Characteristics of Gastroenteritis Outbreaks Investigated in Singapore: 2018–2021
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Analysis
2.3. Ethical Considerations
3. Results
Gastroenteritis Outbreaks | 2018 (n = 53) | 2019 (n = 59) | 2020 (n = 12) | 2021 (n = 47) | ||||
---|---|---|---|---|---|---|---|---|
Foodborne | No. of Outbreaks (%) | No. of Cases | No. of Outbreaks (%) | No. of Cases | No. of Outbreaks (%) | No. of Cases | No. of Outbreaks (%) | No. of Cases |
Bakery | 0 | 0 | 1 (1.7) | 24 | 0 | 0 | 0 | 0 |
Canteen | 2 (3.8) | 105 | 4 (6.8) | 136 | 1 (8.3) | 31 | 2 (4.3) | 156 |
Caterer | 27 (50.9) | 1213 | 14 (23.7) | 680 | 3 (25.0) | 241 | 7 (14.9) | 510 |
Eating house * | 0 | 0 | 3 (5.1) | 20 | 2 (16.7) | 40 | 3 (6.4) | 108 |
Fair | 1 (1.9) | 150 | 0 | 0 | 0 | 0 | 0 | 0 |
Food court | 1 (1.9) | 32 | 0 | 0 | 0 | 0 | 0 | 0 |
Food factory | 0 | 0 | 2 (3.4) | 75 | 1 (8.3) | 35 | 2 (4.3) | 89 |
Foodshop (take-away) | 0 | 0 | 0 | 0 | 1 (8.3) | 5 | 1 (2.1) | 9 |
Hawker centre # | 1 (1.9) | 4 | 0 | 0 | 0 | 0 | 1 (2.1) | 52 |
Home-based business | 0 | 0 | 1 (1.7) | 35 | 0 | 0 | 1 (2.1) | 72 |
In-house kitchen | 4 (7.5) | 185 | 7 (11.9) | 215 | 2 (16.7) | 115 | 2 (4.3) | 116 |
Others | 1 (1.9) | 80 | 0 | 0 | 0 | 0 | 3 (6.3) | 130 |
Restaurant | 9 (17.0) | 331 | 4 (6.8) | 91 | 1 (8.3) | 30 | 4 (8.5) | 263 |
Unlicensed premises | 0 | 0 | 1 (1.7) | 23 | 0 | 0 | 1 (2.1) | 70 |
Non-foodborne | ||||||||
Eldercare | 0 | 0 | 1 (1.7) | 30 | 0 | 0 | 0 | 0 |
Other settings | 1 (1.9) | 282 | 0 | 0 | 0 | 0 | 0 | 0 |
School | 6 (11.3) | 151 | 21 (35.6) | 947 | 1 (8.3) | 23 | 20 (42.6) | 634 |
Preschools | 3 (50.0) | 91 | 15 (71.4) | 421 | 1 (100.0) | 23 | 20 (100.0) | 634 |
Non-preschools ^ | 3 (50.0) | 60 | 6 (28.6) | 526 | 0 | 0 | 0 | 0 |
4. Discussion
4.1. Control Measures in Response to COVID-19 Resulted in a Decline in Gastroenteritis Outbreaks in 2020
4.2. Caterers Accounted for a Substantial Proportion of Foodborne Outbreaks
4.3. Increasing Number of Norovirus Outbreaks in Preschools
4.4. Detection of Bacillus cereus in Food and Environmental Samples Highlights the Importance of Proper Food Safety Practices
5. Strengths and Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Schirone, M.; Visciano, P. Trends of Major Foodborne Outbreaks in the European Union during the Years 2015–2019. Hygiene 2021, 1, 106–119. [Google Scholar] [CrossRef]
- World Health Organization. WHO Estimates of the Global Burden of Foodborne Diseases: Foodborne Disease Burden Epidemiology Reference Group 2007–2015; World Health Organization: Geneva, Switzerland, 2015; Available online: https://apps.who.int/iris/handle/10665/199350 (accessed on 7 July 2022).
