Potential Risk Factors to COVID-19 Severity: Comparison of SARS-CoV-2 Delta- and Omicron-Dominant Periods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, P.; Yang, X.-L.; Wang, X.-G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.-R.; Zhu, Y.; Li, B.; Huang, C.-L.; et al. A Pneumonia Outbreak Associated with a New Coronavirus of Probable Bat Origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef]
- Tian, D.; Sun, Y.; Zhou, J.; Ye, Q. The Global Epidemic of the SARS-CoV-2 Delta Variant, Key Spike Mutations and Immune Escape. Front. Immunol. 2021, 12, 751778. [Google Scholar] [CrossRef] [PubMed]
- Planas, D.; Veyer, D.; Baidaliuk, A.; Staropoli, I.; Guivel-Benhassine, F.; Rajah, M.M.; Planchais, C.; Porrot, F.; Robillard, N.; Puech, J.; et al. Reduced Sensitivity of SARS-CoV-2 Variant Delta to Antibody Neutralization. Nature 2021, 596, 276–280. [Google Scholar] [CrossRef] [PubMed]
- Outbreak of Patients with Novel Coronavirus Infections (Mutant Strains) (Airport Quarantine). Available online: https://www.mhlw.go.jp/stf/newpage_18805.html (accessed on 15 June 2022).
- Hu, J.; Peng, P.; Cao, X.; Wu, K.; Chen, J.; Wang, K.; Tang, N.; Huang, A.-L. Increased Immune Escape of the New SARS-CoV-2 Variant of Concern Omicron. Cell. Mol. Immunol. 2022, 19, 293–295. [Google Scholar] [CrossRef] [PubMed]
- Domestic Outbreak Status of Omicron Strain. Available online: https://www.mhlw.go.jp/stf/newpage_23141.html (accessed on 15 June 2022).
- Kim, M.-K.; Lee, B.; Choi, Y.Y.; Um, J.; Lee, K.-S.; Sung, H.K.; Kim, Y.; Park, J.-S.; Lee, M.; Jang, H.-C.; et al. Clinical Characteristics of 40 Patients Infected with the SARS-CoV-2 Omicron Variant in Korea. J. Korean Med. Sci. 2022, 37, e31. [Google Scholar] [CrossRef] [PubMed]
- Wolter, N.; Jassat, W.; Walaza, S.; Welch, R.; Moultrie, H.; Groome, M.; Amoako, D.G.; Everatt, J.; Bhiman, J.N.; Scheepers, C.; et al. Early Assessment of the Clinical Severity of the SARS-CoV-2 Omicron Variant in South Africa: A Data Linkage Study. Lancet 2022, 399, 437–446. [Google Scholar] [CrossRef]
- Maslo, C.; Friedland, R.; Toubkin, M.; Laubscher, A.; Akaloo, T.; Kama, B. Characteristics and Outcomes of Hospitalized Patients in South Africa during the COVID-19 Omicron Wave Compared with Previous Waves. JAMA 2022, 327, 583–584. [Google Scholar] [CrossRef]
- Houhamdi, L.; Gautret, P.; Hoang, V.T.; Fournier, P.-E.; Colson, P.; Raoult, D. Characteristics of the First 1119 SARS-CoV-2 Omicron Variant Cases, in Marseille, France, November-December 2021. J. Med. Virol. 2022, 94, 2290–2295. [Google Scholar] [CrossRef]
- Menni, C.; Valdes, A.M.; Polidori, L.; Antonelli, M.; Penamakuri, S.; Nogal, A.; Louca, P.; May, A.; Figueiredo, J.C.; Hu, C.; et al. Symptom Prevalence, Duration, and Risk of Hospital Admission in Individuals Infected with SARS-CoV-2 during Periods of Omicron and Delta Variant Dominance: A Prospective Observational Study from the ZOE COVID Study. Lancet 2022, 399, 1618–1624. [Google Scholar] [CrossRef]
- Hu, K.; Lin, L.; Liang, Y.; Shao, X.; Hu, Z.; Luo, H.; Lei, M. COVID-19: Risk Factors for Severe Cases of the Delta Variant. Aging 2021, 13, 23459–23470. [Google Scholar] [CrossRef]
