Impact of Environment on Pain among the Working Poor: Making Use of Random Forest-Based Stratification Tool to Study the Socioecology of Pain Interference
Abstract
:1. Introduction
2. Method
2.1. Participants
2.2. Predictive Features and Pain Interference Outcome
2.3. Analytic Models: Model-Based Feature Selections and Scoring
3. Result
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zimmer, Z.; Fraser, K.; Grol-Prokopczyk, H.; Zajacova, A. A global study of pain prevalence across 52 countries: Examining the role of country-level contextual factors. Pain 2022, 163, 1740–1750. [Google Scholar] [CrossRef]
- Jackson, T.; Thomas, S.; Stabile, V.; Han, X.; Shotwell, M.; McQueen, K. Prevalence of chronic pain in low-income and middle-income countries: A systematic review and meta-analysis. Lancet 2015, 385, S10. [Google Scholar] [CrossRef]
- Saastamoinen, P.; Leino-Arjas, P.; Laaksonen, M.; Lahelma, E. Socio-economic differences in the prevalence of acute, chronic and disabling chronic pain among ageing employees. Pain 2005, 114, 364–371. [Google Scholar] [CrossRef]
- Macfarlane, T.V.; Beasley, M.; Macfarlane, G.J. Self-Reported Facial Pain in UK Biobank Study: Prevalence and Associated Factors. J. Oral. Maxillofac. Res. 2014, 5, e2. [Google Scholar] [CrossRef] [PubMed]
- Wright, M.A.; Adelani, M.; Dy, C.; O’Keefe, R.; Calfee, R.P. What is the Impact of Social Deprivation on Physical and Mental Health in Orthopaedic Patients? Clin. Orthop. Relat. Res. 2019, 477, 1825–1835. [Google Scholar] [CrossRef] [PubMed]
- McDougall, J.A.; Blair, C.K.; Wiggins, C.L.; Goodwin, M.B.; Chiu, V.K.; Rajput, A.; Kinney, A.Y. Socioeconomic disparities in health-related quality of life among colorectal cancer survivors. J. Cancer Surviv. 2019, 13, 459–467. [Google Scholar] [CrossRef]
- Trachsel, L.A.; Munakomi, S.; Cascella, M. Pain Theory. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK545194/ (accessed on 17 April 2023).
- Belgen Kaygısız, B.; Elibol, N.; Acaröz Candan, S. Pain coping strategies and related factors including demographics, pain characteristics, functional mobility in postmenopausal women with chronic musculoskeletal pain. Women Health 2022, 62, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Broderick, J.E.; Schneider, S.; Schwartz, J.E.; Stone, A.A. Interference with activities due to pain and fatigue: Accuracy of ratings across different reporting periods. Qual. Life Res. 2010, 19, 1163–1170. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.; Nelson Schmitt, S.; Wolters, P.L.; Abel, B.; Toledo-Tamula, M.A.; Baldwin, A.; Wicksell, R.K.; Merchant, M.; Widemann, B. Development and Validation of the English Pain Interference Index and Pain Interference Index-Parent Report. Pain Med. 2015, 16, 367–373. [Google Scholar] [CrossRef]
- Basem, J.I.; White, R.S.; Chen, S.A.; Mauer, E.; Steinkamp, M.L.; Inturrisi, C.E.; Witkin, L.R. The effect of obesity on pain severity and pain interference. Pain Manag. 2021, 11, 571–581. [Google Scholar] [CrossRef]
- Barry, D.T.; Pilver Glenn, C.E.; Hoff, R.A.; Potenza, M.N. Pain Interference and Incident Medical Disorders in the General Population. Pain Med. 2016, 18, 1209–1217. [Google Scholar] [CrossRef]
- Osborne, T.L.; Jensen, M.P.; Ehde, D.M.; Hanley, M.A.; Kraft, G. Psychosocial factors associated with pain intensity, pain-related interference, and psychological functioning in persons with multiple sclerosis and pain. Pain 2007, 127, 52–62. [Google Scholar] [CrossRef]
- Turner, J.A.; Jensen, M.P.; Romano, J.M. Do beliefs, coping, and catastrophizing independently predict functioning in patients with chronic pain? Pain 2000, 85, 115–125. [Google Scholar] [CrossRef]
- Nicholson Perry, K.; Nicholas, M.K.; Middleton, J. Spinal cord injury-related pain in rehabilitation: A cross-sectional study of relationships with cognitions, mood and physical function. Eur. J. Pain 2009, 13, 511–517. [Google Scholar] [CrossRef] [PubMed]
- Lillis, J.; Graham Thomas, J.; Seng, E.K.; Lipton, R.B.; Pavlović, J.M.; Rathier, L.; Roth, J.; O’Leary, K.C.; Bond, D.S. Importance of Pain Acceptance in Relation to Headache Disability and Pain Interference in Women With Migraine and Overweight/Obesity. Headache J. Head Face Pain 2017, 57, 709–718. [Google Scholar] [CrossRef] [PubMed]
- Salamon, K.S.; Dutta, R.A.; Hildenbrand, A.K. Improved pain acceptance and interference following outpatient interdisciplinary pediatric chronic pain treatment. Psychol. Health 2023, 38, 1184–1193. [Google Scholar] [CrossRef]
