Fall Risk Prediction for Community-Dwelling Older Adults: Analysis of Assessment Scale and Evaluation Items without Actual Measurement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Measurements
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ministry of Internal Affairs and Communications Statistics Bureau Homepage: Statistical Topics No. 129 Japan’s Elderly Seen from Statistics–In Honor of “Respect for the Aged Day”. Available online: http://www.stat.go.jp/data/topics/topi1380.html. (accessed on 27 September 2023).
- Clegg, A.; Young, J.; Iliffe, S.; Rikkert, M.O.; Rockwood, K. Frailty in elderly people. Lancet 2013, 381, 752–762. [Google Scholar] [CrossRef]
- Son, B.; Imoto, T.; Inoue, T.; Nishimura, T.; Tanaka, T.; Iijima, K. Social detachment influenced muscle mass and strength during the COVID-19 pandemic in Japanese community-dwelling older women. J. Frailty Aging 2022, 11, 231–235. [Google Scholar] [CrossRef]
- Shinohara, T.; Saida, K.; Tanaka, S.; Murayama, A. Rapid response: Impact of the COVID-19 pandemic on frailty in the elderly citizen; corona-frailty. BMJ 2020, 369, m1543. [Google Scholar]
- Kojima, G.; Iliffe, S.; Taniguchi, Y.; Shimada, H.; Rakugi, H.; Walters, K. Prevalence of frailty in Japan: A systematic review and meta-analysis. J. Epidemiol. 2017, 27, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Shinohara, T.; Saida, K.; Tanaka, S.; Murayama, A.; Higuchi, D. Did the number of older adults with frailty increase during the COVID-19 pandemic? A prospective cohort study in Japan. Eur. Geriatr. Med. 2021, 12, 1085–1089. [Google Scholar] [CrossRef] [PubMed]
- Fhon, J.R.; Rodrigues, R.A.; Neira, W.F.; Huayta, V.M.; Robazzi, M.L. Fall and association with the frailty syndrome in the elderly: Systematic review with meta-analysis. Rev. Esc. Enferm. USP 2016, 50, 1005–1013. [Google Scholar] [CrossRef] [PubMed]
- Bartosch, P.S.; Kristensson, J.; McGuigan, F.E.; Akesson, K.E. Frailty and prediction of recurrent falls over 10years in a community cohort of 75-year-old women. Aging Clin. Exp. Res. 2020, 32, 2241–2250. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Imaoka, M.; Nakao, H.; Hida, M.; Imai, R.; Tazaki, F.; Takeda, M. Increased anxiety about falls and walking ability among community-dwelling Japanese older adults during the COVID-19 pandemic. Psychogeriatrics 2021, 21, 826–831. [Google Scholar] [CrossRef] [PubMed]
- Anezaki, S.; Sakka, M.; Yamamoto-Mitani, N. Association between prevention from going out and incidence of falls among community-dwelling older adults during COVID-19 pandemic. Int. J. Environ. Res. Public Health 2023, 20, 2650. [Google Scholar] [CrossRef] [PubMed]
- Moulson, N.; Bewick, D.; Selway, T.; Harris, J.; Suskin, N.; Oh, P.; Coutinho, T.; Singh, G.; Chow, C.M.; Clarke, B.; et al. Cardiac rehabilitation during the COVID-19 era: Guidance on implementing virtual care. Can. J. Cardiol. 2020, 36, 1317–1321. [Google Scholar] [CrossRef] [PubMed]
- Leung, K.K.; Carr, F.M.; Kennedy, M.; Russell, M.J.; Sari, Z.; Triscott, J.A.; Korownyk, C. Protocol: Effectiveness of telerehabilitation and home-based falls prevention programs for community-dwelling older adults: A systematic review and meta-analysis protocol. BMJ Open 2023, 13, e069543. [Google Scholar] [CrossRef]
- Hoffman, G.J.; Malani, P.N.; Solway, E.; Kirch, M.; Singer, D.C.; Kullgren, J.T. Changes in activity levels, physical functioning, and fall risk during the COVID-19 pandemic. J. Am. Geriatr. Soc. 2022, 70, 9–59. [Google Scholar] [CrossRef]
- Bargiotas, I.; Wang, D.; Mantilla, J.; Quijoux, F.; Moreau, A.; Vidal, C.; Barrois, R.; Nicolai, A.; Audiffren, J.; Labourdette, C.; et al. Preventing falls: The use of machine learning for the prediction of future falls in individuals without history of fall. J. Neurol. 2023, 270, 618–631. [Google Scholar] [CrossRef]
- Shinohara, T.; Saida, K.; Tanaka, S.; Murayama, A. Protocol: Do lifestyle measures to counter COVID-19 affect frailty rates in elderly community dwelling? Protocol for cross-sectional and cohort study. BMJ Open 2020, 10, e040341. [Google Scholar] [CrossRef]
- World Health Organization. Falls. Available online: https://www.who.int/news-room/fact-sheets/detail/falls (accessed on 28 August 2023).