- Shi, H.J.; Nham, E.; Kim, B.; Joo, E.-J.; Cheong, H.S.; Hong, S.H.; Hyun, M.; Kim, H.A.; Jang, S.; Rhee, J.-Y.; et al. Clinical Characteristics and Risk Factors for Mortality in Critical Coronavirus Disease 2019 Patients 50 Years of Age or Younger during the Delta Wave: Comparison with Patients > 50 Years in Korea. J. Korean Med. Sci. 2022, 37, e175. [Google Scholar] [CrossRef]
- Jassat, W.; Abdool Karim, S.S.; Mudara, C.; Welch, R.; Ozougwu, L.; Groome, M.J.; Govender, N.; von Gottberg, A.; Wolter, N.; Wolmarans, M.; et al. Clinical Severity of COVID-19 in Patients Admitted to Hospital during the Omicron Wave in South Africa: A Retrospective Observational Study. Lancet Glob. Health 2022, 10, e961–e969. [Google Scholar] [CrossRef]
- Bidonde, J.; Flatby, A.V.; Harboe, I.; Brurberg, K.G. COVID-19: Omicron Variant and Risk Factors for Severe Disease—A Rapid Review Synthesis; Division for Health Services, Norwegian Institute of Public Health: Oslo, Norway, 2022. [Google Scholar]
- Ogawa, F.; Oi, Y.; Honzawa, H.; Misawa, N.; Takeda, T.; Kikuchi, Y.; Fukui, R.; Tanaka, K.; Kano, D.; Kato, H.; et al. Severity Predictors of COVID-19 in SARS-CoV-2 Variant, Delta and Omicron Period; Single Center Study. PLoS ONE 2022, 17, e0273134. [Google Scholar] [CrossRef]
- Pijls, B.G.; Jolani, S.; Atherley, A.; Derckx, R.T.; Dijkstra, J.I.R.; Franssen, G.H.L.; Hendriks, S.; Richters, A.; Venemans-Jellema, A.; Zalpuri, S.; et al. Demographic Risk Factors for COVID-19 Infection, Severity, ICU Admission and Death: A Meta-Analysis of 59 Studies. BMJ Open 2021, 11, e044640. [Google Scholar] [CrossRef]
- Ferguson, N.; Laydon, D.; Nedjati-Gilani, G.; Imai, N.; Ainslie, K.; Baguelin, M.; Bhatia, S.; Boonyasiri, A.; Cucunubá, Z.; Cuomo-Dannenburg, G.; et al. Report 9: Impact of Non-Pharmaceutical Interventions (NPIs) to Reduce COVID-19 Mortality and 392 Healthcare Demand; Imperial College COVID-19 Response Team: London, UK, 2020; Volume 77482. [Google Scholar]
- Sugimura, M.; Chimed-Ochir, O.; Yumiya, Y.; Ohge, H.; Shime, N.; Sakaguchi, T.; Tanaka, J.; Takafuta, T.; Mimori, M.; Kuwabara, M.; et al. The Association between Wearing a Mask and COVID-19. Int. J. Environ. Res. Public Health 2021, 18, 9131. [Google Scholar] [CrossRef]
- COVID-19 Infection. Medical Guide; Labour and Welfare of Japan, Ministry of Health: Tokyo, Japan, 2022. [Google Scholar]
- Sainani, K.L. Explanatory versus Predictive Modeling. PM R 2014, 6, 841–844. [Google Scholar] [CrossRef]
- Ekström, J. The Phi-Coefficient, the Tetrachoric Correlation Coefficient, and the Pearson-Yule Debate; Department of Statistics, University of California: Los Angeles, CA, USA, 2011. [Google Scholar]
- Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; Marquéz, J.R.G.; Gruber, B.; Lafourcade, B.; Leitão, P.J.; et al. Collinearity: A Review of Methods to Deal with It and a Simulation Study Evaluating Their Performance. Ecography 2013, 36, 27–46. [Google Scholar] [CrossRef]
- Beenakker, K.G.M.; Westendorp, R.G.J.; de Craen, A.J.M.; Chen, S.; Raz, Y.; Ballieux, B.E.P.B.; Nelissen, R.G.H.H.; Later, A.F.L.; Huizinga, T.W.; Slagboom, P.E.; et al. Men Have a Stronger Monocyte-Derived Cytokine Production Response upon Stimulation with the Gram-Negative Stimulus Lipopolysaccharide than Women: A Pooled Analysis Including 15 Study Populations. J. Innate Immun. 2020, 12, 142–153. [Google Scholar] [CrossRef] [PubMed]