- Lake, I.R.; Barker, G.C. Climate Change, Foodborne Pathogens and Illness in Higher-Income Countries. Curr. Environ. Health Rep. 2018, 5, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Estimating the Burden of Foodborne Diseases. Available online: https://www.who.int/activities/estimating-the-burden-of-foodborne-diseases (accessed on 7 July 2022).
- Lee, S.H.; Yun, J.W.; Lee, J.H.; Jung, Y.H.; Lee, D.H. Trends in recent waterborne and foodborne disease outbreaks in South Korea, 2015–2019. Osong Public Health Res. Perspect. 2021, 12, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Pires, S.M.; Liu, Z.; Ma, X.; Liang, J.; Jiang, Y.; Chen, J.; Liang, J.; Wang, S.; Wang, L.; et al. Surveillance of foodborne disease outbreaks in China, 2003–2017. Food Control 2020, 118, 107359. [Google Scholar] [CrossRef]
- MOH|Communicable Diseases Surveillance in Singapore. 2013. Available online: https://www.moh.gov.sg/resources-statistics/reports/communicable-diseases-surveillance-in-singapore-2013 (accessed on 7 September 2022).
- MOH|Communicable Diseases Surveillance in Singapore. 2017. Available online: https://www.moh.gov.sg/resources-statistics/reports/communicable-diseases-surveillance-in-singapore-2017 (accessed on 7 September 2022).
- Economic Cost of Major Foodborne Illnesses Increased $2 Billion From 2013 to 2018. Available online: https://www.ers.usda.gov/amber-waves/2021/april/economic-cost-of-major-foodborne-illnesses-increased-2-billion-from-2013-to-2018/ (accessed on 7 July 2022).
- Food-Borne Illnesses Cost US$ 110 Billion Per Year in Low- and Middle-Income Countries. Available online: https://www.worldbank.org/en/news/press-release/2018/10/23/food-borne-illnesses-cost-us-110-billion-per-year-in-low-and-middle-income-countries (accessed on 7 July 2022).
- Singapore Accreditation Council. Available online: https://www.sac-accreditation.gov.sg (accessed on 23 November 2023).
- Armistead, I.; Tran, A.; White, A.E.; Wilson, E.; Scallan Walter, E.J. Trends in Outpatient Medical-Care Seeking for Acute Gastroenteritis During the COVID-19 Pandemic, 2020. Foodborne Pathog. Disease 2022, 19, 290–292. [Google Scholar] [CrossRef] [PubMed]
- Maldonado-Barrueco, A.; García-Rodríguez, J.; Yániz-Ramirez, J.; Serrano-Vaquero, I.; Parra-Alonso, J.C.; Vega-Nieto, C.; Ruiz-Carrascoso, G. Impact of the SARS-CoV-2 Pandemic on the Prevalence and Incidence of Gastrointestinal Viruses in Children up to Five Years Old: A Retrospective Cohort Study. Microbiol. Spectr. 2022, 10, e0266921. [Google Scholar] [CrossRef] [PubMed]
- Mughini-Gras, L.; Chanamé Pinedo, L.; Pijnacker, R.; van den Beld, M.; Wit, B.; Veldman, K.; Bosh, T.; Franz, E. Impact of the COVID-19 pandemic on human salmonellosis in the Netherlands. Epidemiol. Infect. 2021, 149, e254. [Google Scholar] [CrossRef] [PubMed]
- Farber, J.M.; Todd, E.C. Safe Handling of Foods; CRC Press: Boca Raton, FL, USA, 2000; pp. 238–239. [Google Scholar]
- Jones, A.K.; Cross, P.; Burton, M.; Millman, C.; O’Brien, S.J.; Rigby, D. Estimating the prevalence of food risk increasing behaviours in UK kitchens. PLoS ONE 2017, 12, e0175816. [Google Scholar] [CrossRef] [PubMed]
- Scallan, E.; Hoekstra, R.M.; Angulo, F.J.; Tauxe, R.V.; Widdowson, M.A.; Roy, S.L.; Jones, J.L.; Griffin, P.M. Foodborne Illness Acquired in the United States—Major Pathogens. Emerg. Infect. Dis. J. CDC 2011, 17, 7. [Google Scholar] [CrossRef] [PubMed]