- Mäntyselkä, P.; Miettola, J.; Niskanen, L.; Kumpusalo, E. Glucose regulation and chronic pain at multiple sites. Rheumatology 2008, 47, 1235–1238. [Google Scholar] [CrossRef] [PubMed]
- Weingarten, T.N.; Moeschler, S.M.; Ptaszynski, A.E.; Hooten, W.M.; Beebe, T.J.; Warner, D.O. An assessment of the association between smoking status, pain intensity, and functional interference in patients with chronic pain. Pain Physician 2008, 11, 643–653. [Google Scholar] [CrossRef]
- Macchia, L. Having Less Than Others is Physically Painful: Income Rank and Pain Around the World. Soc. Psychol. Personal. Sci. 2024, 15, 215–224. [Google Scholar] [CrossRef]
- Beshai, S.; Mishra, S.; Meadows, T.J.; Parmar, P.; Huang, V. Minding the gap: Subjective relative deprivation and depressive symptoms. Soc. Sci. Med. 2017, 173, 18–25. [Google Scholar] [CrossRef]
- Slavich, G.M.; Irwin, M.R. From stress to inflammation and major depressive disorder: A social signal transduction theory of depression. Psychol. Bull. 2014, 140, 774–815. [Google Scholar] [CrossRef]
- Wiech, K.; Tracey, I. The influence of negative emotions on pain: Behavioral effects and neural mechanisms. NeuroImage 2009, 47, 987–994. [Google Scholar] [CrossRef]
- Axon, D.R.; Kim, A. Relationship between Perceived Pain Interference and Poor Psychological Wellbeing among United States Adults. Behav. Sci. 2023, 13, 240. [Google Scholar] [CrossRef]
- Vigil, J.M.; Pendleton, P.; Coulombe, P.; Vowles, K.E.; Alcock, J.; Smith, B.W. Pain patients and who they live with: A correlational study of coresidence patterns and pain interference. Pain Res. Manag. 2014, 19, e109–e114. [Google Scholar] [CrossRef]
- Booker, S.Q. Living with pain in ‘age-(un)friendly’ housing environments: A qualitative study with African American older adults. Geriatr. Nurs. 2021, 42, 1294–1302. [Google Scholar] [CrossRef]
- Gherscovici, E.D.; Mayer, J.M. Relationship of Healthy Building Determinants with Back and Neck Pain: A Systematic Review. Am. J. Health Promot. 2023, 37, 103–131. [Google Scholar] [CrossRef] [PubMed]
- Wells, N.M.; Rollings, K.A.; Ong, A.D.; Reid, M.C. Nearby Nature Buffers the Pain Catastrophizing–Pain Intensity Relation Among Urban Residents with Chronic Pain. Front. Built Environ. 2019, 5, 142. [Google Scholar] [CrossRef]
- Bernatchez, M.S.; Savard, J.; Aubin, M.; Ivers, H. Correlates of disrupted sleep–wake variables in patients with advanced cancer. BMJ Support. Palliat. Care 2020, 10, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Martin, L.; Porreca, F.; Mata, E.I.; Salloum, M.; Goel, V.; Gunnala, P.; Killgore, W.D.S.; Jain, S.; Jones-MacFarland, F.N.; Khanna, R.; et al. Green Light Exposure Improves Pain and Quality of Life in Fibromyalgia Patients: A Preliminary One-Way Crossover Clinical Trial. Pain Med. 2020, 22, 118–130. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, A.F.; Paoletti, G.; Seta, D.D.; Panelli, R.; Marcus, M.A.E.; Farabollini, F.; Carli, G.; Joosten, E.A.J. Enriched environment and the recovery from inflammatory pain: Social versus physical aspects and their interaction. Behav. Brain Res. 2010, 208, 90–95. [Google Scholar] [CrossRef]
- Pisinger, C.; Aadahl, M.; Toft, U.; Birke, H.; Zytphen-Adeler, J.; Jørgensen, T. The association between active and passive smoking and frequent pain in a general population. Eur. J. Pain 2011, 15, 77–83. [Google Scholar] [CrossRef]
- Yazzie, S.A.; Davis, S.; Seixas, N.; Yost, M.G. Assessing the Impact of Housing Features and Environmental Factors on Home Indoor Radon Concentration Levels on the Navajo Nation. Int. J. Environ. Res. Public Health 2020, 17, 2813. [Google Scholar] [CrossRef]
- Jacobs, D.E.; Wilson, J.; Dixon, S.L.; Smith, J.; Evens, A. The Relationship of Housing and Population Health: A 30-Year Retrospective Analysis. Environ. Health Perspect. 2009, 117, 597–604. [Google Scholar] [CrossRef] [PubMed]
- Jatta, E.; Jawara, M.; Bradley, J.; Jeffries, D.; Kandeh, B.; Knudsen, J.B.; Wilson, A.L.; Pinder, M.; D’Alessandro, U.; Lindsay, S.W. How house design affects malaria mosquito density, temperature, and relative humidity: An experimental study in rural Gambia. Lancet Planet. Health 2018, 2, e498–e508. [Google Scholar] [CrossRef] [PubMed]
- Foye, C. The Relationship between Size of Living Space and Subjective Well-Being. J. Happiness Stud. 2017, 18, 427–461. [Google Scholar] [CrossRef]
