Safety and Efficacy of Pulmonary Rehabilitation for Long COVID Patients Experiencing Long-Lasting Symptoms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Pulmonary Rehabilitation Program
2.3. Procedures and Data Collection
2.3.1. Clinical Data
2.3.2. Safety Data
2.3.3. Efficacy Data
2.4. Statistical Analyses
3. Results
3.1. Population Characteristics at Baseline
3.2. Safety of a PR Program for Long COVID Patients
3.3. Efficacy of the PR Program on the Study Outcomes
4. Discussion
Methodological Considerations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Soriano, J.B.; Murthy, S.; Marshall, J.C.; Relan, P.; Diaz, J.V. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect. Dis. 2022, 22, e102–e107. [Google Scholar] [CrossRef]
- Santé Publique France. L’affection post-COVID-19 (appelée aussi COVID long) en France. In Résultats de L’enquête Affection Post-COVID; 22 Mars–8 Avril 2022; Santé Publique France: Saint-Maurice, France, 2022. [Google Scholar]
- Office for National Statistics. Prevalence of Ongoing Symptoms Following Coronavirus (COVID-19) Infection in the UK 5 January 2023; Statistical Bulletin; Office for National Statistics: Newport, UK, 2023.
- National Center for Health Statistics; U.S. Census Bureau. Long COVID. Household Pulse Survey, 2022–2023. Available online: https://www.cdc.gov/nchs/covid19/pulse/long-covid.htm (accessed on 30 January 2023).
- Carod-Artal, F.J. Post-COVID-19 syndrome: Epidemiology, diagnostic criteria and pathogenic mechanisms involved. Rev. Neurol. 2021, 72, 384–396. [Google Scholar] [CrossRef] [PubMed]
- Michelen, M.; Manoharan, L.; Elkheir, N.; Cheng, V.; Dagens, A.; Hastie, C.; O’Hara, M.; Suett, J.; Dahmash, D.; Bugaeva, P.; et al. Characterising long COVID: A living systematic review. BMJ Glob. Health 2021, 6, e005427. [Google Scholar] [CrossRef]
- Swank, Z.; Senussi, Y.; Manickas-Hill, Z.; Yu, X.G.; Li, J.Z.; Alter, G.; Walt, D.R. Persistent circulating severe acute respiratory syndrome coronavirus 2 spike is associated with post-acute coronavirus disease 2019 sequelae. Clin. Infect. Dis. 2023, 76, e487–e490. [Google Scholar] [CrossRef]
- Kenny, G.; Townsend, L.; Savinelli, S.; Mallon, P.W. Long COVID: Clinical characteristics, proposed pathogenesis and potential therapeutic targets. Front. Mol. Biosci. 2023, 10, 1157651. [Google Scholar] [CrossRef]
- Castanares-Zapatero, D.; Chalon, P.; Kohn, L.; Dauvrin, M.; Detollenaere, J.; Maertens de Noordhout, C.; Primus-de Jong, C.; Cleemput, I.; Van den Heede, K. Pathophysiology and mechanism of long COVID: A comprehensive review. Ann. Med. 2022, 54, 1473–1487. [Google Scholar] [CrossRef]
- Iwasaki, A.; Putrino, D. Why we need a deeper understanding of the pathophysiology of long COVID. Lancet Infect. Dis. 2023, 23, 393–395. [Google Scholar] [CrossRef]
- Davis, H.E.; McCorkell, L.; Vogel, J.M.; Topol, E.J. Long COVID: Major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 2023, 21, 133–146. [Google Scholar] [CrossRef]
- Subramanian, A.; Nirantharakumar, K.; Hughes, S.; Myles, P.; Williams, T.; Gokhale, K.M.; Taverner, T.; Chandan, J.S.; Brown, K.; Simms-Williams, N.; et al. Symptoms and risk factors for long COVID in non-hospitalized adults. Nat. Med. 2022, 28, 1706–1714. [Google Scholar] [CrossRef]
- Tran, V.T.; Porcher, R.; Pane, I.; Ravaud, P. Course of post COVID-19 disease symptoms over time in the ComPaRe long COVID prospective e-cohort. Nat. Commun. 2022, 13, 1812. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Jiang, H.; Xie, Y.; Zhang, T.; Liu, S.; Wu, S.; Sun, Q.; Song, S.; Wang, W.; Deng, X.; et al. Long-term clinical prognosis of human infections with avian influenza A(H7N9) viruses in China after hospitalization. EClinicalMedicine 2020, 20, 100282. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wu, J.; Hao, S.; Yang, M.; Lu, X.; Chen, X.; Li, L. Long term outcomes in survivors of epidemic Influenza A (H7N9) virus infection. Sci. Rep. 2017, 7, 17275. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, H.; Patel, K.; Greenwood, D.C.; Halpin, S.; Lewthwaite, P.; Salawu, A.; Eyre, L.; Breen, A.; O’Connor, R.; Jones, A.; et al. Long-term clinical outcomes in survivors of severe acute respiratory syndrome and Middle East respiratory syndrome coronavirus outbreaks after hospitalisation or ICU admission: A systematic review and meta-analysis. J. Rehabil. Med. 2020, 52, jrm00063. [Google Scholar] [CrossRef] [PubMed]
