Racial, Lifestyle, and Healthcare Contributors to Perceived Cancer Risk among Physically Active Adolescent and Young Adult Women Aged 18–39 Years
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Sample Size and Power Calculations
2.3. Study Participants
2.4. Measures
2.5. Primary Study Outcomes
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA A Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- National Cancer Institute. Age and Cancer. Available online: https://www.cancer.gov/about-cancer/causes-prevention/risk/age (accessed on 26 April 2023).
- Scott, A.R.; Stoltzfus, K.C.; Tchelebi, L.T.; Trifiletti, D.M.; Lehrer, E.J.; Rao, P.; Bleyer, A.; Zaorsky, N.G. Trends in Cancer Incidence in US Adolescents and Young Adults, 1973–2015. JAMA Netw. Open 2020, 3, e2027738. [Google Scholar] [CrossRef] [PubMed]
- American Cancer Society. Key Statistics for Cancers in Young Adults. Available online: https://www.cancer.org/cancer/cancer-in-young-adults/key-statistics.html (accessed on 26 April 2023).
- American Cancer Society. Lifetime Risk of Developing or Dying from Cancer. Available online: https://www.cancer.org/healthy/cancer-causes/general-info/lifetime-probability-of-developing-or-dying-from-cancer.html (accessed on 26 April 2023).
- McVeigh, U.M.; Tepper, J.W.; McVeigh, T.P. A Review of Breast Cancer Risk Factors in Adolescents and Young Adults. Cancers 2021, 13, 5552. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.H.; Anders, C.K.; Litton, J.K.; Ruddy, K.J.; Bleyer, A. Breast cancer in adolescents and young adults. Pediatr. Blood Cancer 2018, 65, e27397. [Google Scholar] [CrossRef] [PubMed]
- Yung, R.L.; Gralow, J.R. Time to Focus on Breast Cancer in Young Adults. JCO Oncol. Pract. 2021, 17, 314–316. [Google Scholar] [CrossRef]
- Gnerlich, J.L.; Deshpande, A.D.; Jeffe, D.B.; Sweet, A.; White, N.; Margenthaler, J.A. Elevated breast cancer mortality in women younger than age 40 years compared with older women is attributed to poorer survival in early-stage disease. J. Am. Coll. Surg. 2009, 208, 341–347. [Google Scholar] [CrossRef]
- Cathcart-Rake, E.J.; Ruddy, K.J.; Bleyer, A.; Johnson, R.H. Breast Cancer in Adolescent and Young Adult Women under the Age of 40 Years. JCO Oncol. Pract. 2021, 17, 305–313. [Google Scholar] [CrossRef]
- Tilburt, J.C.; James, K.M.; Sinicrope, P.S.; Eton, D.T.; Costello, B.A.; Carey, J.; Lane, M.A.; Ehlers, S.L.; Erwin, P.J.; Nowakowski, K.E.; et al. Factors influencing cancer risk perception in high risk populations: A systematic review. Hered. Cancer Clin. Pract. 2011, 9, 2. [Google Scholar] [CrossRef]
- Weinstein, N.D.; Klein, W.M. Resistance of personal risk perceptions to debiasing interventions. Health Psychol. 1995, 14, 132–140. [Google Scholar] [CrossRef]
- Kim, S.E.; Pérez-Stable, E.J.; Wong, S.; Gregorich, S.; Sawaya, G.F.; Walsh, J.M.; Kaplan, C.P. Association between cancer risk perception and screening behavior among diverse women. Arch. Intern. Med. 2008, 168, 728–734. [Google Scholar] [CrossRef]
- Ewing, A.P.; Alalwan, M.A.; Best, A.L.; Parvanta, C.F.; Coughlin, E.C.; Dorn, J.M.; Levin, B.L.; Meade, C.D.; Gwede, C.K. Understanding Cancer Screening Intention Among Physically Active Adults Ages 18–49. J. Cancer Educ. 2022, 38, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Ewing, A.P.; Alalwan, M.A.; Brown, J.A.; Adekunle, T.E.; Korley, N.D.; Nafiu, T.C.; Coughlin, E.C.; Parvanta, C.P.; Meade, C.D.; Gwede, C.K.; et al. Physically fit with a higher cancer risk? Influences of cervical cancer screening among a sample of physically active women ages 21-49 living in the United States. Prev. Med. Rep. 2022, 30, 101978. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Earlbaum Associates: Mahwah, NJ, USA, 1988. [Google Scholar]
- Cohen, J.; Cohen, P.; West, S.G.; Aiken, L.S. Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences, 3rd ed.; Lawrence Earlbaum Associates: Mahwah, NJ, USA, 2003. [Google Scholar]
- Medina, C. How Often Should You Get a Check Up? Mount Sinai Medical Center. Available online: https://www.msmc.com/how-often-should-you-get-a-check-up (accessed on 26 April 2023).