- Seguel, J.M.; Merrill, R.; Seguel, D.; Campagna, A.C. Indoor Air Quality. Am. J. Lifestyle Med. 2017, 11, 284–295. [Google Scholar] [CrossRef]
- Shan, Y.; Wu, W.; Fan, W.; Haahtela, T.; Zhang, G. House dust microbiome and human health risks. Int. Microbiol. 2019, 22, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Kembel, S.W.; Jones, E.; Kline, J.; Northcutt, D.; Stenson, J.; Womack, A.M.; Bohannan, B.J.M.; Brown, G.Z.; Green, J.L. Architectural design influences the diversity and structure of the built environment microbiome. ISME J. 2012, 6, 1469–1479. [Google Scholar] [CrossRef] [PubMed]
- Lowry, S. Housing. Br. Med. J. 1991, 303, 838. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.K.C.; Lam, K.M.; Leung, Y.T.A.; Yang, K.; Li Danny, H.W.; Cheung Sherman, C.P. Wind-induced natural ventilation of re-entrant bays in a high-rise building. J. Wind Eng. Ind. Aerodyn. 2011, 99, 79–90. [Google Scholar] [CrossRef]
- Wang, C.H.; Kuo, N.W.; Anthony, K. Impact of sunlight on pain interference-natural energy and recovery. In Proceedings of the International Conference on Energy Equipment Science and Engineering (ICEESE), Guangzhou, China, 30–31 May 2015; pp. 1781–1785. [Google Scholar]
- Lu, J. The value of a south-facing orientation: A hedonic pricing analysis of the Shanghai housing market. Habitat Int. 2018, 81, 24–32. [Google Scholar] [CrossRef]
- Boon-Ying, L. Weather Feng Shui. 2022. Available online: https://www.hko.gov.hk/en/education/weather/weather-and-life/00143-weather-feng-shui.html (accessed on 24 October 2023).
- Kotani, H.; Satoh, R.; Yamanaka, T. Natural ventilation of light well in high-rise apartment building. Energy Build. 2003, 35, 427–434. [Google Scholar] [CrossRef]
- Okabe, D.; Tsuji, T.; Hanazato, M.; Miyaguni, Y.; Asada, N.; Kondo, K. Neighborhood Walkability in Relation to Knee and Low Back Pain in Older People: A Multilevel Cross-Sectional Study from the JAGES. Int. J. Environ. Res. Public Health 2019, 16, 4598. [Google Scholar] [CrossRef]
- Cao, Y.; Heng, C.K.; Fung, J.C. Using Walk-Along Interviews to Identify Environmental Factors Influencing Older Adults’ Out-of-Home Behaviors in a High-Rise, High-Density Neighborhood. Int. J. Environ. Res. Public Health 2019, 16, 4251. [Google Scholar] [CrossRef] [PubMed]
- Hua, J.; Mendoza-Vasconez, A.S.; Chrisinger, B.W.; Conway, T.L.; Todd, M.; Adams, M.A.; Sallis, J.F.; Cain, K.L.; Saelens, B.E.; Frank, L.D.; et al. Associations of social cohesion and quality of life with objective and perceived built environments: A latent profile analysis among seniors. J. Public Health 2020, 44, 138–147. [Google Scholar] [CrossRef]
- Gao, M.; Ahern, J.; Koshland, C.P. Perceived built environment and health-related quality of life in four types of neighborhoods in Xi’an, China. Health Place 2016, 39, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Black, X.M.; Neill, C. Experience and expression of social isolation by inner-city high-rise residents. Hous. Care Support 2014, 17, 151–166. [Google Scholar] [CrossRef]
- Sykes, J.; Križ, K.; Edin, K.; Halpern-Meekin, S. Dignity and Dreams: What the Earned Income Tax Credit (EITC) Means to Low-Income Families. Am. Sociol. Rev. 2015, 80, 243–267. [Google Scholar] [CrossRef]
- Government of the Hong Kong Special Administrative Region. Main Analysis of the Poverty Situation in 2020; Commission on Poverty: Hong Kong, China, 2021. [Google Scholar]
- Poquet, N.; Lin, C. The Brief Pain Inventory (BPI). J. Physiother. 2016, 62, 52. [Google Scholar] [CrossRef]
- Husky, M.M.; Farin, F.F.; Compagnone, P.; Fermanian, C.; Kovess-Masfety, V. Chronic back pain and its association with quality of life in a large French population survey. Health Qual. Life Outcomes 2018, 16, 195. [Google Scholar] [CrossRef]
- Mellen, H.; Short, M. Designing for social interaction in high-density housing: A multiple case analysis of recently completed design-led developments in London. Front. Sustain. Cities 2023, 4, 1043701. [Google Scholar] [CrossRef]
- Su, M.; Tan, Y.-Y.; Liu, Q.-M.; Ren, Y.-J.; Kawachi, I.; Li, L.-M.; Lv, J. Association between perceived urban built environment attributes and leisure-time physical activity among adults in Hangzhou, China. Prev. Med. 2014, 66, 60–64. [Google Scholar] [CrossRef]
- Yau, H. Subdivided Flats: The Issue & Our Proposed Solutions. Available online: https://www.okokhk.org/post/subdivided-flats-the-issue-potential-solutions (accessed on 25 August 2023).