- Lam, M.H.; Wing, Y.K.; Yu, M.W.; Leung, C.M.; Ma, R.C.; Kong, A.P.; So, W.Y.; Fong, S.Y.; Lam, S.P. Mental morbidities and chronic fatigue in severe acute respiratory syndrome survivors: Long-term follow-up. Arch. Intern. Med. 2009, 169, 2142–2147. [Google Scholar] [CrossRef] [PubMed]
- Lau, H.M.; Ng, G.Y.; Jones, A.Y.; Lee, E.W.; Siu, E.H.; Hui, D.S. A randomised controlled trial of the effectiveness of an exercise training program in patients recovering from severe acute respiratory syndrome. Aust. J. Physiother. 2005, 51, 213–219. [Google Scholar] [CrossRef]
- Wise, J. Long COVID: WHO calls on countries to offer patients more rehabilitation. BMJ 2021, 372, n405. [Google Scholar] [CrossRef] [PubMed]
- Van Herck, M.; Antons, J.; Vercoulen, J.H.; Goertz, Y.M.J.; Ebadi, Z.; Burtin, C.; Janssen, D.J.A.; Thong, M.S.Y.; Otker, J.; Coors, A.; et al. Pulmonary Rehabilitation Reduces Subjective Fatigue in COPD: A Responder Analysis. J. Clin. Med. 2019, 8, 1264. [Google Scholar] [CrossRef]
- Ries, A.; California Pulmonary Rehabilitation Collaborative Group. Effects of pulmonary rehabilitation on dyspnea, quality of life, and healthcare costs in California. J. Cardiopulm. Rehabil. 2004, 24, 52–62. [Google Scholar] [CrossRef]
- Manal, M.F.I.; Tawfek, N.R.; Gamal, L.M.; Abdelbaky, M.M. Effect of Rehabilitation Protocol on Dyspnea and Fatigue for Patients with Chronic Obstructive Pulmonary Disease. Minia Sci. Nurs. J. 2018, 4, 104–114. [Google Scholar] [CrossRef]
- Aiyegbusi, O.L.; Hughes, S.E.; Turner, G.; Rivera, S.C.; McMullan, C.; Chandan, J.S.; Haroon, S.; Price, G.; Davies, E.H.; Nirantharakumar, K.; et al. Symptoms, complications and management of long COVID: A review. J. R. Soc. Med. 2021, 114, 428–442. [Google Scholar] [CrossRef]
- Gloeckl, R.; Leitl, D.; Jarosch, I.; Schneeberger, T.; Nell, C.; Stenzel, N.; Vogelmeier, C.F.; Kenn, K.; Koczulla, A.R. Benefits of pulmonary rehabilitation in COVID-19: A prospective observational cohort study. ERJ Open Res. 2021, 7, 00108. [Google Scholar] [CrossRef] [PubMed]
- Nopp, S.; Moik, F.; Klok, F.A.; Gattinger, D.; Petrovic, M.; Vonbank, K.; Koczulla, A.R.; Ay, C.; Zwick, R.H. Outpatient Pulmonary Rehabilitation in Patients with Long COVID Improves Exercise Capacity, Functional Status, Dyspnea, Fatigue, and Quality of Life. Respiration 2022, 101, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Tamburlani, M.; Cuscito, R.; Servadio, A.; Galeoto, G. Effectiveness of Respiratory Rehabilitation in COVID-19’s Post-Acute Phase: A Systematic Review. Healthcare 2023, 11, 1071. [Google Scholar] [CrossRef] [PubMed]
- Vaes, A.W.; Goertz, Y.M.J.; Van Herck, M.; Machado, F.V.C.; Meys, R.; Delbressine, J.M.; Houben-Wilke, S.; Gaffron, S.; Maier, D.; Burtin, C.; et al. Recovery from COVID-19: A sprint or marathon? 6-month follow-up data from online long COVID-19 support group members. ERJ Open Res. 2021, 7, 00141. [Google Scholar] [CrossRef] [PubMed]
- Vink, M.; Vink-Niese, F. Is It Useful to Question the Recovery Behaviour of Patients with ME/CFS or Long COVID? Healthcare 2022, 10, 392. [Google Scholar] [CrossRef] [PubMed]
- Spruit, M.A.; Singh, S.J.; Garvey, C.; ZuWallack, R.; Nici, L.; Rochester, C.; Hill, K.; Holland, A.E.; Lareau, S.C.; Man, W.D.; et al. An official American Thoracic Society/European Respiratory Society statement: Key concepts and advances in pulmonary rehabilitation. Am. J. Respir. Crit. Care Med. 2013, 188, e13–e64. [Google Scholar] [CrossRef]
- Bove, A.M.; Lynch, A.D.; DePaul, S.M.; Terhorst, L.; Irrgang, J.J.; Fitzgerald, G.K. Test-Retest Reliability of Rating of Perceived Exertion and Agreement With 1-Repetition Maximum in Adults. J. Orthop. Sports Phys. Ther. 2016, 46, 768–774. [Google Scholar] [CrossRef]
