Time of Energy Intake: Association with Weight Status, Diet Quality, and Sociodemographic Characteristics in Brazil
Abstract
:1. Introduction
2. Methods
2.1. Dietary Intake Assessment
2.2. Weight Status and Sociodemographic Variables
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Conde, W.L.; da Silva, I.V.; Ferraz, F.R. Undernutrition and obesity trends in Brazilian adults from 1975 to 2019 and its associated factors. Cad. Saúde Pública 2022, 38, e00149721. [Google Scholar] [CrossRef] [PubMed]
- Estivaleti, J.M.; Guzman-Habinger, J.; Lobos, J.; Azeredo, C.M.; Claro, R.; Ferrari, G.; Adami, F.; Rezende, L.F.M. Time trends and projected obesity epidemic in Brazilian adults between 2006 and 2030. Sci. Rep. 2022, 12, 12699. [Google Scholar] [CrossRef] [PubMed]
- de Castro, I.R.R.; dos Anjos, L.A.; Lacerda, E.M.d.A.; Boccolini, C.S.; Farias, D.R.; Alves-Santos, N.H.; Normando, P.; de Freitas, M.B.; Andrade, P.G.; Bertoni, N.; et al. Nutrition transition in Brazilian children under 5 years old from 2006 to 2019. Cad. Saude Publica 2023, 39 (Suppl. S2). [Google Scholar] [CrossRef] [PubMed]
- Popkin, B.M.; Ng, S.W. The nutrition transition to a stage of high obesity and noncommunicable disease prevalence dominated by ultra-processed foods is not inevitable. Obes. Rev. 2022, 23, e13366. [Google Scholar] [CrossRef]
- Rodrigues, R.M.; de Moura Souza, A.; Bezerra, I.N.; Pereira, R.A.; Yokoo, E.M.; Sichieri, R. Most consumed foods in Brazil: Evolution between 2008–2009 and 2017–2018. Rev. Saúde Pública 2021, 55, 4s. [Google Scholar] [CrossRef]
- Louzada, M.L.D.C.; Cruz, G.L.D.; Silva, K.A.A.N.; Grassi, A.G.F.; Andrade, G.C.; Rauber, F.; Levy, R.B.; Monteiro, C.A. Consumption of ultra-processed foods in Brazil: Distribution and temporal evolution 2008–2018. Rev. Saude Publica 2023, 57, 12. [Google Scholar] [CrossRef]
- St-Onge, M.-P.; Ard, J.; Baskin, M.L.; Chiuve, S.E.; Johnson, H.M.; Kris-Etherton, P.; Varady, K.; on behalf of the American Heart Association Obesity Committee of the Council on Lifestyle and Cardiometabolic Health; Council on Cardiovascular Disease in the Young; Council on Clinical Cardiology. Meal Timing and Frequency: Implications for Cardiovascular Disease Prevention: A Scientific Statement From the American Heart Association. Circulation 2017, 135, e96–e121. [Google Scholar] [CrossRef]
- Peters, B.; Vahlhaus, J.; Pivovarova-Ramich, O. Meal timing and its role in obesity and associated diseases. Front. Endocrinol. 2024, 15, 1359772. [Google Scholar] [CrossRef]
- van der Merwe, C.; Münch, M.; Kruger, R. Chronotype Differences in Body Composition, Dietary Intake and Eating Behavior Outcomes: A Scoping Systematic Review. Adv. Nutr. Int. Rev. J. 2022, 13, 2357–2405. [Google Scholar] [CrossRef]
- Raji, O.E.; Kyeremah, E.B.; Sears, D.D.; St-Onge, M.-P.; Makarem, N. Chrononutrition and Cardiometabolic Health: An Overview of Epidemiological Evidence and Key Future Research Directions. Nutrients 2024, 16, 2332. [Google Scholar] [CrossRef]