- Nouri, M.; Holden, M.; Sones, M. Social Quality of Life in High-Density Built Environments. In Knowledge Synthesis for the Emerging Asocial Society; Simon Fraser University: Burnaby, BC, Canada, 2022. [Google Scholar]
- Brennan, P.L.; Schutte, K.K.; Moos, R.H. Pain and use of alcohol to manage pain: Prevalence and 3-year outcomes among older problem and non-problem drinkers. Addiction 2005, 100, 777–786. [Google Scholar] [CrossRef]
- Serrano-Ibáñez, E.R.; Ramírez-Maestre, C.; Ruiz-Párraga, G.T.; Esteve, R.; López-Martínez, A.E. Pain Interference, Resilience, and Perceived Well-Being During COVID-19: Differences between Women with and without Trauma Exposure Prior to the Pandemic. Int. J. Public Health 2022, 67, 1604443. [Google Scholar] [CrossRef] [PubMed]
- Sahin, T.; Ayyildiz, A.; Gencer-Atalay, K.; Akgün, C.; Özdemir, H.M.; Kuran, B. Pain Symptoms in COVID-19. Am. J. Phys. Med. Rehabil. 2021, 100, 307–312. [Google Scholar] [CrossRef]
- Xie, F.; Chakraborty, B.; Ong, M.E.H.; Goldstein, B.A.; Liu, N. AutoScore: A Machine Learning–Based Automatic Clinical Score Generator and Its Application to Mortality Prediction Using Electronic Health Records. JMIR Med. Inform. 2020, 8, e21798. [Google Scholar] [CrossRef]
- Xie, H.; Mahoney, D.W.; Foote, P.H.; Burger, K.N.; Doering, K.A.; Taylor, W.R.; Then, S.S.; Cao, X.; McGlinch, M.; Berger, C.K.; et al. Novel Methylated DNA Markers in the Surveillance of Colorectal Cancer Recurrence. Clin. Cancer Res. 2021, 27, 141–149. [Google Scholar] [CrossRef]
- Segal, M.R. Regression Trees for Censored Data. Biometrics 1988, 44, 35–47. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. The logrank test. BMJ 2004, 328, 1073. [Google Scholar] [CrossRef] [PubMed]
- Leblanc, M.; Crowley, J. Survival Trees by Goodness of Split. J. Am. Stat. Assoc. 1993, 88, 457–467. [Google Scholar] [CrossRef]
- Hamidi, O.; Poorolajal, J.; Farhadian, M.; Tapak, L. Identifying Important Risk Factors for Survival in Kidney Graft Failure Patients Using Random Survival Forests. Iran. J. Public Health 2016, 45, 27–33. [Google Scholar] [PubMed]
- Hsich, E.; Gorodeski, E.Z.; Blackstone, E.H.; Ishwaran, H.; Lauer, M.S. Identifying important risk factors for survival in patient with systolic heart failure using random survival forests. Circ. Cardiovasc. Qual. Outcomes 2011, 4, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Efron, B.; Tibshirani, R.J. An Introduction to the Bootstrap, 1st ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 1994. [Google Scholar]
- Evans, P.L.; McMillin, S.L.; Weyrauch, L.A.; Witczak, C.A. Regulation of Skeletal Muscle Glucose Transport and Glucose Metabolism by Exercise Training. Nutrients 2019, 11, 2432. [Google Scholar] [CrossRef] [PubMed]
- Hosmer, D.W., Jr.; Lemeshow, S.; Sturdivant, R.X. Applied Logistic Regression; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Thomas, E.; Mottram, S.; Peat, G.; Wilkie, R.; Croft, P. The effect of age on the onset of pain interference in a general population of older adults: Prospective findings from the North Staffordshire Osteoarthritis Project (NorStOP). Pain 2007, 129, 21–27. [Google Scholar] [CrossRef]
- Boggero, I.A.; Geiger, P.J.; Segerstrom, S.C.; Carlson, C.R. Pain Intensity Moderates the Relationship between Age and Pain Interference in Chronic Orofacial Pain Patients. Exp. Aging Res. 2015, 41, 463–474. [Google Scholar] [CrossRef] [PubMed]