- García, S.; Heredia, N.; Labbé, R.G.; Juneja, V.K. Clostridium perfringens gastroenteritis. In Foodborne Infections and Intoxications; Elsevier: Amsterdam, The Netherlands, 2021; pp. 89–103. [Google Scholar] [CrossRef]
- Ehuwa, O.; Jaiswal, A.K.; Jaiswal, S. Salmonella, Food Safety and Food Handling Practices. Foods 2021, 10, 907. [Google Scholar] [CrossRef] [PubMed]
- Mellou, K.; Kyritsi, M.; Chrysostomou, A.; Sideroglou, T.; Georgakopoulou, T.; Hadjichristodoulou, C. Clostridium perfringens Foodborne Outbreak during an Athletic Event in Northern Greece, June 2019. Int. J. Environ. Res. Public Health 2019, 16, 3967. [Google Scholar] [CrossRef] [PubMed]
- Leung, V.H. Notes from the Field: Clostridium perfringens Outbreak at a Catered Lunch—Connecticut, September 2016. Morb. Mortal. Wkly. Rep. 2017, 66, 940–941. [Google Scholar] [CrossRef] [PubMed]
- Taormina, P.J.; Dorsa, W.J. Growth Potential of Clostridium perfringens during Cooling of Cooked Meats. J. Food Prot. 2004, 67, 1537–1547. [Google Scholar] [CrossRef] [PubMed]
- B. cereus in Rice-Based Food|SFA. Published 15 July 2021. Available online: https://www.sfa.gov.sg/food-information/risk-at-a-glance/b.cereus-in-rice-based-food (accessed on 29 December 2023).
- Prevent Illness from C. perfringens|CDC. Published 24 March 2023. Available online: https://www.cdc.gov/foodsafety/diseases/clostridium-perfringens.html#pfp (accessed on 7 July 2022).
- Outbreaks Involving Salmonella|CDC. Published 9 June 2022. Available online: https://www.cdc.gov/salmonella/outbreaks.html (accessed on 7 July 2022).
- Food Safety Management System|SFA. Published 20 March 2023. Available online: https://www.sfa.gov.sg/food-retail/food-safety-management-system/food-safety-management-system (accessed on 10 May 2023).
- Griffith, C.J.; Livesey, K.M.; Clayton, D.A. Food safety culture: The evolution of an emerging risk factor? Br. Food J. 2010, 112, 426–438. [Google Scholar] [CrossRef]
- Matthews, J.E.; Dickey, B.W.; Miller, R.D.; Felzer, J.R.; Dawson, B.P.; Lee, A.S.; Rocks, J.J.; Kiel, J.; Montes, J.S.; Moe, C.L.; et al. The epidemiology of published norovirus outbreaks: A review of risk factors associated with attack rate and genogroup. Epidemiol. Infect. 2012, 140, 1161–1172. [Google Scholar] [CrossRef] [PubMed]
- MOH|ENB Quarterly 2019 VOL. 45. Available online: https://www.moh.gov.sg/resources-statistics/epidemiological-news-bulletin/january-2019-vol.-45pp.129-133 (accessed on 7 July 2022).
- Yasmin, F.; Ali, S.H.; Ullah, I. Norovirus Outbreak Amid COVID-19 in the United Kingdom; Priorities for Achieving Control. J. Med. Virol. 2022, 94, 1232–1235. [Google Scholar] [CrossRef] [PubMed]
- Bacillus cereus in Food. Available online: https://www.foodstandards.gov.au/consumer/safety/foodborne-illness/Pages/bacillus-cereus-.aspx (accessed on 2 May 2023).
- Schneider, K.R.; Schneider, R.G.; Silverberg, R. Preventing Foodborne Illness: Bacillus cereus: FSHN15-06/FS269, 8/2015. EDIS 2015, 2015, 5. [Google Scholar] [CrossRef]
- The Troublemaker in Bulk Cooking: Clostridium Perfringens and Food Poisoning|SFA. Published 16 February 2023. Available online: https://www.sfa.gov.sg/food-information/risk-at-a-glance/bulk-cooking-clostridium-perfringens (accessed on 29 December 2023).