- Pot, G.K. Sleep and dietary habits in the urban environment: The role of chrono-nutrition. Proc. Nutr. Soc. 2018, 77, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Almoosawi, S.; Vingeliene, S.; Gachon, F.; Voortman, T.; Palla, L.; Johnston, J.D.; Van Dam, R.M.; Darimont, C.; Karagounis, L.G. Chro-notype: Implications for Epidemiologic Studies on Chrono-Nutrition and Cardiometabolic Health. Adv. Nutr. 2019, 10, 30–42. [Google Scholar] [CrossRef] [PubMed]
- Tahara, Y.; Qian, J.; Oike, H.; Escobar, C. Editorial: The present and future of chrono-nutrition studies. Front. Nutr. 2023, 10, 1183320. [Google Scholar] [CrossRef] [PubMed]
- Franzago, M.; Alessandrelli, E.; Notarangelo, S.; Stuppia, L.; Vitacolonna, E. Chrono-Nutrition: Circadian Rhythm and Personalized Nutrition. Int. J. Mol. Sci. 2023, 24, 2571. [Google Scholar] [CrossRef] [PubMed]
- Schulz, P.; Steimer, T. Neurobiology of Circadian Systems. CNS Drugs 2009, 23 (Suppl. S2), 3–13. [Google Scholar] [CrossRef]
- Stephan, F.K. The “other” circadian system: Food as a Zeitgeber. J. Biol. Rhythms 2002, 17, 284–292. [Google Scholar] [CrossRef]
- Wehrens, S.M.; Christou, S.; Isherwood, C.; Middleton, B.; Gibbs, M.A.; Archer, S.N.; Skene, D.J.; Johnston, J.D. Meal Timing Regulates the Human Circadian System. Curr. Biol. 2017, 27, 1768–1775.e3. [Google Scholar] [CrossRef]
- Oike, H. Modulation of circadian clocks by nutrients and food factors. Biosci. Biotechnol. Biochem. 2017, 81, 863–870. [Google Scholar] [CrossRef]
- Wang, J.B.; Patterson, R.E.; Ang, A.; Emond, J.A.; Shetty, N.; Arab, L. Timing of energy intake during the day is associated with the risk of obesity in adults. J. Hum. Nutr. Diet. 2014, 27 (Suppl. S2), 255–262. [Google Scholar] [CrossRef]
- Berg, C.; Lappas, G.; Wolk, A.; Strandhagen, E.; Torén, K.; Rosengren, A.; Thelle, D.; Lissner, L. Eating patterns and portion size associated with obesity in a Swedish population. Appetite 2009, 52, 21–26. [Google Scholar] [CrossRef]
- Xiao, Q.; Garaulet, M.; Scheer, F.A. Meal timing and obesity: Interactions with macronutrient intake and chronotype. Int. J. Obes. 2019, 43, 1701–1711. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, S.; Norbury, R.; Faßbender, K.C.; Ettinger, U.; Kumari, V. Beyond sleep: A multidimensional model of chronotype. Neurosci. Biobehav. Rev. 2023, 148, 105114. [Google Scholar] [CrossRef] [PubMed]
- Sato-Mito, N.; Sasaki, S.; Murakami, K.; Okubo, H.; Takahashi, Y.; Shibata, S.; Yamada, K.; Sato, K. The midpoint of sleep is associated with dietary intake and dietary behavior among young Japanese women. Sleep Med. 2011, 12, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, G.P.; Mota, M.C.; Crispim, C.A. Eveningness is associated with skipping breakfast and poor nutritional intake in Brazilian undergraduate students. Chrono Int. 2018, 35, 358–367. [Google Scholar] [CrossRef] [PubMed]
- Instituto Brasileiro de Geografia e Estatística. Pesquisa de Orçamentos Familiares 2017–2018: Análise do Consumo Alimentar Pessoal no Brasil. 2020. Available online: https://biblioteca.ibge.gov.br/index.php/biblioteca-catalogo?view=detalhes&id=2101742 (accessed on 10 September 2024).