- Allen, S.A.; Dal Grande, E.; Abernethy, A.P.; Currow, D.C. Two colliding epidemics—Obesity is independently associated with chronic pain interfering with activities of daily living in adults 18 years and over; a cross-sectional, population-based study. BMC Public Health 2016, 16, 1034. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.W.Y.; So, H.C.F.; Yan, V.C.M.; Kwok, P.S.T.; Wong, B.Y.M.; Yang, J.Y.; Chan, A.P.C. A Survey of Work-Related Pain Prevalence Among Construction Workers in Hong Kong: A Case-Control Study. Int. J. Environ. Res. Public Health 2019, 16, 1404. [Google Scholar] [CrossRef]
- Kerckhove, N.; Lambert, C.; Corteval, A.; Pereira, B.; Eschalier, A.; Dualé, C. Cross-Sectional Study of Prevalence, Characterization and Impact of Chronic Pain Disorders in Workers. J. Pain 2021, 22, 520–532. [Google Scholar] [CrossRef]
- Swain, C.T.V.; Bassett, J.K.; Hodge, A.M.; Bruinsma, F.J.; Mahmood, S.; Jayasekara, H.; Macinnis, R.J.; Giles, G.G.; Milne, R.L.; English, D.R.; et al. Domain-Specific Physical Activity, Pain Interference, and Muscle Pain after Activity. Med. Sci. Sports Exerc. 2020, 52, 2145–2151. [Google Scholar] [CrossRef]
- Bushnell, M.C.; Case, L.K.; Ceko, M.; Cotton, V.A.; Gracely, J.L.; Low, L.A.; Pitcher, M.H.; Villemure, C. Effect of environment on the long-term consequences of chronic pain. Pain 2015, 156 (Suppl. S1), S42–S49. [Google Scholar] [CrossRef]
- Bushnell, M.C.; Ceko, M.; Low, L.A. Cognitive and emotional control of pain and its disruption in chronic pain. Nat. Rev. Neurosci. 2013, 14, 502–511. [Google Scholar] [CrossRef]
- Liu, R.; Zhou, Y.; Liu, Y.; Guo, R.; Gao, L. Association between living environmental quality and risk of arthritis in middle-aged and older adults: A national study in China. Front. Public Health 2023, 11, 1181625. [Google Scholar] [CrossRef] [PubMed]
- Main, C.J. The importance of psychosocial influences on chronic pain. Pain Manag. 2013, 3, 455–466. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Liu, N.; Polemiti, E.; Garcia-Mondragon, L.; Tang, J.; Liu, X.; Lett, T.; Yu, L.; Nöthen, M.M.; Feng, J.; et al. Effects of urban living environments on mental health in adults. Nat. Med. 2023, 29, 1456–1467. [Google Scholar] [CrossRef]
- Kan, Z.; Kwan, M.-P.; Ng, M.K.; Tieben, H. The Impacts of Housing Characteristics and Built-Environment Features on Mental Health. Int. J. Environ. Res. Public Health 2022, 19, 5143. [Google Scholar] [CrossRef] [PubMed]
- Nagasawa, N.; Yamaguchi, R.; Kato, R.; Tanabe, S.-I. Longitudinal study of housing for the promotion of health and well-being using a covariance structure model to identify the causal relationships between satisfaction with living environment, stress, and chronic low back pain. Jpn. Archit. Rev. 2018, 1, 154–166. [Google Scholar] [CrossRef]
- Green, C.R.; Hart-Johnson, T. The Association Between Race and Neighborhood Socioeconomic Status in Younger Black and White Adults with Chronic Pain. J. Pain 2012, 13, 176–186. [Google Scholar] [CrossRef] [PubMed]
- WHO. Household Air Pollution. 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/household-air-pollution-and-health (accessed on 20 December 2023).