- Merten, J.W.; Parker, A.; Williams, A.; King, J.L.; Largo-Wight, E.; Osmani, M. Cancer Risk Factor Knowledge among Young Adults. J. Cancer Educ. 2017, 32, 865–870. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Moore, L.V.; Park, S.; Harris, D.M.; Blanck, H.M. Adults Meeting Fruit and Vegetable Intake Recommendations-United States, 2019. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 1–9. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Binge Drinking. Available online: https://www.cdc.gov/alcohol/fact-sheets/binge-drinking.htm (accessed on 26 April 2023).
- Health Information National Trends Survey. Health Information National Trends Survey Questions. National Cancer Institute. Available online: https://hints.cancer.gov/view-questions-topics/question-details.aspx?PK_Cycle=7&qid=801 (accessed on 26 April 2023).
- Truong, D.V.; Bui, Q.T.T.; Nguyen, D.T.; Moore, J. Anxiety Among Inpatients with Cancer: Findings From a Hospital-Based Cross-Sectional Study in Vietnam. Cancer Control 2019, 26, 1073274819864641. [Google Scholar] [CrossRef]
- Castelló, A.; Martín, M.; Ruiz, A.; Casas, A.M.; Baena-Cañada, J.M.; Lope, V.; Antolín, S.; Sánchez, P.; Ramos, M.; Antón, A.; et al. Lower Breast Cancer Risk among Women following the World Cancer Research Fund and American Institute for Cancer Research Lifestyle Recommendations: EpiGEICAM Case-Control Study. PLoS ONE 2015, 10, e0126096. [Google Scholar] [CrossRef]
- Fox, R.S.; Mills, S.D.; Roesch, S.C.; Sotres-Alvarez, D.; Gonzalez, P.; Bekteshi, V.; Cai, J.; Lounsbury, D.W.; Talavera, G.A.; Penedo, F.J.; et al. Perceptions of Cancer Risk/Efficacy and Cancer-Related Risk Behaviors: Results from the HCHS/SOL Sociocultural Ancillary Study. Health Educ. Behav. 2018, 45, 790–799. [Google Scholar] [CrossRef]
- O’Brien, E.K.; Baig, S.A.; Persoskie, A. Developing and Validating Measures of Absolute and Relative E-Cigarette Product Risk Perceptions: Single Items Can Be Surprisingly Comprehensive. Nicotine Tob. Res. 2022, 24, 316–323. [Google Scholar] [CrossRef]
- Ordóñez-Mena, J.M.; Schöttker, B.; Mons, U.; Jenab, M.; Freisling, H.; Bueno-de-Mesquita, B.; O’Doherty, M.G.; Scott, A.; Kee, F.; Stricker, B.H.; et al. Quantification of the smoking-associated cancer risk with rate advancement periods: Meta-analysis of individual participant data from cohorts of the CHANCES consortium. BMC Med. 2016, 14, 62. [Google Scholar] [CrossRef]
- Orom, H.; Kiviniemi, M.T.; Underwood, W., 3rd; Ross, L.; Shavers, V.L. Perceived cancer risk: Why is it lower among nonwhites than whites? Cancer Epidemiol. Biomark. Prev. 2010, 19, 746–754. [Google Scholar] [CrossRef]
- Seven, M.; Bağcivan, G.; Akyuz, A.; Bölükbaş, F. Women with Family History of Breast Cancer: How Much Are They Aware of Their Risk? J. Cancer Educ. 2018, 33, 915–921. [Google Scholar] [CrossRef] [PubMed]