- Hall, G.L.; Filipow, N.; Ruppel, G.; Okitika, T.; Thompson, B.; Kirkby, J.; Steenbruggen, I.; Cooper, B.G.; Stanojevic, S. Official ERS technical standard: Global Lung Function Initiative reference values for static lung volumes in individuals of European ancestry. Eur. Respir. J. 2021, 57, 2000289. [Google Scholar] [CrossRef]
- Quanjer, P.H.; Stanojevic, S.; Cole, T.J.; Baur, X.; Hall, G.L.; Culver, B.H.; Enright, P.L.; Hankinson, J.L.; Ip, M.S.; Zheng, J.; et al. Multi-ethnic reference values for spirometry for the 3-95-yr age range: The global lung function 2012 equations. Eur. Respir. J. 2012, 40, 1324–1343. [Google Scholar] [CrossRef]
- Swanney, M.P.; Miller, M.R. Adopting universal lung function reference equations. Eur. Respir. J. 2013, 42, 901–903. [Google Scholar] [CrossRef]
- Boutou, A.K.; Asimakos, A.; Kortianou, E.; Vogiatzis, I.; Tzouvelekis, A. Long COVID-19 Pulmonary Sequelae and Management Considerations. J. Pers. Med. 2021, 11, 838. [Google Scholar] [CrossRef]
- Yorke, J.; Swigris, J.; Russell, A.-M.; Moosavi, S.H.; Kwong, G.N.M.; Longshaw, M.; Jones, P.W. Dyspnea-12 is a valid and reliable measure of breathlessness in patients with interstitial lung disease. Chest 2011, 139, 159–164. [Google Scholar] [CrossRef]
- Beaumont, M.; Couturaud, F.; Jego, F.; Pichon, R.; Le Ber, C.; Peran, L.; Roge, C.; Renault, D.; Narayan, S.; Reychler, G. Validation of the French version of the London Chest Activity of Daily Living scale and the Dyspnea-12 questionnaire. Int. J. Chron. Obstruct. Pulmon. Dis. 2018, 13, 1399–1405. [Google Scholar] [CrossRef]
- Mahler, D.A.; Wells, C.K. Evaluation of Clinical Methods for Rating Dyspnea. Chest 1988, 93, 580–586. [Google Scholar] [CrossRef]
- Gentile, S.; Delarozière, J.; Favre, F.; Sambuc, R.; San Marco, J. Validation of the French ‘multidimensional fatigue inventory’(MFI 20). Eur. J. Cancer Care 2003, 12, 58–64. [Google Scholar] [CrossRef]
- Smets, E.; Garssen, B.; Bonke, B.d.; De Haes, J. The Multidimensional Fatigue Inventory (MFI) psychometric qualities of an instrument to assess fatigue. J. Psychosom. Res. 1995, 39, 315–325. [Google Scholar] [CrossRef] [PubMed]
- Lépine, J.; Godchau, M.; Brun, P.; Lempérière, T. Évaluation de l’anxiété et de la dépression chez des patients hospitalisés dans un service de médecine interne. Ann Med Psychol 1985, 143, 175–189. [Google Scholar]
- Lépine, J.P.; Godchau, M.; Brun, P. Anxiety and depression in inpatients. Lancet 1985, 2, 1425–1426. [Google Scholar] [CrossRef] [PubMed]
- Zigmond, A.S.; Snaith, R.P. The hospital anxiety and depression scale. Acta Psychiatr. Scand. 1983, 67, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Weathers, F.W.; Litz, B.T.; Herman, D.S.; Huska, J.A.; Keane, T.M. The PTSD Checklist (PCL): Reliability, validity, and diagnostic utility. In Proceedings of the Annual Convention of the International Society for Traumatic Stress Studies, San Antonio, TX, USA, 24–27 October 1993. [Google Scholar]
- Yao, S.-N.; Cottraux, J.; Note, I.; Mey-Guillard, D.; Mollard, E.; Ventureyra, V. Évaluation des états de stress post-traumatique: Validation d’une échelle, la PCLS. L’Encéphale Rev. De Psychiatr. Clin. Biol. Et Thérapeutique 2003, 29, 232–238. [Google Scholar]
- van Dixhoorn, J.; Duivenvoorden, H.J. Efficacy of Nijmegen Questionnaire in recognition of the hyperventilation syndrome. J. Psychosom. Res. 1985, 29, 199–206. [Google Scholar] [CrossRef]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef]
- Ware Jr, J.E.; Kosinski, M.; Keller, S.D. A 12-Item Short-Form Health Survey: Construction of scales and preliminary tests of reliability and validity. Med. Care 1996, 34, 220–233. [Google Scholar] [CrossRef] [PubMed]
- Bachasson, D.; Villiot-Danger, E.; Verges, S.; Hayot, M.; Perez, T.; Chambellan, A.; Wuyam, B. [Maximal isometric voluntary quadriceps strength assessment in COPD]. Rev. Mal. Respir. 2014, 31, 765–770. [Google Scholar] [CrossRef] [PubMed]