- Conway, J.M.; Ingwersen, L.A.; Moshfegh, A.J. Accuracy of dietary recall using the USDA five-step multiple-pass method in men: An observational validation study. J. Am. Diet. Assoc. 2004, 104, 595–603. [Google Scholar] [CrossRef]
- Giuntini, E.B.; Coelho, K.S.; Grande, F.; Marchioni, D.M.; De Carli, E.; Sichieri, R.; Pereira, R.A.; Purgatto, E.; Franco, B.D.; Lajolo, F.M.; et al. 12th IFDC 2017 Special issue—Brazilian Nutrient Intake Evaluation Database: An essential tool for estimating nutrient intake data. J. Food Compos. Anal. 2019, 83, 103286. [Google Scholar] [CrossRef]
- Aljuraiban, G.S.; Chan, Q.; Griep, L.M.O.; Brown, I.J.; Daviglus, M.L.; Stamler, J.; Van Horn, L.; Elliott, P.; Frost, G.S.; INTERMAP Research Group. The Impact of Eating Frequency and Time of Intake on Nutrient Quality and Body Mass Index: The INTERMAP Study, a Population-Based Study. J. Acad. Nutr. Diet. 2015, 115, 528–536.e1. [Google Scholar] [CrossRef]
- Monteiro, L.S.; Rodrigues, P.R.M.; de Vasconcelos, T.M.; Sperandio, N.; Yokoo, E.M.; Sichieri, R.; Pereira, R.A. Snacking habits of Brazilian adolescents: Brazilian National Dietary Survey, 2017–2018. Nutr. Bull. 2022, 47, 449–460. [Google Scholar] [CrossRef]
- Onis, M.; Onyango, A.W.; Borghi, E.; Siyam, A.; Nishida, C.; Siekmann, J. Development of a WHO growth reference for school-aged children and adolescents. Bull. World Health Organ. 2007, 85, 660–667. [Google Scholar] [CrossRef]
- World Health Organization. Obesity: Preventing and Managing the Global Epidemic: Report of a WHO Consultation; WHO Technical Report Series no. 894; WHO: Geneva, Switzerland, 1998. [Google Scholar]
- Gontijo, C.A.; Cabral, B.B.M.; Balieiro, L.C.T.; Teixeira, G.P.; Fahmy, W.M.; Maia, Y.C.d.P.; Crispim, C.A. Time-related eating patterns and chronotype are associated with diet quality in pregnant women. Chrono Int. 2019, 36, 75–84. [Google Scholar] [CrossRef]
- Almoosawi, S.; Vingeliene, S.; Karagounis, L.G.; Pot, G.K. Chrono-nutrition: A review of current evidence from observational studies on global trends in time-of-day of energy intake and its association with obesity. Proc. Nutr. Soc. 2016, 75, 487–500. [Google Scholar] [CrossRef]
- Mazri, F.H.; Manaf, Z.A.; Shahar, S.; Mat Ludin, A.F. The Association between Chronotype and Dietary Pattern among Adults: A Scoping Review. Int. J. Environ. Res. Public Health 2020, 17, 68. [Google Scholar] [CrossRef] [PubMed]
- Kanbay, M.; Copur, S.; Demiray, A.; Tuttler, K.R. Cardiorenal Metabolic Consequences of Nighttime Snacking: Is it an Innocent Eating Behavior? Curr. Nutr. Rep. 2022, 11, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Pan, A.; Schernhammer, E.S.; Sun, Q.; Hu, F.B. Rotating Night Shift Work and Risk of Type 2 Diabetes: Two Prospective Cohort Studies in Women. PLOS Med. 2011, 8, e1001141. [Google Scholar] [CrossRef] [PubMed]
