostatic overload. Psychoneuroendocrinology 2019, 108, 94–101. [Google Scholar] [CrossRef]
- Johnson, A.J.; Dudley, W.N.; Wideman, L.; Schulz, M. Physiological Risk Profiles and Allostatic Load: Using Latent Profile Analysis to Examine Socioeconomic Differences in Physiological Patterns of Risk. Eur. J. Environ. Public Health 2019, 3, em0029. [Google Scholar] [CrossRef] [Green Version]
- Spurk, D.; Hirschi, A.; Wang, M.; Valero, D.; Kauffeld, S. Latent profile analysis: A review and “how to” guide of its application within vocational behavior research. J. Vocat. Behav. 2020, 120, 103445. [Google Scholar] [CrossRef]
- Brody, G.H.; Lei, M.K.; Chae, D.H.; Yu, T.; Kogan, S.M.; Beach, S.R.H. Perceived Discrimination Among African American Adolescents and Allostatic Load: A Longitudinal Analysis With Buffering Effects. Child Dev. 2014, 85, 989–1002. [Google Scholar] [CrossRef] [Green Version]
- Chyu, L.; Upchurch, D.M. A Longitudinal Analysis of Allostatic Load among a Multi-Ethnic Sample of Midlife Women: Findings from the Study of Women’s Health Across the Nation. Women’s Health Issues 2018, 28, 258–266. [Google Scholar] [CrossRef]
- Deen, L.; Dich, N.; Head, J.; Clark, A.J. Changes in Emotional Vitality as a Predictor of Levels and Change in Allostatic Load: Longitudinal Results From the Whitehall II Cohort Study. Psychosom. Med. 2020, 82, 432. [Google Scholar] [CrossRef]
- Califf, R.M. Biomarker definitions and their applications. Exp. Biol. Med. 2018, 243, 213–221. [Google Scholar] [CrossRef]
- Mayeux, R. Biomarkers: Potential Uses and Limitations. NeuroRx 2004, 1, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Sandifer, P.A.; Juster, R.P.; Seeman, T.E.; Lichtveld, M.Y.; Singer, B.H. Allostatic load in the context of disasters. Psychoneuroendocrinology 2022, 140, 105725. [Google Scholar] [CrossRef] [PubMed]
- Dato, S.; Crocco, P.; D’Aquila, P.; De Rango, F.; Bellizzi, D.; Rose, G.; Passarino, G. Exploring the Role of Genetic Variability and Lifestyle in Oxidative Stress Response for Healthy Aging and Longevity. Int. J. Mol. Sci. 2013, 14, 16443–16472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robertson, T.; Beveridge, G.; Bromley, C. Allostatic load as a predictor of all-cause and cause-specific mortality in the general population: Evidence from the Scottish Health Survey. PLoS ONE 2017, 12, e0183297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, S.; Gianaros, P.J.; Manuck, S.B. A Stage Model of Stress and Disease. Perspect. Psychol. Sci. 2016, 11, 456–463. [Google Scholar] [CrossRef] [Green Version]
- Gianaros, P.J.; Wager, T.D. Brain-Body Pathways Linking Psychological Stress and Physical Health. Curr. Dir. Psychol. Sci. 2015, 24, 313–321. [Google Scholar] [CrossRef]
- Brosschot, J.F.; Gerin, W.; Thayer, J.F. The perseverative cognition hypothesis: A review of worry, prolonged stress-related physiological activation, and health. J. Psychosom. Res. 2006, 60, 113–124. [Google Scholar] [CrossRef]
- Chapman, B.P.; Khan, A.; Harper, M.; Stockman, D.; Fiscella, K.; Walton, J.; Duberstein, P.; Talbot, N.; Lyness, J.M.; Moynihan, J. Gender, race/ethnicity, personality, and interleukin-6 in urban primary care patients. Brain Behav. Immun. 2009, 23, 636–642. [Google Scholar] [CrossRef] [Green Version]
- Masafi, S.; Saadat, S.H.; Tehranchi, K.; Olya, R.; Heidari, M.; Malihialzackerini, S.; Jafari, M.; Rajabi, E. Effect of Stress, Depression and Type D Personality on Immune System in the Incidence of Coronary Artery Disease. Open Access Maced. J. Med. Sci. 2018, 6, 1533–1544. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, E. Personality is of central concern to understand health: Towards a theoretical model for health psychology. Health Psychol. Rev. 2013, 7, S32–S70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bower, I.; Tucker, R.; Enticott, P.G. Impact of built environment design on emotion measured via neurophysiological correlates and subjective indicators: A systematic review. J. Environ. Psychol. 2019, 66, 101344. [Google Scholar] [CrossRef]
- Howard, J.T.; Sparks, P.J. The role of education in explaining racial/ethnic allostatic load differentials in the United States. Biodemogr. Soc. Biol. 2015, 61, 18–39. [Google Scholar] [CrossRef] [PubMed]
- Dich, N.; Lange, T.; Head, J.; Rod, N.H. Work stress, caregiving, and allostatic load: Prospective results from the Whitehall II cohort study. Psychosom. Med. 2015, 77, 539–547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agorastos, A.; Pervanidou, P.; Chrousos, G.P.; Baker, D.G. Developmental Trajectories of Early Life Stress and Trauma: A Narrative Review on Neurobiological Aspects Beyond Stress System Dysregulation. Front. Psychiatry 2019, 10, 118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valentine, C. Architectural Allostatic Overloading: Exploring a Connection between Architectural Form and Allostatic Overloading. Int. J. Environ. Res. Public Health 2023, 20, 5637. https://doi.org/10.3390/ijerph20095637
Valentine C. Architectural Allostatic Overloading: Exploring a Connection between Architectural Form and Allostatic Overloading. International Journal of Environmental Research and Public Health. 2023; 20(9):5637. https://doi.org/10.3390/ijerph20095637
Chicago/Turabian StyleValentine, Cleo. 2023. "Architectural Allostatic Overloading: Exploring a Connection between Architectural Form and Allostatic Overloading" International Journal of Environmental Research and Public Health 20, no. 9: 5637. https://doi.org/10.3390/ijerph20095637
APA StyleValentine, C. (2023). Architectural Allostatic Overloading: Exploring a Connection between Architectural Form and Allostatic Overloading. International Journal of Environmental Research and Public Health, 20(9), 5637. https://doi.org/10.3390/ijerph20095637