- Eurosurveillance|Surveillance and Characteristics of Food-Borne Outbreaks in The Netherlands, 2006 to 2019. Available online: https://www.eurosurveillance.org/content/10.2807/1560-7917.ES.2022.27.3.2100071 (accessed on 7 July 2022).
- Garofalo, F.; Cutarelli, A.; Nappi, R.; De Lella, A.; Palomba, M.; Capo, S.; Montone, A.; Biondi, L.; Corrado, F. Isolation of Bacillus cereus in a Facility Preparing School Meals. Food Nutr. Sci. 2020, 11, 186–193. [Google Scholar] [CrossRef]
- Bad Bug Book, 2nd ed.; FDA: Silver Spring, MD, USA, 2022; pp. 92–95. Available online: https://www.fda.gov/food/foodborne-pathogens/bad-bug-book-second-edition (accessed on 7 July 2022).
Causative Pathogen of Outbreak | 2018 | 2019 | 2020 | 2021 |
---|---|---|---|---|
No. of Outbreaks (%) | No. of Outbreaks (%) | No. of Outbreaks (%) | No. of Outbreaks (%) | |
Foodborne Outbreaks | 20 | 18 | 7 | 13 |
Bacterial pathogen | ||||
C. perfringens | 10 (18.9) | 3 (5.1) | 2 (16.7) | 5 (10.6) |
Salmonella spp. | 4 a (7.5) | 7 b (11.9) | 3 c (25.0) | 4 d (8.5) |
Pathogenic E. coli | 0 | 3 e (5.1) | 0 | 0 |
V. parahaemolyticus | 0 | 0 | 0 | 2 (4.3) |
B. cereus | 1 (1.9) | 0 | 0 | 1 (2.1) |
S. aureus | 1 (1.9) | 1 (1.7) | 0 | 0 |
Viral pathogen | ||||
Norovirus | 4 (7.5) | 4 (6.8) | 2 (16.7) | 1 (2.1) |
Non-foodborne Outbreaks | 5 | 19 | 0 | 18 |
Viral pathogen | ||||
Norovirus ~ | 5 (9.4) | 17 (28.8) | 0 | 18 (38.3) |
Rotavirus | 0 | 2 (3.4) | 0 | 0 |
Causative pathogen not established | 28 (52.8) | 22 (37.3) | 5 (41.7) | 16 (34.0) |
Total | 53 | 59 | 12 | 47 |
Pathogens Detected in Food Samples | No. of Food Samples Detected with Pathogens (%) | |||
---|---|---|---|---|
2018 | 2019 | 2020 | 2021 | |
Bacterial | 27 (9.1) | 33 (9.9) | 7 (12.1) | 31 (9.3) |
B. cereus | 14 (4.7) | 12 (3.6) | 4 (6.9) | 13 (3.9) |
S. aureus | 3 (1.0) | 7 (2.1) | 0 | 3 (0.9) |
E. coli ** | 2 (0.7) | 6 (1.8) | 1 (1.7) | 3 (0.9) |
S. Enteritidis | 0 | 1 (0.3) | 0 | 3 (0.9) |
S. Typhimurium | 3 (1.0) | 0 | 0 | 0 |
V. parahaemolyticus | 0 | 0 | 1 (1.7) | 0 |
V. cholerae | 0 | 0 | 0 | 1 (0.3) |
S. Albany | 1 (0.3) | 0 | 0 | 0 |
C. perfringens | 0 | 0 | 0 | 1 (0.3) |
C. jejuni | 0 | 0 | 0 | 1 (0.3) |
Campylobacter spp. | 1 (0.3) | 0 | 0 | 0 |
B. cereus, E. coli ** a | 1 (0.3) | 2 (0.6) | 0 | 2 (0.6) |
E. coli **, S. aureus a | 1 (0.3) | 1 (0.3) | 1 (1.7) | 0 |
B. cereus, S. aureus a | 0 | 2 (0.6) | 0 | 0 |
E. coli **, B. cereus, S. aureus a | 0 | 2 (0.6) | 0 | 0 |
V. cholerae, V. parahaemolyticus a | 0 | 0 | 0 | 2 (0.6) |
B. cereus, S. Typhimurium a | 1 (0.3) | 0 | 0 | 0 |
E. coli **, C. perfringens | 0 | 0 | 0 | 1 (0.3) |