- Clement, N.D.; Weir, D.; Holland, J.; Gerrand, C.; Deehan, D.J. Meaningful changes in the Short Form 12 physical and mental summary scores after total knee arthroplasty. Knee 2019, 26, 861–868. [Google Scholar] [CrossRef] [PubMed]
- Rouquette, A.; Blanchin, M.; Sébille, V.; Guillemin, F.; Côté, S.M.; Falissard, B.; Hardouin, J.B. The minimal clinically important difference determined using item response theory models: An attempt to solve the issue of the association with baseline score. J. Clin. Epidemiol. 2014, 67, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Quinten, C.; Kenis, C.; Decoster, L.; Debruyne, P.R.; De Groof, I.; Focan, C.; Cornelis, F.; Verschaeve, V.; Bachmann, C.; Bron, D.; et al. Determining clinically important differences in health-related quality of life in older patients with cancer undergoing chemotherapy or surgery. Qual. Life Res. 2019, 28, 663–676. [Google Scholar] [CrossRef] [PubMed]
- Cheung, Y.T.; Foo, Y.L.; Shwe, M.; Tan, Y.P.; Fan, G.; Yong, W.S.; Madhukumar, P.; Ooi, W.S.; Chay, W.Y.; Dent, R.A.; et al. Minimal clinically important difference (MCID) for the functional assessment of cancer therapy: Cognitive function (FACT-Cog) in breast cancer patients. J. Clin. Epidemiol. 2014, 67, 811–820. [Google Scholar] [CrossRef]
- van Veen, R.; Wieske, L.; Lucke, I.; Adrichem, M.E.; Merkies, I.S.J.; van Schaik, I.N.; Eftimov, F. Assessing deterioration using impairment and functional outcome measures in chronic inflammatory demyelinating polyneuropathy: A post-hoc analysis of the immunoglobulin overtreatment in CIDP trial. J. Peripher. Nerv. Syst. 2022, 27, 144–158. [Google Scholar] [CrossRef]
- Raman, S.; Ding, K.; Chow, E.; Meyer, R.M.; van der Linden, Y.M.; Roos, D.; Hartsell, W.F.; Hoskin, P.; Wu, J.S.Y.; Nabid, A.; et al. Minimal clinically important differences in the EORTC QLQ-C30 and brief pain inventory in patients undergoing re-irradiation for painful bone metastases. Qual. Life Res. 2018, 27, 1089–1098. [Google Scholar] [CrossRef]
- Polkey, M.I.; Spruit, M.A.; Edwards, L.D.; Watkins, M.L.; Pinto-Plata, V.; Vestbo, J.; Calverley, P.M.; Tal-Singer, R.; Agusti, A.; Bakke, P.S.; et al. Six-minute-walk test in chronic obstructive pulmonary disease: Minimal clinically important difference for death or hospitalization. Am. J. Respir. Crit. Care Med. 2013, 187, 382–386. [Google Scholar] [CrossRef] [PubMed]
- Kean, C.O.; Birmingham, T.B.; Garland, S.J.; Bryant, D.M.; Giffin, J.R. Minimal Detectable Change in Quadriceps Strength and Voluntary Muscle Activation in Patients with Knee Osteoarthritis. Arch. Phys. Med. Rehabil. 2010, 91, 1447–1451. [Google Scholar] [CrossRef] [PubMed]
- Elbers, R.G.; van Wegen, E.E.H.; Verhoef, J.; Kwakkel, G. Reliability and structural validity of the Multidimensional Fatigue Inventory (MFI) in patients with idiopathic Parkinson’s disease. Park. Relat. Disord. 2012, 18, 532–536. [Google Scholar] [CrossRef] [PubMed]
- Ekstrom, M.P.; Bornefalk, H.; Skold, C.M.; Janson, C.; Blomberg, A.; Bornefalk-Hermansson, A.; Igelstrom, H.; Sandberg, J.; Sundh, J. Minimal Clinically Important Differences and Feasibility of Dyspnea-12 and the Multidimensional Dyspnea Profile in Cardiorespiratory Disease. J. Pain Symptom Manag. 2020, 60, 968–975.E1. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.; Machado, A.; Marques, A. Minimal Important and Detectable Differences of Respiratory Measures in Outpatients with AECOPD(†). Copd 2018, 15, 479–488. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Chair, S.Y.; Thompson, D.R.; Twinn, S.F. A psychometric evaluation of the Chinese version of the Hospital Anxiety and Depression Scale in patients with coronary heart disease. J. Clin. Nurs. 2009, 18, 1908–1915. [Google Scholar] [CrossRef]
- Rehabilitation Institute of Chicago. Hospital Anxiety and Depression Scale. Available online: https://www.sralab.org/rehabilitation-measures/hospital-anxiety-and-depression-scale (accessed on 19 June 2023).