- Schneider, S.; Schmitt, H.; Zoller, S.; Schiltenwolf, M. Workplace stress, lifestyle and social factors as correlates of back pain: A representative study of the German working population. Int. Arch. Occup. Environ. Health 2005, 78, 253–269. [Google Scholar] [CrossRef] [PubMed]
- Haripriya, G.; Abinaya, K.; Aarthi, N.; Kumar, P.; Darbari, S. Random Forest Algorithms in Health Care Sectors: A Review of Applications. Int. J. Recent Dev. Comput. Technol. Softw. Appl. 2012, 5, 1. [Google Scholar]
- Swarn, A.K.; Harsh, K.; Vishal, D.; Pooja, D. The Role of MachineLearning in COVID-19 in Medical Domain: A Survey. J. Recent Innov. Cloud Comput. Virtualiz. Web Appl. 2020, 4, 1–12. [Google Scholar]
- Woo, J.; Ko, R. Fifty New Home: How to build an age friendly city. In Hong Kong City Development: Review and Way Forward; Chan, C., Ed.; Joint Publishing (HK): Hong Kong, China, 2023; pp. 296–313. [Google Scholar]
Pain Interference Outcome/Feature | Prevalence | |
---|---|---|
Mood | No | 58.1% |
Yes | 41.9% | |
Daily Activity | No | 27.1% |
Yes | 72.9% | |
Sleeping Quality | No | 50.0% |
Yes | 50.0% | |
Social Relationships | No | 74.8% |
Yes | 25.2% | |
Work Performance | No | 53.3% |
Yes | 46.7% | |
The ordinal counts of how many areas suffered from pain interference | 0–1 item | 24.8% |
2 items | 29.0% | |
3 items | 31.0% | |
4+ items | 15.2% | |
Predictive Features | ||
Age | Mean (SD) | 55.58 (12.08) |
Sex | F | 77.8% |
M | 22.2% | |
Main Occupation | Catering Staff | 10.3% |
Cleaning Worker | 25.9% | |
Clerk | 6.0% | |
Driver | 1.1% | |
Domestic Helper | 37.1% | |
Sales | 4.3% | |
Security Guard/Watchman | 10.3% | |
Technician | 2.5% | |
Construction/Manual Worker | 2.5% | |
Blood Pressure (WHO standard) | Low | 0% |
Normal | 78.6% | |
High | 21.4% | |
BMI (HA Asian standard) | Underweight | 3.3% |
Normal weight | 31.0% | |
Pre-obesity | 23.8% | |
Obesity class (mid) | 32.4% | |
Obesity class [18] | 9.5% | |
Blood Glucose (WHO HK standard) | Low | 10.5% |
Normal | 83.8% | |
High | 5.7% | |
Drinker | No | 93.7% |
Yes | 6.3% | |
Smoker | No | 92.6% |
Yes | 7.4% | |
Pain Position: Elbow | No | 95.7% |
Yes | 4.3% | |
Pain Position: Foot | No | 79.5% |
Yes | 20.5% | |
Pain Position: Hand | No | 70.5% |
Yes | 29.5% | |
Pain Position: Knee | No | 63.8% |
Yes | 36.2% | |
Pain Position: Lower back | No | 57.6% |
Yes | 42.4% | |
Pain Position: Neck | No | 79.5% |
Yes | 20.5% | |
Pain Position: Shoulder | No | 67.6% |
Yes | 32.4% | |
Pain Position: Upper back | No | 92.4% |
Yes | 7.6% | |
Pain Position: Other | No | 91.9% |
Yes | 8.1% | |
Pain intensity: mild condition | Mean (SD) | 3.0 (2.4) |
Pain intensity: severe condition | Mean (SD) | 6.5 (1.9) |
Residential Population Density | Mean (SD) | 1970.9 (731.0) |
Subdivided units | No | 96.2% |
Yes | 3.8% | |
Indication of re-entrant bay | No | 10.7% |
Yes | 89.3% | |
Presence of Terrace | No | 63.1% |
Yes | 36.9% | |
Cardinal Orientation | East | 8.10% |
North | 11.90% | |
Northeast | 14.40% | |
Northwest | 15.70% | |
South | 13.10% | |
Southeast | 10.60% | |
Southeast and Northwest | 2.50% | |
Southwest | 12.50% | |
West | 11.30% | |
Number of light wells | Mean (SD) | 12.71 (7.95) |
Number of Lifts | Mean (SD) | 5.02 (1.31) |
Number of corridors of the building | Mean (SD) | 3.79 (1.93) |
Age of the building | Mean (SD) | 26.04 (9.66) |
Number of flats | Mean (SD) | 695.98 (238.34) |
Proportion of flat with 1–2 non-functional rooms in the building (vs. 3+ non-functional rooms) | 36% | |
Follow-up Plan assigned | No | 11.4% |
Yes | 88.6% | |
COVID period | wave 4–5 | 47.6% |
wave 5 | 52.4% |
(a) | ||||||
---|---|---|---|---|---|---|