- Alaa, H.; Shah, S.A. Perception of Cancer Risk and Its Associated Risk Factors among Young Iraqis living in Baghdad. Asian Pac. J. Cancer Prev. 2019, 20, 2339–2343. [Google Scholar] [CrossRef] [PubMed]
- Assari, S.; Khoshpouri, P.; Chalian, H. Combined Effects of Race and Socioeconomic Status on Cancer Beliefs, Cognitions, and Emotions. Healthcare 2019, 7, 17. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.L.; Buchanan, K.L.; Green, B.L. Racial/ethnic differences in cancer prevention beliefs: Applying the health belief model framework. Am. J. Health Promot. 2013, 27, 384–389. [Google Scholar] [CrossRef]
- Peretti-Watel, P.; Fressard, L.; Bocquier, A.; Verger, P. Perceptions of cancer risk factors and socioeconomic status. A French study. Prev. Med. Rep. 2016, 3, 171–176. [Google Scholar] [CrossRef]
- Lucas-Wright, A.; Bazargan, M.; Jones, L.; Vadgama, J.V.; Vargas, R.; Sarkissyan, M.; Smith, J.; Yazdanshenas, H.; Maxwell, A.E. Correlates of perceived risk of developing cancer among African-Americans in South Los Angeles. J. Community Health 2014, 39, 173–180. [Google Scholar] [CrossRef]
- Miller, K.D.; Fidler-Benaoudia, M.; Keegan, T.H.; Hipp, H.S.; Jemal, A.; Siegel, R.L. Cancer statistics for adolescents and young adults, 2020. CA A Cancer J. Clin. 2020, 70, 443–459. [Google Scholar] [CrossRef]
- Clarke, S.; Chin, S.N.; Dodds, L.; George, S.H.L.; Badal, S. Racial disparities in breast cancer preclinical and clinical models. Breast Cancer Res. 2022, 24, 56. [Google Scholar] [CrossRef]
- Giaquinto, A.N.; Sung, H.; Miller, K.D.; Kramer, J.L.; Newman, L.A.; Minihan, A.; Jemal, A.; Siegel, R.L. Breast Cancer Statistics, 2022. CA A Cancer J. Clin. 2022, 72, 524–541. [Google Scholar] [CrossRef]
- Christy, K.; Kandasamy, S.; Majid, U.; Farrah, K.; Vanstone, M. Understanding Black Women’s Perspectives and Experiences of Cervical Cancer Screening: A Systematic Review and Qualitative Meta-synthesis. J. Health Care Poor Underserved 2021, 32, 1675–1697. [Google Scholar] [CrossRef]
- Cohen, C.M.; Wentzensen, N.; Castle, P.E.; Schiffman, M.; Zuna, R.; Arend, R.C.; Clarke, M.A. Racial and Ethnic Disparities in Cervical Cancer Incidence, Survival, and Mortality by Histologic Subtype. J. Clin. Oncol. 2023, 41, 1059–1068. [Google Scholar] [CrossRef] [PubMed]
- Verlenden, J.V.; Zablotsky, B.; Yeargin-Allsopp, M.; Peacock, G. Healthcare Access and Utilization for Young Adults with Disability: U.S., 2014–2018. J. Adolesc. Health 2022, 70, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Sansom-Daly, U.M.; Wakefield, C.E.; Signorelli, C.; Donoghoe, M.W.; Anazodo, A.; Sawyer, S.M.; Osborn, M.; Viney, R.; Daniell, N.; Faasse, K.; et al. Patterns and Predictors of Healthcare Use among Adolescent and Young Adult Cancer Survivors versus a Community Comparison Group. Cancers 2021, 13, 5270. [Google Scholar] [CrossRef]