- Feeney, J.; Savva, G.M.; O’Regan, C.; King-Kallimanis, B.; Cronin, H.; Kenny, R.A. Measurement Error, Reliability, and Minimum Detectable Change in the Mini-Mental State Examination, Montreal Cognitive Assessment, and Color Trails Test among Community Living Middle-Aged and Older Adults. J. Alzheimer’s Dis. 2016, 53, 1107–1114. [Google Scholar] [CrossRef]
- Souto-Miranda, S.; Rocha, V.; Mendes, M.A.; Simao, P.; Martins, V.; Spruit, M.A.; Marques, A. The presence of extra-pulmonary treatable traits increases the likelihood of responding to pulmonary rehabilitation. Respir. Med. 2023, 206, 107086. [Google Scholar] [CrossRef]
- Troosters, T.; Gosselink, R.; Decramer, M. Six minute walking distance in healthy elderly subjects. Eur. Respir. J. 1999, 14, 270–274. [Google Scholar] [CrossRef]
- Holland, A.E.; Nici, L. The return of the minimum clinically important difference for 6-minute-walk distance in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2013, 187, 335–336. [Google Scholar] [CrossRef]
- Alexandre, F.; Heraud, N.; Tremey, E.; Oliver, N.; Bourgouin, D.; Varray, A. Specific motor cortex hypoexcitability and hypoactivation in COPD patients with peripheral muscle weakness. BMC Pulm. Med. 2020, 20, 1–13. [Google Scholar] [CrossRef]
- Vaidya, T.; Beaumont, M.; de Bisschop, C.; Bazerque, L.; Le Blanc, C.; Vincent, A.; Ouksel, H.; Chambellan, A. Determining the minimally important difference in quadriceps strength in individuals with COPD using a fixed dynamometer. Int. J. Chron. Obstruct. Pulmon. Dis. 2018, 13, 2685–2693. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.W.; Brusselle, G.; Dal Negro, R.W.; Ferrer, M.; Kardos, P.; Levy, M.L.; Perez, T.; Soler-Cataluna, J.J.; van der Molen, T.; Adamek, L.; et al. Health-related quality of life in patients by COPD severity within primary care in Europe. Respir. Med. 2011, 105, 57–66. [Google Scholar] [CrossRef]
- Lopes, J.; Araújo, H.A.G.D.O.; Smaili, S.M. Brazilian version of the Multidimensional Fatigue Inventory for Parkinson’s disease. Fisioter. Mov. 2020, 33, e003362. [Google Scholar] [CrossRef]
- Goligher, E.C.; Pouchot, J.; Brant, R.; Kherani, R.B.; Aviña-Zubieta, J.A.; Lacaille, D.; Lehman, A.J.; Ensworth, S.; Kopec, J.; Esdaile, J.M.; et al. Minimal clinically important difference for 7 measures of fatigue in patients with systemic lupus erythematosus. J. Rheumatol. 2008, 35, 635–642. [Google Scholar] [PubMed]
- Nordin, A.; Taft, C.; Lundgren-Nilsson, A.; Dencker, A. Minimal important differences for fatigue patient reported outcome measures-a systematic review. BMC Med. Res. Methodol. 2016, 16, 62. [Google Scholar] [CrossRef]
- Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global Strategy for Prevention, Diagnosis and Management of Chronic Obstructive Pulmonary Disease 2022 Report; Global Initiative for Chronic Obstructive Lung Disease: Deer Park, IL, USA, 2022. [Google Scholar]
- de Torres, J.P.; Pinto-Plata, V.; Ingenito, E.; Bagley, P.; Gray, A.; Berger, R.; Celli, B. Power of Outcome Measurements to Detect Clinically Significant Changes in Pulmonary Rehabilitation of Patients With COPD. Chest 2002, 121, 1092–1098. [Google Scholar] [CrossRef]