Description | Mood | Daily Activities | Sleeping Quality | Social Life | Work Performance | Score |
Age | 1 | 1 | 1 | 1 | 2 | 99 |
Main Occupation | 4 | 2 | 3 | 4 | 1 | 91 |
Pain intensity: mild condition | 2 | 3 | 2 | 3 | 4 | 91 |
Pain intensity: severe condition | 3 | 4 | 4 | 2 | 3 | 89 |
BMI | 5 | 5 | 5 | 5 | 5 | 80 |
Blood Glucose | 7 | 6 | 9 | 12 | 6 | 65 |
Pain Position: Shoulder | 8 | 9 | 8 | 6 | 10 | 64 |
Pain Position: Lower back | 9 | 7 | 7 | 8 | 11 | 63 |
Pain Position: Knee | 10 | 8 | 10 | 10 | 8 | 59 |
Pain Position: Hand | 12 | 11 | 6 | 9 | 9 | 58 |
Pain Position: Neck | 6 | 13 | 11 | 13 | 12 | 50 |
Blood Pressure | 14 | 12 | 13 | 11 | 7 | 48 |
Pain Position: Foot | 13 | 14 | 12 | 7 | 14 | 45 |
Sex | 11 | 10 | 15 | 14 | 13 | 42 |
Pain Position: Other | 15 | 16 | 16 | 16 | 15 | 27 |
Pain Position: Upper back | 18 | 15 | 14 | 16 | 21 | |
Drinker | 16 | 18 | 15 | 17 | 18 | |
Smoker | 17 | 17 | 18 | 11 | ||
Pain Position: Elbow | 17 | 17 | 8 | |||
Sub-divided flat | 18 | 18 | 6 | |||
(b) | ||||||
Description | Mood | Daily Activities | Sleeping Quality | Social Life | Work Performance | Score |
Cardinal orientation | 1 | 1 | 4 | 1 | 1 | 97 |
Age | 3 | 2 | 1 | 2 | 3 | 94 |
Main Occupation | 5 | 3 | 3 | 7 | 2 | 85 |
Pain intensity: mild condition | 2 | 4 | 5 | 4 | 7 | 83 |
Pain intensity: severe condition | 4 | 8 | 2 | 5 | 6 | 80 |
Proportion of flat with <3 non-functional room | 7 | 7 | 6 | 3 | 4 | 78 |
Age of the building | 6 | 5 | 7 | 6 | 8 | 73 |
BMI | 8 | 6 | 8 | 8 | 5 | 70 |
Number of corridors of the building | 11 | 11 | 10 | 13 | 9 | 51 |
Number of lifts | 12 | 12 | 13 | 15 | 11 | 42 |
Number of light wells | 9 | 9 | 9 | 36 | ||
Pain Position: Lower back | 14 | 14 | 14 | 10 | 14 | 39 |
Pain Position: Knee | 13 | 10 | 11 | 17 | 33 | |
Blood Pressure | 15 | 15 | 16 | 14 | 12 | 33 |
Pain Position: Hand | 16 | 17 | 9 | 18 | 16 | 29 |
Pain Position: Neck | 10 | 16 | 15 | 17 | 26 | |
Blood Glucose | 17 | 12 | 10 | 24 | ||
Presence of terrace | 18 | 12 | 15 | 18 | ||
Pain Position: Shoulder | 18 | 11 | 13 | |||
Pain Position: Foot | 19 | 17 | 19 | 13 | 16 | |
Pain Position: Other | 13 | 8 | ||||
Pain Position: Upper back | 16 | 5 | ||||
Sex | 18 | 3 |
Model without Built Environment Related Features | Model with Built Environment Related Features | |||||
---|---|---|---|---|---|---|
(AUC: 0.7129) | (AUC: 0.9085) | |||||
Feature | Feature Level | Rank | Score | Feature Level | Rank | Score |
Age | <36 | 1 | 3 | <34.2 | 6 | 5 |
[36, 44) | 3 | [34.2, 42) | 3 | |||
[44, 67) | 6 | [42, 66.4) | 3 | |||
[67, 73) | 6 | [66.4, 70) | 0 | |||
≥73 | 0 | ≥70 | 0 | |||
Occupation | Catering | 2 | 11 | Catering | 5 | 6 |
Cleaner | 9 | Cleaner | 8 | |||
Clerk | 12 | Clerk | 6 | |||
Driver | 4 | Driver | 0 | |||
Housewife | 10 | Domestic Helper | 6 | |||
Sales | 11 | Sales | 4 | |||
Security | 0 | Security | 4 | |||
Technician | 2 | Technician | 3 | |||
Construction/manual work | 8 | Construction/manual work | 9 | |||
Pain intensity: mild condition | <5 | 3 | 0 | <1 | 2 | 0 |
[5, 7.55) | 5 | [1, 5) | 2 | |||
≥7.55 | 12 | [5, 6.85) | 7 | |||
≥6.85 | 7 | |||||
Pain intensity: severe condition | <3 | 4 | 3 | <4 | 4 | 0 |
[3, 5) | 3 | [4, 5) | 0 | |||
[5, 8) | 9 | [5, 8) | 3 | |||
[8, 9.55) | 9 | [8, 9) | 3 | |||
≥9.55 | 21 | ≥9 | 6 | |||
BMI | (1) Underweight | 5 | 0 | (1) Underweight | 9 | 0 |
(2) Normal weight | 0 | (2) Normal weight | 0 | |||
(3) Pre-obesity | 9 | (3) Pre-obesity | 0 | |||
(4) Obesity class (mid) | 9 | (4) Obesity class (mid) | 1 | |||
(5) Obesity class (severe) | 9 | (5) Obesity class (severe) | 1 | |||
Blood Glucose | (1) Low | 6 | 0 | (1) Low | ||
(2) Normal | 0 | (2) Normal | ||||
(3) Abnormal | 5 | (3) Abnormal | ||||