- Falagas, M.E.; Mourtzoukou, E.G.; Vardakas, K.Z. Sex Differences in the Incidence and Severity of Respiratory Tract Infections. Respir. Med. 2007, 101, 1845–1863. [Google Scholar] [CrossRef] [PubMed]
- Klein, S.L.; Flanagan, K.L. Sex Differences in Immune Responses. Nat. Rev. Immunol. 2016, 16, 626–638. [Google Scholar] [CrossRef] [PubMed]
- Janeway, C.A., Jr.; Medzhitov, R. Innate Immune Recognition. Annu. Rev. Immunol. 2002, 20, 197–216. [Google Scholar] [CrossRef] [PubMed]
- Licastro, F.; Candore, G.; Lio, D.; Porcellini, E.; Colonna-Romano, G.; Franceschi, C.; Caruso, C. Innate Immunity and Inflammation in Ageing: A Key for Understanding Age-Related Diseases. Immun. Ageing 2005, 2, 8. [Google Scholar] [CrossRef] [PubMed]
- Shaw, A.C.; Joshi, S.; Greenwood, H.; Panda, A.; Lord, J.M. Aging of the Innate Immune System. Curr. Opin. Immunol. 2010, 22, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Kalligeros, M.; Shehadeh, F.; Mylona, E.K.; Benitez, G.; Beckwith, C.G.; Chan, P.A.; Mylonakis, E. Association of Obesity with Disease Severity Among Patients with Coronavirus Disease 2019. Obesity 2020, 28, 1200–1204. [Google Scholar] [CrossRef] [PubMed]
- Simonnet, A.; Chetboun, M.; Poissy, J.; Raverdy, V.; Noulette, J.; Duhamel, A.; Labreuche, J.; Mathieu, D.; Pattou, F.; Jourdain, M.; et al. High Prevalence of Obesity in Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) Requiring Invasive Mechanical Ventilation. Obesity 2020, 28, 1195–1199. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.; Yang, J.; Shi, J.; Zhang, P.; Wang, X. Obesity Is Associated with Increased Severity of Disease in COVID-19 Pneumonia: A Systematic Review and Meta-Analysis. Eur. J. Med. Res. 2020, 25, 64. [Google Scholar] [CrossRef] [PubMed]
- Lippi, G.; Henry, B.M. Active Smoking Is Not Associated with Severity of Coronavirus Disease 2019 (COVID-19). Eur. J. Intern. Med. 2020, 75, 107–108. [Google Scholar] [CrossRef]
- Zhao, Q.; Meng, M.; Kumar, R.; Wu, Y.; Huang, J.; Lian, N.; Deng, Y.; Lin, S. The Impact of COPD and Smoking History on the Severity of COVID-19: A Systemic Review and Meta-Analysis. J. Med. Virol. 2020, 92, 1915–1921. [Google Scholar] [CrossRef]
- Patanavanich, R.; Glantz, S.A. Smoking Is Associated with COVID-19 Progression: A Meta-Analysis. Nicotine Tob. Res. 2020, 22, 1653–1656. [Google Scholar] [CrossRef]
- Li, B.; Yang, J.; Zhao, F.; Zhi, L.; Wang, X.; Liu, L.; Bi, Z.; Zhao, Y. Prevalence and Impact of Cardiovascular Metabolic Diseases on COVID-19 in China. Clin. Res. Cardiol. 2020, 109, 531–538. [Google Scholar] [CrossRef]
- Yang, J.; Zheng, Y.; Gou, X.; Pu, K.; Chen, Z.; Guo, Q.; Ji, R.; Wang, H.; Wang, Y.; Zhou, Y. Prevalence of Comorbidities and Its Effects in Patients Infected with SARS-CoV-2: A Systematic Review and Meta-Analysis. Int. J. Infect. Dis. 2020, 94, 91–95. [Google Scholar] [CrossRef]
- Norouzi, M.; Norouzi, S.; Ruggiero, A.; Khan, M.S.; Myers, S.; Kavanagh, K.; Vemuri, R. Type-2 Diabetes as a Risk Factor for Severe COVID-19 Infection. Microorganisms 2021, 9, 1211. [Google Scholar] [CrossRef] [PubMed]
- Varikasuvu, S.R.; Dutt, N.; Thangappazham, B.; Varshney, S. Diabetes and COVID-19: A Pooled Analysis Related to Disease Severity and Mortality. Prim. Care Diabetes 2021, 15, 24–27. [Google Scholar] [CrossRef] [PubMed]
