Energy Expenditure of Disaster Relief Operations Estimated Using a Tri-Axial Accelerometer and a Wearable Heart Rate Monitor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Approach
2.2. Survey Target Training and Participants
2.3. Procedures and Instrumentation
2.3.1. Study Design
2.3.2. Placement of Tri-Axial Accelerometer and Wearable Heartrate Monitor
2.3.3. Accelerometer
2.3.4. Wearable Heartrate Monitor
2.3.5. Estimation Formula
Calculation of Energy Expenditure during Disaster Relief Operations
2.3.6. Activity Log
2.3.7. Analysis
3. Results
3.1. Survey Respondents
3.2. Details of the Activities each Activity Group
3.3. Energy Expenditure by Type of Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gledhill, N.; Jamnik, V. Characterization of the physical demands of firefighting. Can. J. Sport Sci. 1992, 17, 207–213. [Google Scholar] [PubMed]
- Lemon, P.; Hermiston, R. The human energy cost of fire fighting. J. Occup. Med. Off. Public Ind. Med. Assoc. 1977, 19, 558–562. [Google Scholar]
- Fire and Disaster Management Agency (Website). Available online: https://www.fdma.go.jp/mission/prepare/rescue/post-12.html#kinshoutai02 (accessed on 19 September 2022).
- Ainsworth, B.E.; Haskell, W.L.; Leon, A.S.; Jacobs, D.R., Jr.; Montoye, H.J.; Sallis, J.F.; Paffenbarger, R.S., Jr. Compendium of physical activities: Classification of energy costs of human physical activities. Med. Sci. Sport. Exerc. 1993, 25, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, B.E.; Haskell, W.L.; Whitt, M.C.; Irwin, M.L.; Swartz, A.M.; Strath, S.J.; O’Brien, W.L.; Bassett, D.R., Jr.; Schmitz, K.H.; Emplaincourt, P.O.; et al. Compendium of physical activities: An update of activity codes and MET intensities. Med. Sci. Sport. Exerc. 2000, 32 (Suppl. S9), S498–S504. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, B.E.; Haskell, W.L.; Herrmann, S.D.; Meckes, N.; Bassett, D.R., Jr.; Tudor-Locke, C.; Greer, J.L.; Vezina, J.; Whitt-Glover, M.C.; Leon, A.S. 2011 Compendium of Physical Activities: A Second Update of Codes and MET Values. Med. Sci. Sport. Exerc. 2011, 43, 1575–1581. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, S. Methodology for evaluation of total energy expenditure. J. JSPEN 2009, 24, 1013–1019. [Google Scholar]
- Konrad, J.; Gagnon, D.; Serresse, O.; Oddson, B.; Leduc, C.; Dorman, S. Effect of a Simulated Mine Rescue on Physiological Variables and Heat Strain of Mine Rescue Workers. J. Occup. Environ. Med. 2019, 61, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Allison, B.; Katie, L.; Nathan, D.; Christi, M.; Michael, C.; Tanis, W. Fire-fighters Are More Physically Active On-Duty Compared to Off-Duty. Int. J. Environ. Res. Public Health 2020, 17, 9380. [Google Scholar]
- Murakami, H.; Kawakami, R.; Nakae, S.; Yamada, Y.; Nakata, Y.; Ohkawara, K.; Sasai, H.; Ishikawa-Takata, K.; Tanaka, S.; Miyachi, M. Accuracy of 12 Wearable Devices for Estimating Physical Activity Energy Expenditure Using a Metabolic Chamber and the Doubly Labeled Water Method: Validation Study. JMIR Mhealth Uhealth 2019, 7, e13938. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, C.; Hikihara, Y.; Ando, T.; Oshima, Y.; Usui, C.; Ohgi, Y.; Kaneda, K.; Tanaka, S. Prediction of Physical Activity Intensity with Accelerometry in Young Children. Int. J. Environ. Res. Public Health 2019, 16, 931. [Google Scholar] [CrossRef] [PubMed]
- Nishihara, T. A review of the recent trends in the status of energy expenditure. Res. Otemae Jr. Coll. Otemae Coll. Nutr. Otemae Bus. Coll. 1994, 14, 212–222. [Google Scholar]