- Bjelland, I.; Dahl, A.A.; Haug, T.T.; Neckelmann, D. The validity of the Hospital Anxiety and Depression Scale: An updated literature review. J. Psychosom. Res. 2002, 52, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Smid, D.E.; Franssen, F.M.; Houben-Wilke, S.; Vanfleteren, L.E.; Janssen, D.J.; Wouters, E.F.; Spruit, M.A. Responsiveness and MCID Estimates for CAT, CCQ, and HADS in Patients with COPD Undergoing Pulmonary Rehabilitation: A Prospective Analysis. J. Am. Med. Dir. Assoc. 2017, 18, 53–58. [Google Scholar] [CrossRef]
- Ventureyra, V.A.; Yao, S.N.; Cottraux, J.; Note, I.; De Mey-Guillard, C. The validation of the Posttraumatic Stress Disorder Checklist Scale in posttraumatic stress disorder and nonclinical subjects. Psychother. Psychosom. 2002, 71, 47–53. [Google Scholar] [CrossRef]
- Stefanovics, E.A.; Rosenheck, R.A.; Jones, K.M.; Huang, G.; Krystal, J.H. Minimal Clinically Important Differences (MCID) in Assessing Outcomes of Post-Traumatic Stress Disorder. Psychiatr. Q. 2018, 89, 141–155. [Google Scholar] [CrossRef]
- Wong, G.K.C.; Mak, J.S.Y.; Wong, A.; Zheng, V.Z.Y.; Poon, W.S.; Abrigo, J.; Mok, V.C.T. Minimum Clinically Important Difference of Montreal Cognitive Assessment in aneurysmal subarachnoid hemorrhage patients. J. Clin. Neurosci. 2017, 46, 41–44. [Google Scholar] [CrossRef]
- Han, Q.; Zheng, B.; Daines, L.; Sheikh, A. Long-Term Sequelae of COVID-19: A Systematic Review and Meta-Analysis of One-Year Follow-Up Studies on Post-COVID Symptoms. Pathogens 2022, 11, 269. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Leon, S.; Wegman-Ostrosky, T.; Perelman, C.; Sepulveda, R.; Rebolledo, P.A.; Cuapio, A.; Villapol, S. More than 50 long-term effects of COVID-19: A systematic review and meta-analysis. Sci. Rep. 2021, 11, 16144. [Google Scholar] [CrossRef] [PubMed]
- Davis, H.E.; Assaf, G.S.; McCorkell, L.; Wei, H.; Low, R.J.; Re’em, Y.; Redfield, S.; Austin, J.P.; Akrami, A. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. EClinicalMedicine 2021, 38, 101019. [Google Scholar] [CrossRef] [PubMed]
- Twomey, R.; DeMars, J.; Franklin, K.; Culos-Reed, S.N.; Weatherald, J.; Wrightson, J.G. Chronic Fatigue and Postexertional Malaise in People Living with Long COVID: An Observational Study. Phys. Ther. 2022, 102, pzac005. [Google Scholar] [CrossRef] [PubMed]
- Desachy, M.; Alexandre, F.; Varray, A.; Molinier, V.; Four, E.; Charbonnel, L.; Héraud, N. High Prevalence of Non-Responders Based on Quadriceps Force after Pulmonary Rehabilitation in COPD. J. Clin. Med. 2023, 12, 4353. [Google Scholar] [CrossRef]
- Garrod, R.; Marshall, J.; Barley, E.; Jones, P.W. Predictors of success and failure in pulmonary rehabilitation. Eur. Respir. J. 2006, 27, 788–794. [Google Scholar] [CrossRef] [PubMed]
- Scott, A.S.; Baltzan, M.A.; Fox, J.; Wolkove, N. Success in pulmonary rehabilitation in patients with chronic obstructive pulmonary disease. Can. Respir. J. 2010, 17, 219–223. [Google Scholar] [CrossRef]
- Spruit, M.A.; Augustin, I.M.L.; Vanfleteren, L.E.; Janssen, D.J.A.; Gaffron, S.; Pennings, H.-J.; Smeenk, F.; Pieters, W.; van den Bergh, J.J.; Michels, A.-J.; et al. Differential response to pulmonary rehabilitation in COPD: Multidimensional profiling. Eur. Respir. J. 2015, 46, 1625–1635. [Google Scholar] [CrossRef]
- Hernandes, N.A.; Wouters, E.F.; Meijer, K.; Annegarn, J.; Pitta, F.; Spruit, M.A. Reproducibility of 6-minute walking test in patients with COPD. Eur. Respir. J. 2011, 38, 261–267. [Google Scholar] [CrossRef] [PubMed]
Indicators | Worsening MCIDs/MDCs (Deteriorated) |