- Parkes, K.R. Shift work and age as interactive predictors of body mass index among offshore workers. Scand. J. Work. Environ. Health 2002, 28, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Wirth, M.D.; Zhao, L.; Turner-McGrievy, G.M.; Ortaglia, A. Associations between Fasting Duration, Timing of First and Last Meal, and Cardiometabolic Endpoints in the National Health and Nutrition Examination Survey. Nutrients 2021, 13, 2686. [Google Scholar] [CrossRef]
- Palomar-Cros, A.; Andreeva, V.A.; Fezeu, L.K.; Julia, C.; Bellicha, A.; Kesse-Guyot, E.; Hercberg, S.; Romaguera, D.; Kogevinas, M.; Touvier, M.; et al. Dietary circadian rhythms and cardiovascular disease risk in the prospective NutriNet-Santé cohort. Nat Commun. 2023, 14, 7899. [Google Scholar] [CrossRef]
- Jakubowicz, D.; Rosenblum, R.C.; Wainstein, J.; Twito, O. Influence of Fasting until Noon (Extended Postabsorptive State) on Clock Gene mRNA Expression and Regulation of Body Weight and Glucose Metabolism. Int. J. Mol. Sci. 2023, 24, 7154. [Google Scholar] [CrossRef]
- Jakubowicz, D.; Wainstein, J.; Ahrén, B.; Bar-Dayan, Y.; Landau, Z.; Rabinovitz, H.R.; Froy, O. High-energy breakfast with low-energy dinner decreases overall daily hyperglycaemia in type 2 diabetic patients: A randomised clinical trial. Diabetologia 2015, 58, 912–919. [Google Scholar] [CrossRef]
- Montaruli, A.; Castelli, L.; Mulè, A.; Scurati, R.; Esposito, F.; Galasso, L.; Roveda, E. Biological Rhythm and Chronotype: New Perspectives in Health. Biomolecules 2021, 11, 487. [Google Scholar] [CrossRef]
- Roenneberg, T.; Allebrandt, K.V.; Merrow, M.; Vetter, C. Social Jetlag and Obesity. Curr. Biol. 2012, 22, 939–943. [Google Scholar] [CrossRef] [PubMed]
- Dashti, H.S.; Scheer, F.A.J.L.; Saxena, R.; Garaulet, M. Timing of Food Intake: Identifying Contributing Factors to Design Effective Interventions. Adv. Nutr. Int. Rev. J. 2019, 10, 606–620. [Google Scholar] [CrossRef] [PubMed]
- Tiuganji, N.M.; Nehme, P.; Marqueze, E.C.; Isherwood, C.M.; Martins, A.J.; Vasconcelos, S.; Cipolla-Neto, J.; Lowden, A.; Skene, D.J.; Moreno, C.R.C. Eating Behavior (Duration, Content, and Timing) Among Workers Living under Different Levels of Urbanization. Nutrients 2020, 12, 375. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.; Caton, S.J.; Buckland, N.J. Exploring factors influencing late evening eating and barriers and enablers to changing to earlier eating patterns in adults with overweight and obesity. Appetite 2024, 202, 107646. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, P.R.M.; Gonçalves-Silva, R.M.V.; Pereira, R.A. Validity of self-reported weight and stature in adolescents from Cuiabá, Central-Western Brazil. Rev. Nutr. 2013, 26, 283–290. [Google Scholar] [CrossRef]