- Ogata, H.; Negishi, Y.; Koizumi, N.; Kaneko, M.; Kiyono, K.; Omi, N. Examination of the Activity Amount of Firefighters using Accelerometers and Heart Rate Monitor. In Proceedings of the Human High Performance International Forum (ARIHHP) 2020, Tsukuba, Japan, 17 February 2020. [Google Scholar]
- Ogata, H.; Negishi, Y.; Koizumi, N.; Kaneko, M.; Kiyono, K.; Omi, N. Examination of the Total Energy Expenditure of Firefighters using Accelerometers and Wearable Heart Rate Monitor. In Proceedings of the Human High Performance International Forum (ARIHHP) 2022, Tsukuba, Japan, 19 March 2022. [Google Scholar]
- Koizumi, K.; Negishi, Y.; Ogata, H.; Rakwal, R.; Omi, N. Estimating Total Energy Expenditure for Fire-Fighters during Large Scale Disaster Response Training Using a Tri-Axial Accelerometer. Nutrients 2021, 13, 2789. [Google Scholar] [CrossRef] [PubMed]
- Ohkawara, K.; Oshima, Y.; Hikihara, Y.; Ishikawa-Takata, K.; Tabata, I.; Tanaka, S. Real-time estimation of daily physical activity intensity by a triaxial accelerometer and a gravity-removal classification algorithm. Br. J. Nutr. 2011, 105, 1681–1691. [Google Scholar] [CrossRef] [PubMed]
- Oshima, Y.; Kawaguchi, K.; Tanaka, S.; Ohkawara, K.; Hikihara, Y.; Ishikawa-Takata, K.; Tabata, I. Classifying household and locomotive activities using a triaxial accelerometer. Gait Posture 2010, 31, 370–374. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health, Labour and Welfare. The National Health and Nutrition Survey in Japan. 2017, pp. 2–102. Available online: https://www.mhlw.go.jp/content/000451760.pdf (accessed on 8 February 2023).
- Tokyo Fire Department (Website). Available online: https://www.tfd.metro.tokyo.lg.jp/ts/soubi/car/06_07.htm (accessed on 19 September 2022).
- Shigekawa, K.; Koto, K.; Ikeda, M.; Eguchi, T.; Ishikawa, M.; Ishii, J.; Ikeda, M.; Itoya, S. A Study on the Effect of Weight of Firefighters’ Equipment on Their Bodies. Jpn. Soc. Phys. Educ. 1989, 706. [Google Scholar] [CrossRef]
- Livingstone, M.B.; Prentice, A.M.; Coward, W.A.; Ceesay, S.M.; Strain, J.J.; McKenna, P.G.; Nevin, G.B.; Barker, M.E.; Hickey, R.J. Simultaneous measurement of free-living energy expenditure by the doubly labeled water method and heart-rate monitoring. Am. J. Clin. Nutr. 1990, 52, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Ruby, B.C.; Shriver, T.C.; Zderic, T.W.; Sharkey, B.J.; Burks, C.; Tysk, S. Total energy expenditure during arduous wildfire suppression. Med. Sci. Sport. Exerc. 2002, 34, 1048–1054. [Google Scholar] [CrossRef] [PubMed]
- Touno, M.; Hasina, R.H.; Ebine, N.; Peng, H.; Yoshitake, Y.; Tanaka, H.; Saitoh, S. Measurement of total energy expenditure in Japanese Fire-fighters under normalworking condition using the doubly labelled water method. Jpn. J. Phys. Fit. Sport. Med. 2003, 52, 265–274. [Google Scholar]
- Heil, D.P. Estimating energy expenditure in wildland fire fighters using a physical activity monitor. Appl. Ergon. 2002, 33, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Nakahashi, M.; Murayama, M.; Monobe, H.; Ikuno, H. Relationship between wearing time period and moving quantity of firemanis turnout based on a scenario of fire. Jpn. Soc. Physiol. Authoporogy 2003, 8, 39–45. [Google Scholar]
Number of Respondents | Age (Years) | Height (cm) | Body Weight (kg) | BMI *1 | Basal Metabolic Rate (kcal) |
---|---|---|---|---|---|
Overall (n = 28 *2) MEAN ± SD | 34.0 ± 7.4 | 173.4 ± 5.4 | 68.7 ± 5.6 | 22.9 ± 1.5 | 1544 ± 89 |