- World Health Organization. WHO to Identify Pathogens that Could Cause Future Outbreaks and Pandemics. Available online: https://www.who.int/news/item/21-11-2022-who-to-identify-pathogens-that-could-cause-future-outbreaks-and-pandemics (accessed on 28 August 2023).
- Yamada, M.; Arai, H. Predictive value of frailty scores for healthy life expectancy in community-dwelling older Japanese adults. J. Am. Med. Dir. Assoc. 2015, 16, 1002.e7–1002.e11. [Google Scholar] [CrossRef]
- Satake, S.; Arai, H. Questionnaire for medical checkup of old-old (QMCOO). Geriatr. Gerontol. Int. 2020, 20, 991–992. [Google Scholar] [CrossRef]
- World Health Organization. Multimorbidity, Technical Series on Safer Primary Care. Available online: https://www.who.int/publications/i/item/multimorbidity (accessed on 28 August 2023).
- Watanabe, D.; Yoshida, T.; Watanabe, Y.; Yamada, Y.; Miyachi, M.; Kimura, M. Validation of the Kihon Checklist and the frailty screening index for frailty defined by the phenotype model in older Japanese adults. BMC Geriatr. 2022, 22, 478. [Google Scholar] [CrossRef] [PubMed]
- Satake, S.; Arai, H. The revised Japanese version of the Cardiovascular Health Study criteria (revised J-CHScriteria. Geriatr. Gerontol. Int. 2020, 20, 992–993. [Google Scholar] [CrossRef] [PubMed]
- Shinohara, T.; Saida, K.; Tanaka, S.; Murayama, A.; Higuchi, D. Comparison of two scoring methods for the Questionnaire for Medical Checkup of Old-Old to diagnose frailty. Geriatr. Gerontol. Int. 2022, 22, 811–812. [Google Scholar] [CrossRef] [PubMed]
- Satake, S.; Senda, K.; Hong, Y.J.; Miura, H.; Endo, H.; Sakurai, T.; Kondo, I.; Toba, K. Validity of the Kihon Checklist for assessing frailty status. Geriatr. Gerontol. Int. 2016, 16, 709–715. [Google Scholar] [CrossRef]
- Kanda, Y. Investigation of the freely available easy-to-use software “EZR” for medical statistics. Bone Marrow Transpl. 2013, 48, 452–458. [Google Scholar] [CrossRef]
- Tierney, N.; Cook, D.; McBain, M.; Fay, C.; O’Hara-Wild, M.; Hester, J.; Smith, L.; Heiss, A. Package “Naniar”. Available online: https://cran.r-project.org/web/packages/naniar/naniar.pdf (accessed on 27 September 2023).
- Little, T.D.; Jorgensen, T.D.; Lang, K.M.; Moore, E.W.G. On the joys of missing data. J. Pediatr. Psychol. 2014, 39, 151–162. [Google Scholar] [CrossRef]
- Van Buuren, S.; Groothuis-Oudshoorn, K. mice: Multivariate imputation by chained equations in R. J. Stat. Softw. 2011, 45, 1–67. [Google Scholar] [CrossRef]
- van Buuren, S.; Groothuis-Oudshoorn, K.; Vink, G.; Schouten, R.; Robitzsch, A.; Rockenschaub, P.; Doove, L.; Jolani, S.; Moreno-Betancur, M. Package “Mice”. Available online: https://cran.r-project.org/web/packages/mice/mice.pdf (accessed on 27 September 2023).