---|---|
Exercise tolerance (6MWD) | −30 m * [55] |
Muscle strength (QMVC) | −25.02 Nm [56] |
Quality of life (SF-12) physical | −8.9 units [49] |
Quality of life (SF-12) mental | −13.8 units [49] |
Fatigue (MFI-20) Total score | +15 units [57] |
Dyspnea physical-affective (D-12) | +2.3 units [58] |
Dyspnea impact (mMRC) | +1.2 units [59] |
Hyperventilation (NQ) | NA |
Anxiety (HADS-A) | +3.8 units [60,61] |
Depression (HADS-D) | +3.99 units [60,61] |
Posttraumatic stress disorder (PCLS) | NA |
Cognition (MoCA) | 4.21 units [62] |
Indicators | Cut-Off Scores | MCIDs (Responders) |
---|---|---|
Exercise tolerance (6MWD) | Intolerance if <82% of theoretical [64] | + 35 m [65] |
Muscle Strength (QMVC) | Weakness if <80% of theoretical [66] | + 7.5 Nm [67] |
QoL (SF-12) physical | Altered if <50 units [47] | + 3 units [68] |
QoL (SF-12) mental | Altered if <42 units [47] | + 3.5 units [68] |
Fatigue (MFI-20) Total score | >55 units [69] | −14.3 units [70,71] |
Dyspnea physical-affective (D-12) | NA | −3 units [58] |
Dyspnea impact (mMRC) | ≥2 units [72] | −1 unit [73] |
Hyperventilation (NQ) | >23 units [45] | NA |
Anxiety (HADS-A) | ≥8 units [74] | −2 units [75] |
Depression (HADS-D) | ≥8 units [74] | −1.8 units [75] |
Posttraumatic stress disorder (PCLS) | ≥44 units [76] | −7.9 units [77] |
Cognition (MoCA) | <26 units [46] | +2 units [78] |
Mean (Standard Deviation)/Median [LQ to UQ] | |
---|---|
Baseline characteristics | |
Patients | n = 47 |
Age (years) | 51 (12.6) |
Female sex, n (%) | 29 (62) |
BMI (kg.m−2) | 29.43 (6.88) |
Number of comorbidities per patient | None (n = 13); 1 (n = 12); 2 (n = 8); 3 (n = 7); 4 (n = 5); 5 (n = 1); 6 (n = 1) |
Main type of comorbidities | Respiratory (n = 18); cardiovascular (n = 14); metabolic (n = 13) |
Respiratory parameters at T1 (pre-PR) | |
FEV1 (L) | 2.84 (0.78) |
FEV1 (% predicted) | 98.50 (23.34) |
PaO2 (mmHg); n = 33 | 75.69 (17.62) |
PaCO2 (mmHg); n = 33 | 36.84 (4.23) |
FEV1/FVC | 0.80 (0.12) |
TLC (L); n = 46 | 6.24 (1.44) |
TLC (% predicted); n = 45 | 112.27 (20.37) |
Acute COVID-19 characteristics | |
Diagnostic | PCR (n = 34); serology (n = 5); clinical diagnosis (n = 5); chest scan (n = 2); X-ray (n = 1) |
Initial severity of acute COVID | Home care (n = 33), Hospitalization (n = 12); ICU (n = 2) |
Delay between first symptoms and PR | 13 months [7 to 16] |
Self-reported long COVID symptoms | |
Related to lung disease * | Dyspnea (n = 43); Chest pains (n = 20); Cough (n = 14); Sore throat (n = 5) |
Cardiovascular * | Palpitations (n = 10) |
Neurological * | Difficulty in concentrating and remembering (n = 25); Headache (n = 20); Sleep disorder (n = 14); Anxiety (n = 14); Irritability (n = 7); Loss of appetite (n = 5); Anosmia (n = 1); Depression (n = 1) |
Physical * | Fatigue (n = 36); Feeling of muscle weakness (n = 21); Musculoskeletal pain (n = 19); Paraesthesia (n = 10); Itching (n = 8); Burning sensation (n = 7); Diarrhoea and vomiting (n = 4); Abdominal pain (n = 3); Regular chills (n = 3); Dysphonia (n = 4); Dizziness (n = 3); Eyesight problems (n = 2) |
Most disabling symptom | Dyspnea (n = 21); Fatigue (n = 16); Musculoskeletal pain (n = 4); Chest pain (n = 2); Anxiety (n = 1); Post-exercise malaise (n = 1); Difficulty concentrating and remembering (n = 1); none (n = 1). |
T1 (Pre-PR) | T2 (Post-PR) | Change | p-Value | |
---|---|---|---|---|