- Chinn, J.J.; Martin, I.K.; Redmond, N. Health Equity among Black Women in the United States. J. Womens Health 2021, 30, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Churchwell, K.; Elkind, M.S.V.; Benjamin, R.M.; Carson, A.P.; Chang, E.K.; Lawrence, W.; Mills, A.; Odom, T.M.; Rodriguez, C.J.; Rodriguez, F.; et al. Call to Action: Structural Racism as a Fundamental Driver of Health Disparities: A Presidential Advisory From the American Heart Association. Circulation 2020, 142, e454–e468. [Google Scholar] [CrossRef]
- Smith, N.C. Black-White disparities in women’s physical health: The role of socioeconomic status and racism-related stressors. Soc. Sci. Res. 2021, 99, 102593. [Google Scholar] [CrossRef]
- Akinlotan, M.; Bolin, J.N.; Helduser, J.; Ojinnaka, C.; Lichorad, A.; McClellan, D. Cervical Cancer Screening Barriers and Risk Factor Knowledge Among Uninsured Women. J. Community Health 2017, 42, 770–778. [Google Scholar] [CrossRef]
- Glassey, R.; O’Connor, M.; Ives, A.; Saunders, C.; O’Sullivan, S.; Hardcastle, S.J. Heightened perception of breast cancer risk in young women at risk of familial breast cancer. Fam. Cancer 2018, 17, 15–22. [Google Scholar] [CrossRef]
- Rimes, K.A.; Salkovskis, P.M.; Jones, L.; Lucassen, A.M. Applying a cognitive behavioral model of health anxiety in a cancer genetics service. Health Psychol. 2006, 25, 171–180. [Google Scholar] [CrossRef]
- Lerman, C.; Kash, K.; Stefanek, M. Younger women at increased risk for breast cancer: Perceived risk, psychological well-being, and surveillance behavior. J. Natl. Cancer Inst. Monogr. 1994, 16, 171–176. [Google Scholar]
- Hann, K.E.J.; Freeman, M.; Fraser, L.; Waller, J.; Sanderson, S.C.; Rahman, B.; Side, L.; Gessler, S.; Lanceley, A. Awareness, knowledge, perceptions, and attitudes towards genetic testing for cancer risk among ethnic minority groups: A systematic review. BMC Public Health 2017, 17, 503. [Google Scholar] [CrossRef] [PubMed]
- Watson, D.; Mhlaba, M.; Molelekeng, G.; Chauke, T.A.; Simao, S.C.; Jenner, S.; Ware, L.J.; Barker, M. How do we best engage young people in decision-making about their health? A scoping review of deliberative priority setting methods. Int. J. Equity Health 2023, 22, 17. [Google Scholar] [CrossRef]
- Cioana, M.; Peterson, D.; Missiuna, P.; El-Hawary, R.; Carey, T.; Potter, M.A.; Banfield, L.; Thabane, L.; Samaan, M.C. The creation of a national coalition to target adolescent idiopathic scoliosis: A meeting report. Adolesc. Health Med. Ther. 2019, 10, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Rich, C.; Goncalves, A.; Guardiani, M.; O’Donnell, E.; Strzelecki, J. Teen Advisory Committee: Lessons learned by adolescents, facilitators, and hospital staff. Pediatr. Nurs. 2014, 40, 289–296. [Google Scholar]
- Twine, R.; Kahn, K.; Scholtz, A.; Norris, S.A. Involvement of stakeholders in determining health priorities of adolescents in rural South Africa. Glob. Health Action 2016, 9, 29162. [Google Scholar] [CrossRef] [PubMed]