- Teixeira, I.P.; Pereira, J.L.; Barbosa, J.P.D.A.S.; de Mello, A.V.; Onita, B.M.; Fisberg, R.M.; Florindo, A.A. Validity of self-reported body mass and height: Relation with sex, age, physical activity, and cardiometabolic risk factors. Rev. Bras. Epidemiol. 2021, 24, e210043. [Google Scholar]
- Moreira, N.F.; Luz, V.G.; Moreira, C.C.; Pereira, R.A.; Sichieri, R.; Ferreira, M.G.; Muraro, A.P.; Rodrigues, P.R.M. Self-reported weight and height are valid measures to determine weight status: Results from the Brazilian National Health Survey (PNS 2013). Cad. Saude Publica 2018, 34, e00063917. [Google Scholar] [CrossRef]
- Lopes, T.S.; Luiz, R.R.; Hoffman, D.J.; Ferriolli, E.; Pfrimer, K.; Moura, A.S.; Sichieri, R.; Pereira, R.A. Misreport of energy intake assessed with food records and 24-h recalls compared with total energy expenditure estimated with DLW. Eur. J. Clin Nutr. 2016, 70, 1259–1264, Erratum in Eur. J. Clin. Nutr. 2017, 71, 680. [Google Scholar] [CrossRef]
- Dodd, K.W.; Guenther, P.M.; Freedman, L.S.; Subar, A.F.; Kipnis, V.; Midthune, D.; Tooze, J.A.; Krebs-Smith, S.M. Statistical Methods for Estimating Usual Intake of Nutrients and Foods: A Review of the Theory. J. Am. Diet. Assoc. 2006, 106, 1640–1650. [Google Scholar] [CrossRef]
- Subar, A.F.; Kipnis, V.; Troiano, R.P.; Midthune, D.; Schoeller, D.A.; Bingham, S.; Sharbaugh, C.O.; Trabulsi, J.; Runswick, S.; Ballard-Barbash, R.; et al. Using Intake Biomarkers to Evaluate the Extent of Dietary Misreporting in a Large Sample of Adults: The OPEN Study. Am. J. Epidemiol. 2003, 158, 1–13. [Google Scholar] [CrossRef]
- Leech, R.M.; Worsley, A.; Timperio, A.; McNaughton, S.A. Characterizing eating patterns: A comparison of eating occasion definitions. Am. J. Clin. Nutr. 2015, 102, 1229–1237. [Google Scholar] [CrossRef] [PubMed]
Tertile of Evening/Morning Energy Intake Ratio [% (95% CI)] | ||||
Total | 1 (<−0.19) | 2 (−0.19; 0.37) | 3 (>0.37) | |
Total | 30.1 (29.3; 30.9) | 33.9 (33.1; 34.7) | 36.0 (35.1; 36.9) | |
Sex | ||||
Men | 49.3 | 28.2 (27.2; 29.1) | 33.3 (32.2; 34.3) | 38.6 (37.4; 39.7) |
Women | 50.7 | 31.9 (30.9; 33.0) | 34.5 (33.5; 35.6) | 33.5 (32.5; 34.6) |
Age group | ||||
Adolescents | 17.9 | 28.1 (26.6; 29.6) | 33.7 (31.9; 35.5) | 38.2 (36.3; 40.2) |
Adults | 63.9 | 28.5 (27.6; 29.4) | 33.5 (32.5; 34.4) | 38.0 (36.9; 39.1) |
Elderly | 18.1 | 37.6 (36.0; 39.2) | 35.6 (34.0; 37.3) | 26.8 (25.1; 28.4) |
Per capita family income | ||||
½ | 16.6 | 33.0 (31.1; 34.9) | 34.6 (32.5; 36.8) | 32.4 (30.3; 34.5) |