Exercise performance | ||||
Exercise tolerance (6MWD—m) n = 44 | 519 (116) | 589 (124) | 61 [28 to 103] | p < 0.001 |
Muscle strength (QMVC—Nm) n = 26 | 90 (36) | 96 (31) | 6 [−1 to 12] | p = 0.10 NS |
Muscle strength (% predicted) n = 26 | 72 (23) | 77 (22) | 5 [−1 to 11] | p = 0.07 NS |
Health-related quality of life (SF-12) | ||||
Mental dimensions n = 38 | 40 (10) | 50 (8) | 10 [6 to 13] | p < 0.001 |
Physical dimensions n = 38 | 33 (11) | 42 (9) | 9 [6 to 12] | p < 0.001 |
Respiratory and physical outcomes | ||||
Fatigue (MFI-20) n = 38 | 70 [64 to 77] | 48 [39 to 57] | −19 [−28 to −8] | p < 0.001 |
Dyspnea physical-affective (D-12) n = 38 | 17 [12 to 20] | 9 [4 to 12] | −7 [−9 to −2] | p < 0.001 |
Dyspnea impact (mMRC) n = 25 | 1 [1 to 2] | 1 [1 to 1] | −1 [−1 to 0] | p < 0.01 |
Hyperventilation (Nijmegen) n = 34 | 28 (12) | 20 (10) | −8 [−11 to −5] | p < 0.001 |
Psychological and cognitive outcomes | ||||
Anxiety (HADS-A) n = 25 | 10 (4) | 6 (4) | −4 [−5 to −2] | p < 0.001 |
Depression (HADS-D) n = 25 | 8 (4) | 6 (4) | −2 [−4 to −1] | p < 0.001 |
Posttraumatic stress disorder (PCLS) n = 31 | 41 (12) | 33 (11) | −8 [−12 to −4] | p < 0.001 |
Cognition (MoCA) n = 32 | 27 [25 to 28] | 28 [27 to 29] | 1 [0 to 3] | p < 0.01 |
Outcomes | Delay between 1st Symptoms and PR Initiation |
---|---|
Exercise tolerance (6MWD) | −0.19 ns |
Muscle strength (QMVC) | −0.11 ns |
Physical quality of life (SF-12 PCS) | 0.03 ns |
Mental quality of life (SF-12 MCS) | 0.12 ns |
Fatigue (MFI-20) | 0.27 ns |
Dyspnea sensory-affective (D-12) | 0.07 ns |
Dyspnea impact (mMRC) | −0.04 ns |
Hyperventilation (NQ) | 0.02 ns |
Anxiety (HADS-A) | −0.11 ns |
Depression (HADS-D) | 0.20 ns |
Posttraumatic stress disorder (PCLS) | 0.09 ns |
Cognition (MoCA) | −0.08 ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moine, E.; Molinier, V.; Castanyer, A.; Calvat, A.; Coste, G.; Vernet, A.; Faugé, A.; Magrina, P.; Aliaga-Parera, J.L.; Oliver, N.; et al. Safety and Efficacy of Pulmonary Rehabilitation for Long COVID Patients Experiencing Long-Lasting Symptoms. Int. J. Environ. Res. Public Health 2024, 21, 242. https://doi.org/10.3390/ijerph21020242
Moine E, Molinier V, Castanyer A, Calvat A, Coste G, Vernet A, Faugé A, Magrina P, Aliaga-Parera JL, Oliver N, et al. Safety and Efficacy of Pulmonary Rehabilitation for Long COVID Patients Experiencing Long-Lasting Symptoms. International Journal of Environmental Research and Public Health. 2024; 21(2):242. https://doi.org/10.3390/ijerph21020242
Chicago/Turabian StyleMoine, Espérance, Virginie Molinier, Adriana Castanyer, Amandine Calvat, Guillaume Coste, Antonin Vernet, Audrey Faugé, Perrine Magrina, Joan Lluis Aliaga-Parera, Nicolas Oliver, and et al. 2024. "Safety and Efficacy of Pulmonary Rehabilitation for Long COVID Patients Experiencing Long-Lasting Symptoms" International Journal of Environmental Research and Public Health 21, no. 2: 242. https://doi.org/10.3390/ijerph21020242
APA StyleMoine, E., Molinier, V., Castanyer, A., Calvat, A., Coste, G., Vernet, A., Faugé, A., Magrina, P., Aliaga-Parera, J. L., Oliver, N., Alexandre, F., & Heraud, N. (2024). Safety and Efficacy of Pulmonary Rehabilitation for Long COVID Patients Experiencing Long-Lasting Symptoms. International Journal of Environmental Research and Public Health, 21(2), 242. https://doi.org/10.3390/ijerph21020242