- Coad, J.; Flay, J.; Aspinall, M.; Bilverstone, B.; Coxhead, E.; Hones, B. Evaluating the impact of involving young people in developing children’s services in an acute hospital trust. J. Clin. Nurs. 2008, 17, 3115–3122. [Google Scholar] [CrossRef]
- Malone, H.; Biggar, S.; Javadpour, S.; Edworthy, Z.; Sheaf, G.; Coyne, I. Interventions for promoting participation in shared decision-making for children and adolescents with cystic fibrosis. Cochrane Database Syst. Rev. 2019, 5, Cd012578. [Google Scholar] [CrossRef]
- Pflugeisen, B.M.; Patterson, P.; Macpherson, C.F.; Ray, B.C.; Jacobsen, R.L.; Hornyak, N.; Johnson, R.H. Putting Adolescents and Young Adults in a Room Together: Launching an Adolescent and Young Adult Oncology Council. J. Adolesc. Young Adult Oncol. 2019, 8, 540–546. [Google Scholar] [CrossRef]
- McBride, C.M.; Emmons, K.M.; Lipkus, I.M. Understanding the potential of teachable moments: The case of smoking cessation. Health Educ. Res. 2003, 18, 156–170. [Google Scholar] [CrossRef]
- Stevens, C.; Vrinten, C.; Smith, S.G.; Waller, J.; Beeken, R.J. Determinants of willingness to receive healthy lifestyle advice in the context of cancer screening. Br. J. Cancer 2018, 119, 251–257. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Current Cigarette Smoking among Adults in the United States. Available online: https://www.cdc.gov/tobacco/data_statistics/fact_sheets/adult_data/cig_smoking/index.htm (accessed on 26 April 2023).
- Jones, M.E.; Schoemaker, M.J.; Wright, L.B.; Ashworth, A.; Swerdlow, A.J. Smoking and risk of breast cancer in the Generations Study cohort. Breast Cancer Res. 2017, 19, 118. [Google Scholar] [CrossRef] [PubMed]
- Siegel, D.A.; Fedewa, S.A.; Henley, S.J.; Pollack, L.A.; Jemal, A. Proportion of Never Smokers Among Men and Women with Lung Cancer in 7 US States. JAMA Oncol. 2021, 7, 302–304. [Google Scholar] [CrossRef] [PubMed]
- Sasco, A.J.; Secretan, M.B.; Straif, K. Tobacco smoking and cancer: A brief review of recent epidemiological evidence. Lung Cancer 2004, 45 (Suppl. S2), S3–S9. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, A.R.; Twesten, J.E.; Suls, J.; McCaul, K.D.; Ostroff, J.S.; Ferrer, R.A.; Brewer, N.T.; Cameron, L.D.; Halpern-Felsher, B.; Hay, J.L.; et al. Measuring Cigarette Smoking Risk Perceptions. Nicotine Tob. Res. 2020, 22, 1937–1945. [Google Scholar] [CrossRef]
N (col %) | Perceived Cancer Risk Score (Score 0–6) | p | ||
---|---|---|---|---|
Mean | Standard Deviation | |||
Overall (n = 281) | 2.72 | 1.80 | ||
Age | 0.222 | |||
Mean = 28.3, SD = 6.2 | ||||
Race | 0.007 * | |||
White | 147 (52.3) | 2.99 | 1.83 | |
Black | 134 (47.7) | 2.41 | 1.73 | |
Education | 0.874 | |||
High School Graduate | 43 (15.5) | 3.00 | 1.90 | |
Some College | 68 (24.6) | 2.72 | 1.96 | |
2-year degree | 28 (10.1) | 2.82 | 1.36 | |