V. cholerae, V. parahaemolyticus, V. vulnificus a | 0 | 0 | 0 | 1 (0.3) |
Viral | 1 (0.3) | 1 (0.3) | 0 | 0 |
Norovirus | 1 (0.3) | 1 (0.3) | 0 | 0 |
Food samples not detected with pathogens | 269 (90.6) | 300 (89.8) | 51 (87.9) | 304 (90.7) |
Total | 297 | 334 | 58 | 335 |
Environmental Swabs Detected with Pathogens | No. of Environmental Swabs Detected with Pathogens (%) | |||
---|---|---|---|---|
2018 | 2019 | 2020 | 2021 | |
Bacterial | 24 (11.8) | 38 (9.8) | 6 (9.8) | 23 (8.7) |
B. cereus | 19 (9.4) | 31 (8.0) | 5 (8.2) | 9 (3.4) |
S. Enteritidis | 1 (0.5) | 4 (1.0) | 0 | 6 (2.3) |
S. aureus | 1 (0.5) | 2 (0.5) | 0 | 3 (1.1) |
E. coli ** | 1 (0.5) | 0 | 1 (1.6) | 3 (1.1) |
S. Typhimurium | 2 (1.0) | 0 | 0 | 0 |
Campylobacter spp. | 0 | 0 | 0 | 1 (0.4) |
E. coli **, S. aureus a | 0 | 0 | 0 | 1 (0.4) |
B. cereus, E. coli ** a | 0 | 1 (0.3) | 0 | 0 |
Viral | 24 (11.8) | 15 (3.9) | 0 | 3 (1.1) |
Norovirus | 24 (11.8) | 15 (3.9) | 0 | 3 (1.1) |
Bacterial and Viral | 1 (0.5) | 0 | 0 | 0 |
B. cereus, Norovirus a | 1 (0.5) | 0 | 0 | 0 |
Environmental swabs not detected with pathogens | 154 (75.9) | 336 (86.4) | 55 (90.2) | 238 (90.2) |
Total | 203 | 389 | 61 | 264 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fua’di, M.T.; Er, B.; Lee, S.; Chan, P.P.; Khoo, J.; Tan, D.; Li, H.; Muhammad, I.R.; Raj, P.; Kurupatham, L.; et al. Characteristics of Gastroenteritis Outbreaks Investigated in Singapore: 2018–2021. Int. J. Environ. Res. Public Health 2024, 21, 64. https://doi.org/10.3390/ijerph21010064
Fua’di MT, Er B, Lee S, Chan PP, Khoo J, Tan D, Li H, Muhammad IR, Raj P, Kurupatham L, et al. Characteristics of Gastroenteritis Outbreaks Investigated in Singapore: 2018–2021. International Journal of Environmental Research and Public Health. 2024; 21(1):64. https://doi.org/10.3390/ijerph21010064
Chicago/Turabian StyleFua’di, Muhd Tarmidzi, Benjamin Er, Sylvester Lee, Pei Pei Chan, Joanna Khoo, Desmond Tan, Huilin Li, Imran Roshan Muhammad, Pream Raj, Lalitha Kurupatham, and et al. 2024. "Characteristics of Gastroenteritis Outbreaks Investigated in Singapore: 2018–2021" International Journal of Environmental Research and Public Health 21, no. 1: 64. https://doi.org/10.3390/ijerph21010064
APA StyleFua’di, M. T., Er, B., Lee, S., Chan, P. P., Khoo, J., Tan, D., Li, H., Muhammad, I. R., Raj, P., Kurupatham, L., Lee, V., Tan, L. K., Chan, J. S. H., Li, A., & Aung, K. T. (2024). Characteristics of Gastroenteritis Outbreaks Investigated in Singapore: 2018–2021. International Journal of Environmental Research and Public Health, 21(1), 64. https://doi.org/10.3390/ijerph21010064