½ to 1 | 24.2 | 30.9 (29.4; 32.4) | 34.6 (33.2; 36.0) | 34.5 (33.1; 36.0) |
1 to 2 | 31.9 | 30.6 (29.2; 32.0) | 32.2 (31.0; 33.6) | 37.2 (35.5; 38.9) |
>2 | 27.3 | 27.0 (25.6; 28.5) | 34.8 (33.0; 36.6) | 38.2 (36.3; 40.0) |
Weight status | ||||
Underweight | 2.5 | 35.0 (30.9; 39.3) | 33.4 (29.1; 38.0) | 31.6 (27.7; 35.8) |
Normal weight | 46.0 | 30.0 (28.9; 31.1) | 33.7 (32.6; 34.8) | 36.4 (35.2; 37.6) |
Overweight | 36.0 | 30.2 (29.0; 31.4) | 34.6 (33.3; 35.9) | 35.2 (33.9; 36.6) |
Obesity | 15.5 | 29.5 (27.7; 31.3) | 33.1 (31.4; 34.9) | 37.4 (35.4; 39.4) |
Tertile of Evening/Morning Energy Intake Ratio | |||
---|---|---|---|
1 | 2 | 3 | |
[Mean (95% CI)] * | |||
Energy (kcal) | 1669 (1648; 1690) | 1765 (1743; 1787) | 1797 (1770; 1824) |
Protein (% of total energy intake) | 17.4 (17.2; 17.6) | 18.4 (18.1; 18.6) | 19.3 (19.1; 19.5) |
Carbohydrate (% of total energy intake) | 55.7 (55.4; 56.0) | 54.6 (54.3; 55.0) | 52.4 (52.0; 52.7) |
Lipids (% of total energy intake) | 29.0 (28.7; 29.2) | 29.3 (29.1; 29.5) | 30.2 (29.9; 30.5) |
Fiber (g/1000 kcal) | 12.8 (12.6; 13.0) | 13.2 (13.0; 13.3) | 13.7 (13.5; 13.9) |
Calcium (mg/1000 kcal) | 259.0 (254.1; 263.8) | 256.9 (252.3; 261.5) | 244.3 (239.1; 249.4) |
Iron (mg/1000 kcal) | 6.4 (6.3; 6.5) | 6.5 (6.4; 6.6) | 6.3 (6.2; 6.3) |
Vitamin C (mg/1000 kcal) | 71.0 (67.6; 74.4) | 68.2 (65.5; 71.0) | 69.2 (65.7; 72.7) |
Saturated fat (% of total energy intake) | 9.3 (9.2; 9.4) | 9.3 (9.2; 9.4) | 9.3 (9.2; 9.4) |
Added sugar (% of total energy intake) | 10.3 (10.1; 10.5) | 9.6 (9.4; 9.9) | 9.3 (9.1; 9.5) |
Sodium (mg/1000 kcal) | 1436.2 (1423.1; 1449.3) | 1462.7 (1448.8; 1476.6) | 1465.8 (1448.9; 1482.7) |
Ratio of Evening/Morning Energy Intake | |||
---|---|---|---|
Food Groups | 1 | 2 | 3 |
[% (95% CI)] | |||
Coffee and tea | 84.3 (83.3; 85.3) | 82.9 (81.6; 84.1) | 76.6 (75.1; 78.1) |
Rice and rice dishes | 76.7 (75.2; 78.1) | 78.6 (77.0; 80.1) | 77.7 (75.8; 79.5) |
Beans and bean dishes | 75.5 (74.2; 76.7) | 76.8 (75.3; 78.2) | 74.3 (72.6; 75.9) |
Sugar | 66.3 (64.8; 67.7) | 66.7 (65.1; 68.2) | 60.0 (58.4; 61.6) |
Breads | 56.2 (54.8; 57.6) | 58.6 (57.2; 60.1) | 40.4 (38.8; 41.9) |
Red meats | 50.3 (48.8; 51.7) | 54.7 (53.1; 56.2) | 55.1 (53.5; 56.7) |
Vegetables | 43.3 (41.9; 44.7) | 47.3 (45.7; 48.9) | 44.6 (42.9; 46.3) |
Solid fats | 42.7 (41.2; 44.2) | 44.1 (42.5; 45.7) | 28.4 (27.0; 29.8) |
Poultry and poultry dishes | 34.0 (32.6; 35.4) | 35.4 (33.9; 37.0) | 35.1 (33.5; 36.7) |
Fruit juices | 32.2 (30.9; 33.5) | 34.0 (32.4; 35.5) | 33.4 (31.8; 35.1) |
Fruits | 32.1 (30.8; 33.4) | 31.6 (30.2; 33.0) | 25.9 (24.6; 27.3) |
Roots and tubers | 30.1 (28.7; 31.5) | 30.5 (29.1; 32.0) | 30.9 (29.4; 32.4) |