4-year degree | 87 (31.4) | 2.60 | 1.82 | |
Professional or Graduate degree | 44 (15.9) | 2.57 | 1.66 | |
Doctorate degree | 7 (2.5) | 2.71 | 2.06 | |
Missing | 4 | |||
Employment | 0.129 | |||
No | 114 (40.6) | 2.52 | 1.84 | |
Yes | 167 (59.4) | 2.85 | 1.77 | |
Income | 0.209 | |||
Less than $10,000 | 38 (13.7) | 2.53 | 1.86 | |
$10,000–$19,999 | 20 (7.2) | 3.20 | 1.88 | |
$20,000–$29,999 | 31 (11.2) | 2.29 | 1.64 | |
$30,000–$39,999 | 35 (12.6) | 2.14 | 1.73 | |
$40,000–$49,999 | 45 (16.3) | 3.29 | 1.75 | |
$50,000–$59,999 | 25 (9.0) | 3.20 | 1.80 | |
$60,000–$69,999 | 24 (8.7) | 2.71 | 1.85 | |
$70,000–$79,999 | 14 (5.1) | 3.00 | 1.92 | |
$80,000–$89,999 | 7 (2.5) | 2.86 | 2.34 | |
$90,000–$99,999 | 6 (2.2) | 2.67 | 1.75 | |
$100,000–$149,999 | 19 (6.9) | 2.26 | 1.73 | |
More than $150,000 | 4 (1.4) | 2.25 | 2.06 | |
Prefer not to answer | 9 (3.3) | 2.44 | 1.24 | |
Missing | 4 | |||
Current Marital Status | 0.918 | |||
Not Married | 203 (73.3) | 2.70 | 1.79 | |
Married | 74 (26.7) | 2.73 | 1.85 | |
Missing | 4 | |||
Cancer Risk Factor Knowledge | 0.019 * | |||
Mean = 7.9, SD = 2.8 | ||||
Family History of Cancer | 0.035 * | |||
No | 141 (50.2) | 2.49 | 1.90 | |
Yes | 140 (49.8) | 2.94 | 1.68 | |
Healthcare Access | ||||
Routine Doctor Visit | 0.039 * | |||
No | 45 (16.0) | 3.22 | 1.89 | |
Yes | 236 (84.0) | 2.62 | 1.77 | |
Healthcare Coverage | 0.403 | |||
No | 24 (8.7) | 2.42 | 1.95 | |
Yes | 253 (91.3) | 2.74 | 1.79 | |
Missing | 4 | |||
Healthcare Provider | 0.854 | |||
No | 34 (12.3) | 2.76 | 1.97 | |
Yes | 243 (87.7) | 2.70 | 1.78 | |
Missing | 4 | |||
Lifestyle Factors | ||||
Fruit Consumption | 0.235 | |||
<2 cups | 233 (83.2) | 2.77 | 1.82 | |
≥2 cups | 47 (16.8) | 2.43 | 1.73 | |
Missing | 1 | |||
Vegetable Consumption | 0.274 | |||
<3 cups | 255 (90.8) | 2.75 | 1.80 | |
≥3 cups | 26 (9.3) | 2.35 | 1.81 | |
Physical Activity | 0.208 | |||
High Engagement | 147 (52.5) | 2.58 | 1.79 | |
Low Engagement | 133 (47.5) | 2.85 | 1.80 | |
Missing | 1 | |||
Binge Drinking | 0.452 | |||
No | 53 (18.9) | 2.55 | 1.67 | |
Yes | 228 (81.1) | 2.75 | 1.83 | |
Current Smoker | 0.002 * | |||
No | 230 (81.9) | 2.56 | 1.73 | |
Yes | 51 (18.2) | 3.43 | 1.95 | |
Current E-cigarette Smoker | 0.530 | |||
No | 243 (86.8) | 2.69 | 1.79 | |
Yes | 37 (13.2) | 2.89 | 1.94 | |
Missing | 1 | |||
Sport Participation Type | 0.315 | |||
Individual | 169 (60.1) | 2.63 | 1.79 | |
Team-based | 112 (39.9) | 2.85 | 1.83 |
Model | Unstandardized Coefficients | 95% Confidence Interval for β | ||||||
---|---|---|---|---|---|---|---|---|
β | Std. Error | t | p | Lower Bound | Upper Bound | |||
1 | Constant | 1.793 | 0.703 | 2.55 | 0.011 | 0.409 | 3.177 | |
Age | 0.028 | 0.020 | 1.40 | 0.161 | −0.011 | 0.067 | ||
Race | White | Ref | ||||||
Black | −0.616 | 0.228 | −2.70 | 0.008 * | −1.065 | −0.166 | ||