Pain Position: Knee | No | 7 | 0 | No | 14 | 0 |
Yes | 2 | Yes | 4 | |||
Pain Position: Lower back | No | 8 | 0 | |||
Yes | 3 | |||||
Pain Position: Foot | No | 9 | 0 | |||
Yes | 1 | |||||
Pain Position: Shoulder | No | 10 | 0 | No | 15 | 0 |
Yes | 2 | Yes | 1 | |||
Pain Position: Hand | No | 11 | 0 | No | 11 | 0 |
Yes | 2 | Yes | 3 | |||
Pain Position: Neck | No | 12 | 0 | |||
Yes | 2 | |||||
Sex | F | 13 | 1 | |||
M | 0 | |||||
Blood Pressure | (1) Normal | 15 | 0 | (1) Normal | ||
(2) High | 2 | (2) High | ||||
Pain Position: Upper back | No | 17 | 0 | No | ||
Yes | 4 | Yes | ||||
Cardinal Orientation | East | 1 | 7 | |||
North | 9 | |||||
Northeast | 6 | |||||
Northwest | 12 | |||||
South | 5 | |||||
Southeast | 0 | |||||
Southeast and Northwest | 7 | |||||
Southwest | 6 | |||||
West | 5 | |||||
Proportion of flat with >2 non-functional room | <0.0326 | 3 | 7 | |||
[0.0326, 0.125) | 7 | |||||
[0.125, 0.461) | 3 | |||||
[0.461, 0.709) | 3 | |||||
≥0.709 | 0 | |||||
Number of flat | <267 | 7 | 0 | |||
[267, 564) | 3 | |||||
[564, 799) | 10 | |||||
[799, 1140) | 10 | |||||
≥1140 | 10 | |||||
Age of the building | <11 | 8 | 0 | |||
[11, 17) | 0 | |||||
[17, 31) | 8 | |||||
[31, 37.8) | 8 | |||||
≥37.8 | 8 | |||||
# of light wells | <2.3 | 10 | 5 | |||
[2.3, 5) | 5 | |||||
[5, 16) | 0 | |||||
[16, 27) | 0 | |||||
≥27 | 0 | |||||
Number of corridors of the building | <2 | 12 | 4 | |||
[2, 4) | 10 | |||||
≥4 | 10 | |||||
Number of lifts | <3 | 13 | 0 | |||
[3, 4) | 4 | |||||
≥4 | 10 |
(a) | ||||
---|---|---|---|---|
Total Score | 0–1 Area | 2 Areas | 3 Areas | 4+ Areas |
[21, 40] | 0.600 | 0.250 | 0.075 | 0.075 |
[41, 60] | 0.104 | 0.294 | 0.362 | 0.239 |
[61, 80] | 0.038 | 0.192 | 0.308 | 0.462 |
[81, 100] | 0.000 | 0.000 | 0.000 | 1.000 |
(b) | ||||
Total Score | 0–1 Area | 2 Areas | 3 Areas | 4+ Areas |
[31, 40] | 1.000 | 0.000 | 0.000 | 0.000 |
[41, 50] | 0.636 | 0.364 | 0.000 | 0.000 |
[51, 60] | 0.214 | 0.271 | 0.357 | 0.157 |
[61, 100] | 0.000 | 0.000 | 0.000 | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leung, E.; Lee, A.; Liu, Y.; Hung, C.-T.; Fan, N.; Ching, S.C.C.; Yee, H.; He, Y.; Xu, R.; Tsang, H.W.H.; et al. Impact of Environment on Pain among the Working Poor: Making Use of Random Forest-Based Stratification Tool to Study the Socioecology of Pain Interference. Int. J. Environ. Res. Public Health 2024, 21, 179. https://doi.org/10.3390/ijerph21020179
Leung E, Lee A, Liu Y, Hung C-T, Fan N, Ching SCC, Yee H, He Y, Xu R, Tsang HWH, et al. Impact of Environment on Pain among the Working Poor: Making Use of Random Forest-Based Stratification Tool to Study the Socioecology of Pain Interference. International Journal of Environmental Research and Public Health. 2024; 21(2):179. https://doi.org/10.3390/ijerph21020179
Chicago/Turabian StyleLeung, Eman, Albert Lee, Yilin Liu, Chi-Tim Hung, Ning Fan, Sam C. C. Ching, Hilary Yee, Yinan He, Richard Xu, Hector Wing Hong Tsang, and et al. 2024. "Impact of Environment on Pain among the Working Poor: Making Use of Random Forest-Based Stratification Tool to Study the Socioecology of Pain Interference" International Journal of Environmental Research and Public Health 21, no. 2: 179. https://doi.org/10.3390/ijerph21020179
APA StyleLeung, E., Lee, A., Liu, Y., Hung, C.-T., Fan, N., Ching, S. C. C., Yee, H., He, Y., Xu, R., Tsang, H. W. H., & Guan, J. (2024). Impact of Environment on Pain among the Working Poor: Making Use of Random Forest-Based Stratification Tool to Study the Socioecology of Pain Interference. International Journal of Environmental Research and Public Health, 21(2), 179. https://doi.org/10.3390/ijerph21020179