- Baddoo, T.D.; Li, Z.; Odai, S.N.; Boni, K.R.C.; Nooni, I.K.; Andam-Akorful, S.A. Comparison of missing data infilling mech-anisms for recovering a real-world single station streamflow observation. Int. J. Environ. Res. Public Health 2021, 18, 8375. [Google Scholar] [CrossRef] [PubMed]
- White, I.R.; Royston, P.; Wood, A.M. Multiple imputation using chained equations: Issues and guidance for practice. Stat. Med. 2011, 30, 377–399. [Google Scholar] [CrossRef] [PubMed]
- Harrell, F.E.; Lee, K.L.; Califf, R.M.; Pryor, D.B.; Rosati, R.A. Regression modelling strategies for improved prognostic prediction. Stat. Med. 1984, 3, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Harrell, F.E.; Lee, K.L.; Mark, D.B. Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat. Med. 1996, 15, 361–387. [Google Scholar] [CrossRef]
- Peduzzi, P.; Concato, J.; Kemper, E.; Holford, T.R.; Feinstein, A.R. A simulation study of the number of events per variable in logistic regression analysis. J. Clin. Epidemiol. 1996, 49, 1373–1379. [Google Scholar] [CrossRef] [PubMed]
- Chung, M.L.; Widdel, M.; Kirchhoff, J.; Sellin, J.; Jelali, M.; Geiser, F.; Mücke, M.; Conrad, R.; Conrad, R. Risk factors for pressure injuries in adult patients: A narrative synthesis. Int. J. Environ. Res. Public Health 2022, 19, 761. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.S.; Kim, C.G.; Yim, J.E.; Jeon, M.Y. Risk factors of repeated falls in the community dwelling old people. J. Exerc. Rehabil. 2019, 15, 275. [Google Scholar] [CrossRef] [PubMed]
- Murotani, Y.; Hatta, K.; Takahashi, T.; Gondo, Y.; Kamide, K.; Kabayama, M.; Masui, Y.; Ishizaki, T.; Matsuda, K.I.; Mihara, Y.; et al. Oral functions are associated with muscle strength and physical performance in old-old Japanese. Int. J. Environ. Res. Public Health 2021, 18, 13199. [Google Scholar] [CrossRef]
- Izuno, H.; Hori, K.; Sawada, M.; Fukuda, M.; Hatayama, C.; Ito, K.; Nomura, Y.; Inoue, M. Physical fitness and oral function in community dwelling older people: A pilot study. Gerodontology 2016, 33, 470–479. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, S.; Murayama, A.; Higuchi, D.; Saida, K.; Shinohara, T. Relationship between consistent subjective cognitive decline and occurrence of falls six months later. Arch. Gerontol. Geriatr. 2023, 104, 104841. [Google Scholar] [CrossRef] [PubMed]
- Porto, J.M.; Iosimuta, N.C.R.; Júnior, R.C.F.; Braghin, R.D.M.B.; Leitner, É.; Freitas, L.G.; de Abreu, D.C.C. Risk factors for future falls among community-dwelling older adults without a fall in the previous year: A prospective one-year longitudinal study. Arch. Gerontol. Geriatr. 2020, 91, 104161. [Google Scholar] [CrossRef] [PubMed]
- Montero-Odasso, M.; van der Velde, N.; Martin, F.C.; Petrovic, M.; Tan, M.P.; Ryg, J.; Aguilar-Navarro, S.; Alexander, N.B.; Becker, C.; Blain, H.; et al. Task Force on Global Guidelines for Falls in Older Adults: World guidelines for falls prevention and management for older adults: A global initiative. Age Ageing 2022, 51, afac205. [Google Scholar] [CrossRef]
- Sazlina, S.G.; Chan, Y.M.; Hamid, T.A.; Suzana, S.; Ajit Singh, D.K. Associations between falls and psychosocial factors, self-rated health, disability and sleep among community dwelling older people in Malaysia. J. Clin. Gerontol. Geriatr. 2018, 9, 85–90. [Google Scholar]
Overall | Fall Group | Non-Fall Group | p-Value | |
---|---|---|---|---|
(n = 434) | (n = 78) | (n = 356) | ||
Age, years, median (interquartile range) | 80 | 81 | 79 | 0.130 |
(75–84) | (75–85) | (75–84) | ||
Sex (female), n (%) | 339 (78.1) | 60 (76.9) | 279 (78.4) | 0.764 |
Living with family (alone), n (%) | 339 (78.1) | 63 (80.8) | 276 (77.5) | 0.634 |
Multimorbidity (applicable), n (%) | 203 (46.8) | 41 (52.6) | 162 (45.5) | 0.263 |