Number | Activity | METs | Activity Time (min) |
---|---|---|---|
Group 1 (N = 5) | Rescue activity training in a gas leak accident | 5.3(±1.4) | 360 |
Search activity | 4.8 (±1.0) | 30 | |
Rescue training in a collapsed building | 4.3 (±1.0) | 150 | |
Subtotal | 540 | ||
Group 2 (N = 4) | Rescue activity training in a gas leak accident | 6.2(±0.3) | 210 |
Rescue training in a collapsed building | 4.9 (±0.7) | 150 | |
Subtotal | 360 | ||
Group 3 (N = 5) | Rescue activity training in a skyscraper | 7.0 (±1.1) | 120 |
General rescue activity | 6.0 (±0.4) | 60 | |
General firefighting | 5.1 (±0.6) | 120 | |
Subtotal | 300 | ||
Group 4 (N = 5) | Rescue activity training in a skyscraper | 6.9 (±1.0) | 150 |
General rescue activity | 6.0(±0.9) | 60 | |
Search activity | 5.0(±1.8) | 30 | |
Subtotal | 240 | ||
Group 5 (N = 5) | Excavation rescue search activity | 5.5 (±1.8) | 90 |
Rescue training from vehicles | 4.7(±1.5) | 120 | |
Rescue training in a collapsed building | 5.0 (±4.4) | 60 | |
Rescuer transport | 4.8 (±1.4) | 60 | |
Subtotal | 330 | ||
Group 6 (N = 4) | Excavation rescue search activity | 6.0 (±1.1) | 210 |
Tunnel accident rescue activity | 5.6 (±1.4) | 240 | |
Subtotal | 450 |
Activity Type | N | Average AC/HR METs | Min. | Max. | Reference Data of Energy Expenditure per Hour (kcal) (Adult Males Average of 71 kg *1 Excluding Resting Metabolism *2) |
---|---|---|---|---|---|
Rescue from a Small Place | 14 | 4.5 (±1.2) | 3.1 | 7.4 | 249 |
Rescue from the Vehicle | 5 | 4.7 (±1.5) | 3.6 | 7.3 | 263 |
Rescue Personnel Transportation | 5 | 4.8 (±1.4) | 3.1 | 6.9 | 270 |
Search Activities | 10 | 4.9 (±1.3) | 2.2 | 6.9 | 277 |
Fire Fighting Activities | 5 | 5.1 (±0.6) | 4.1 | 5.7 | 291 |
Gas-related Accidents | 14 | 5.6 (±1.3) | 3.1 | 8.1 | 327 |
Excavation Activities | 9 | 5.7 (±1.4) | 3.9 | 7.6 | 334 |
Rescue Operations | 10 | 6.0 (±0.7) | 5.0 | 6.9 | 355 |
Tunnel Collapse Accident | 4 | 6.0 (±1.1) | 4.7 | 7.2 | 355 |
Rescue from a High Ground (e.g., up and down the stairs) | 20 | 6.9 (±1.0) | 4.7 | 8.0 | 419 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koizumi, N.; Ogata, H.; Negishi, Y.; Nagayama, H.; Kaneko, M.; Kiyono, K.; Omi, N. Energy Expenditure of Disaster Relief Operations Estimated Using a Tri-Axial Accelerometer and a Wearable Heart Rate Monitor. Int. J. Environ. Res. Public Health 2023, 20, 5742. https://doi.org/10.3390/ijerph20095742
Koizumi N, Ogata H, Negishi Y, Nagayama H, Kaneko M, Kiyono K, Omi N. Energy Expenditure of Disaster Relief Operations Estimated Using a Tri-Axial Accelerometer and a Wearable Heart Rate Monitor. International Journal of Environmental Research and Public Health. 2023; 20(9):5742. https://doi.org/10.3390/ijerph20095742
Chicago/Turabian StyleKoizumi, Nao, Hitomi Ogata, Yutaro Negishi, Hisashi Nagayama, Miki Kaneko, Ken Kiyono, and Naomi Omi. 2023. "Energy Expenditure of Disaster Relief Operations Estimated Using a Tri-Axial Accelerometer and a Wearable Heart Rate Monitor" International Journal of Environmental Research and Public Health 20, no. 9: 5742. https://doi.org/10.3390/ijerph20095742
APA StyleKoizumi, N., Ogata, H., Negishi, Y., Nagayama, H., Kaneko, M., Kiyono, K., & Omi, N. (2023). Energy Expenditure of Disaster Relief Operations Estimated Using a Tri-Axial Accelerometer and a Wearable Heart Rate Monitor. International Journal of Environmental Research and Public Health, 20(9), 5742. https://doi.org/10.3390/ijerph20095742