Cookies and crackers | 27.8 (26.6; 29.1) | 26.9 (25.5; 28.3) | 25.8 (24.5; 27.1) |
Milk and dairy | 25.3 (24.1; 26.6) | 25.8 (24.5; 27.2) | 20.0 (18.8; 21.2) |
Fast-foods | 22.0 (20.8; 23.2) | 23.8 (22.6; 25.1) | 27.2 (25.6; 28.8) |
Pasta and pasta-based dishes | 19.9 (18.8; 21.0) | 21.2 (20.0; 22.5) | 23.4 (22.0; 24.8) |
Sugar-sweetened beverages | 16.3 (15.1; 17.4) | 18.4 (17.2; 19.6) | 24.1 (22.8; 25.5) |
Corn and corn-based dishes | 15.1 (14.1; 16.1) | 13.0 (12.1; 14.0) | 11.0 (10.1; 11.9) |
Eggs | 14.6 (13.6; 15.6) | 15.4 (14.4; 16.5) | 13.2 (12.1; 14.3) |
Cakes | 14.5 (13.6; 15.5) | 13.8 (12.9; 14.8) | 12.9 (11.9; 13.9) |
Vegetable oils | 12.0 (11.0; 13.1) | 15.5 (14.4; 16.8) | 15.2 (13.9; 16.6) |
Sweets and desserts | 11.9 (11.0; 12.8) | 12.1 (11.2; 13.1) | 14.5 (13.4; 15.6) |
Processed meats | 11.2 (10.3; 12.2) | 12.4 (11.3; 13.7) | 11.9 (11.0; 12.9) |
Non-caloric sweetener | 8.8 (8.0; 9.7) | 9.5 (8.8; 10.4) | 7.3 (6.5; 8.1) |
Fish and seafood | 8.0 (7.3; 8.9) | 7.7 (7.0; 8.4) | 8.4 (7.6; 9.3) |
Whole grains | 7.1 (6.3; 7.9) | 7.2 (6.5; 8.0) | 5.2 (4.5; 6.0) |
Milk-based processed beverages | 7.0 (6.4; 7.7) | 8.0 (7.2; 8.9) | 6.8 (6.0; 7.6) |
Sauces | 4.1 (3.5; 4.7) | 5.2 (4.5; 6.0) | 6.9 (6.1; 7.7) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, P.R.M.; Monteiro, L.S.; de Vasconcelos, T.M.; Alves, I.A.; Yokoo, E.M.; Sichieri, R.; Pereira, R.A. Time of Energy Intake: Association with Weight Status, Diet Quality, and Sociodemographic Characteristics in Brazil. Int. J. Environ. Res. Public Health 2024, 21, 1403. https://doi.org/10.3390/ijerph21111403
Rodrigues PRM, Monteiro LS, de Vasconcelos TM, Alves IA, Yokoo EM, Sichieri R, Pereira RA. Time of Energy Intake: Association with Weight Status, Diet Quality, and Sociodemographic Characteristics in Brazil. International Journal of Environmental Research and Public Health. 2024; 21(11):1403. https://doi.org/10.3390/ijerph21111403
Chicago/Turabian StyleRodrigues, Paulo Rogério Melo, Luana Silva Monteiro, Thaís Meirelles de Vasconcelos, Iuna Arruda Alves, Edna Massae Yokoo, Rosely Sichieri, and Rosangela Alves Pereira. 2024. "Time of Energy Intake: Association with Weight Status, Diet Quality, and Sociodemographic Characteristics in Brazil" International Journal of Environmental Research and Public Health 21, no. 11: 1403. https://doi.org/10.3390/ijerph21111403
APA StyleRodrigues, P. R. M., Monteiro, L. S., de Vasconcelos, T. M., Alves, I. A., Yokoo, E. M., Sichieri, R., & Pereira, R. A. (2024). Time of Energy Intake: Association with Weight Status, Diet Quality, and Sociodemographic Characteristics in Brazil. International Journal of Environmental Research and Public Health, 21(11), 1403. https://doi.org/10.3390/ijerph21111403