Use of nursing care insurance system (Yes), n (%) | 82 (18.9) | 22 (28.2) | 60 (16.9) | 0.025 |
FSI (score), median (interquartile range) | 1 | 1 | 1 | <0.01 |
(0–2) | (1–2) | (0–2) | ||
QMCOO (score), median (interquartile range) | 2 | 3 | 2 | <0.0001 |
(1–4) | (2–5) | (1–3) |
FSI Sub-Items | Overall (n = 434) | Fall Group (n = 78) | Non-Fall Group (n = 356) | p-Value |
---|---|---|---|---|
Q1 (score: 1), n (%) | 37 (8.5) | 7 (9.0) | 30 (8.4) | 0.825 |
Q2 (score: 1), n (%) | 208 (47.9) | 48 (61.5) | 160 (44.9) | 0.008 |
Q3 (score: 1), n (%) | 119 (27.4) | 26 (33.3) | 293 (26.1) | 0.209 |
Q4 (score: 1), n (%) | 23 (5.30) | 6 (7.70) | 17 (4.80) | 0.275 |
Q5 (score: 1), n (%) | 69 (15.9) | 23 (29.5) | 46 (12.9) | <0.001 |
QMCOO Sub-Items | Overall (n = 434) | Fall Group (n = 78) | Non-Fall Group (n = 356) | p-Value |
---|---|---|---|---|
Q1 (score: 1), n (%) | 39 (9.0) | 16 (20.5) | 23 (6.5) | <0.001 |
Q2 (score: 1), n (%) | 55 (12.7) | 11 (14.1) | 44 (12.4) | 0.707 |
Q3 (score: 1), n (%) | 21 (4.8) | 5 (6.4) | 16 (4.5) | 0.558 |
Q4 (score: 1), n (%) | 129(29.7) | 29 (37.2) | 100 (28.1) | 0.132 |
Q5 (score: 1), n (%) | 94(21.7) | 28(35.9) | 66(18.5) | 0.001 |
Q6 (score: 1), n (%) | 37 (8.5) | 7 (9.0) | 30 (8.4) | 0.825 |
Q7 (score: 1), n (%) | 208 (47.9) | 48 (61.5) | 160 (44.9) | 0.008 |
Q8 (score: 1), n (%) | 103 (23.7) | 34 (43.6) | 69 (19.4) | <0.0001 |
Q9 (score: 1), n (%) | 119 (27.4) | 26 (33.3) | 93 (26.1) | 0.209 |
Q10 (score: 1), n (%) | 33 (7.6) | 16 (20.5) | 17 (4.8) | <0.0001 |
Q11 (score: 1), n (%) | 78 (18.0) | 20 (25.6) | 58 (16.3) | 0.071 |
Q12 (score: 1), n (%) | 60 (13.8) | 9 (11.5) | 51 (14.3) | 0.591 |
Q13 (score: 1), n (%) | 31(7.1) | 6 (7.7) | 25 (7.0) | 0.809 |
Q14 (score: 1), n (%) | 20(4.6) | 8(10.3) | 12(3.4) | 0.015 |
Q15 (score: 1), n (%) | 17(3.9) | 4(5.1) | 13(3.7) | 0.522 |
FSI Sub-Items | Odds Ratio | 95% Confidence Interval | p-Value |
---|---|---|---|
Q2 (score 1) | 1.42 | 0.82–2.46 | 0.210 |
Q5 (score 1) | 1.84 | 0.97–3.47 | 0.059 |
QMCOO Sub-Items | Partial Regression Coefficient | Odds Ratio | 95% Confidence Interval | p-Value |
---|---|---|---|---|
Q1 (score 1) | 1.85 | 0.80–4.26 | 0.146 | |
Q5 (score 1) | 0.666 | 1.95 | 1.08–3.51 | 0.026 |
Q7 (score 1) | 1.15 | 0.63–2.09 | 0.640 | |
Q8 (score 1) | 0.846 | 2.33 | 1.31–4.16 | 0.004 |
Q10 (score 1) | 1.303 | 3.68 | 1.59–8.51 | 0.002 |
Q14 (score 1) | 2.78 | 0.96–8.06 | 0.059 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murayama, A.; Higuchi, D.; Saida, K.; Tanaka, S.; Shinohara, T. Fall Risk Prediction for Community-Dwelling Older Adults: Analysis of Assessment Scale and Evaluation Items without Actual Measurement. Int. J. Environ. Res. Public Health 2024, 21, 224. https://doi.org/10.3390/ijerph21020224
Murayama A, Higuchi D, Saida K, Tanaka S, Shinohara T. Fall Risk Prediction for Community-Dwelling Older Adults: Analysis of Assessment Scale and Evaluation Items without Actual Measurement. International Journal of Environmental Research and Public Health. 2024; 21(2):224. https://doi.org/10.3390/ijerph21020224
Chicago/Turabian StyleMurayama, Akihiko, Daisuke Higuchi, Kosuke Saida, Shigeya Tanaka, and Tomoyuki Shinohara. 2024. "Fall Risk Prediction for Community-Dwelling Older Adults: Analysis of Assessment Scale and Evaluation Items without Actual Measurement" International Journal of Environmental Research and Public Health 21, no. 2: 224. https://doi.org/10.3390/ijerph21020224
APA StyleMurayama, A., Higuchi, D., Saida, K., Tanaka, S., & Shinohara, T. (2024). Fall Risk Prediction for Community-Dwelling Older Adults: Analysis of Assessment Scale and Evaluation Items without Actual Measurement. International Journal of Environmental Research and Public Health, 21(2), 224. https://doi.org/10.3390/ijerph21020224