Education | −0.129 | 0.087 | −1.49 | 0.138 | −0.299 | 0.042 | ||
Employment | Not employed | Ref | ||||||
Employed | 0.288 | 0.241 | 1.20 | 0.232 | −0.186 | 0.762 | ||
Income | −0.034 | 0.036 | −0.94 | 0.348 | −0.106 | 0.037 | ||
Family History of Cancer | No | Ref | ||||||
Yes | 0.561 | 0.219 | 2.56 | 0.011 * | 0.129 | 0.993 | ||
Routine Doctor Visit | No | Ref | ||||||
Yes | −0.624 | 0.284 | −2.20 | 0.029 * | −1.183 | −0.065 | ||
Healthcare Coverage | No | Ref | ||||||
Yes | 0.489 | 0.505 | 0.97 | 0.334 | −0.506 | 1.484 | ||
Healthcare Provider | No | Ref | ||||||
Yes | −0.344 | 0.433 | −0.80 | 0.427 | −1.197 | 0.508 | ||
Cancer Risk Factor Knowledge | 0.109 | 0.040 | 2.75 | 0.007 * | 0.031 | 0.186 | ||
Fruit Consumption (≥2 cups) | No | Ref | ||||||
Yes | −0.084 | 0.296 | −0.28 | 0.777 | −0.668 | 0.499 | ||
Vegetable Consumption (≥3 cups) | No | Ref | ||||||
Yes | −0.397 | 0.378 | −1.05 | 0.295 | −1.140 | 0.347 | ||
Physical Activity | High engagement | Ref | ||||||
Low engagement | 0.229 | 0.226 | 1.02 | 0.310 | −0.215 | 0.673 | ||
Current Cigarette Smoker | No | Ref | ||||||
Yes | 0.800 | 0.304 | 2.63 | 0.009 * | 0.202 | 1.398 | ||
Current E-Cigarette Smoker | No | Ref | ||||||
Yes | −0.002 | 0.323 | −0.01 | 0.994 | −0.639 | 0.634 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brown, J.A.; Alalwan, M.A.; Absie, S.; Korley, N.D.; Parvanta, C.F.; Meade, C.M.; Best, A.L.; Gwede, C.K.; Ewing, A.P. Racial, Lifestyle, and Healthcare Contributors to Perceived Cancer Risk among Physically Active Adolescent and Young Adult Women Aged 18–39 Years. Int. J. Environ. Res. Public Health 2023, 20, 5740. https://doi.org/10.3390/ijerph20095740
Brown JA, Alalwan MA, Absie S, Korley ND, Parvanta CF, Meade CM, Best AL, Gwede CK, Ewing AP. Racial, Lifestyle, and Healthcare Contributors to Perceived Cancer Risk among Physically Active Adolescent and Young Adult Women Aged 18–39 Years. International Journal of Environmental Research and Public Health. 2023; 20(9):5740. https://doi.org/10.3390/ijerph20095740
Chicago/Turabian StyleBrown, Jordyn A., Mahmood A. Alalwan, Sumaya Absie, Naa D. Korley, Claudia F. Parvanta, Cathy M. Meade, Alicia L. Best, Clement K. Gwede, and Aldenise P. Ewing. 2023. "Racial, Lifestyle, and Healthcare Contributors to Perceived Cancer Risk among Physically Active Adolescent and Young Adult Women Aged 18–39 Years" International Journal of Environmental Research and Public Health 20, no. 9: 5740. https://doi.org/10.3390/ijerph20095740
APA StyleBrown, J. A., Alalwan, M. A., Absie, S., Korley, N. D., Parvanta, C. F., Meade, C. M., Best, A. L., Gwede, C. K., & Ewing, A. P. (2023). Racial, Lifestyle, and Healthcare Contributors to Perceived Cancer Risk among Physically Active Adolescent and Young Adult Women Aged 18–39 Years. International Journal of Environmental Research and Public Health, 20(9), 5740. https://doi.org/10.3390/ijerph20095740