- Bassani, D.; Ragazzi, E.; Lapolla, A.; Sartore, G.; Moro, S. Omicron Variant of SARS-CoV-2 Virus: In Silico Evaluation of the Possible Impact on People Affected by Diabetes Mellitus. Front. Endocrinol. 2022, 13, 847993. [Google Scholar] [CrossRef] [PubMed]
- Sörberg Wallin, A.; Ohlis, A.; Dalman, C.; Ahlen, J. Risk of Severe COVID-19 Infection in Individuals with Severe Mental Disorders, Substance Use Disorders, and Common Mental Disorders. Gen. Hosp. Psychiatry 2022, 75, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Henry, D.A.; Jones, M.A.; Stehlik, P.; Glasziou, P.P. Effectiveness of COVID-19 Vaccines: Findings from Real World Studies. Med. J. Aust. 2021, 215, 149–151.e1. [Google Scholar] [CrossRef] [PubMed]
- Arashiro, T.; Arima, Y.; Muraoka, H.; Sato, A.; Oba, K.; Uehara, Y.; Arioka, H.; Yanai, H.; Kuramochi, J.; Ihara, G.; et al. Coronavirus Disease 19 (COVID-19) Vaccine Effectiveness Against Symptomatic Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection during Delta-Dominant and Omicron-Dominant Periods in Japan: A Multicenter Prospective Case-Control Study (Factors Associated with SARS-CoV-2 Infection and the Effectiveness of COVID-19 Vaccines Study). Clin. Infect. Dis. 2023, 76, e108–e115. [Google Scholar] [PubMed]
- Nielsen, K.F.; Moustsen-Helms, I.R.; Schelde, A.B.; Gram, M.A.; Emborg, H.-D.; Nielsen, J.; Hansen, C.H.; Andersen, M.A.; Meaidi, M.; Wohlfahrt, J.; et al. Vaccine Effectiveness against SARS-CoV-2 Reinfection during Periods of Alpha, Delta, or Omicron Dominance: A Danish Nationwide Study. PLoS Med. 2022, 19, e1004037. [Google Scholar] [CrossRef]
- The Digital Agency, Japan Digital Agency Vaccination Record System (VRS). Available online: https://info.vrs.digital.go.jp/dashboard (accessed on 6 March 2024).
- Feikin, D.R.; Abu-Raddad, L.J.; Andrews, N.; Davies, M.-A.; Higdon, M.M.; Orenstein, W.A.; Patel, M.K. Assessing Vaccine Effectiveness against Severe COVID-19 Disease Caused by Omicron Variant. Report from a Meeting of the World Health Organization. Vaccine 2022, 40, 3516–3527. [Google Scholar] [CrossRef]
Risk Factors | Delta-Dominant Period | Omicron-Dominant Period | ||||
---|---|---|---|---|---|---|
Number of Patients | Number of Severe Cases | Severity Rate (%) | Number of Patients | Number of Severe Cases | Severity Rate (%) | |
Total | 1367 | 576 | 42% | 1790 | 542 | 30% |
Age | ||||||
≥65 | 183 | 98 | 54% | 1000 | 433 | 43% |
<65 | 1184 | 478 | 40% | 790 | 109 | 14% |
Sex | ||||||
Male | 803 | 371 | 46% | 929 | 320 | 34% |
Female non-pregnant | 535 | 200 | 37% | 798 | 220 | 28% |
Female pregnant | 29 | 5 | 17% | 63 | 2 | 3% |
Current smoker | ||||||
Yes | 282 | 128 | 45% | 138 | 32 | 23% |
No | 1085 | 448 | 41% | 1652 | 510 | 31% |
Obese (BMI > 25) | ||||||
Yes | 496 | 266 | 54% | 399 | 105 | 26% |
No | 871 | 310 | 36% | 1391 | 437 | 31% |
Blood pressure | ||||||
Yes | 245 | 125 | 51% | 674 | 279 | 41% |
No | 1122 | 451 | 40% | 1116 | 263 | 24% |
Diabetes | ||||||
Yes | 155 | 97 | 63% | 354 | 136 | 38% |
No | 1212 | 479 | 40% | 1436 | 406 | 28% |
Hemodialisys | ||||||
Yes | 8 | 4 | 50% | 49 | 21 | 43% |
No | 1359 | 572 | 42% | 1741 | 521 | 30% |
Dimentia/mental disorder | ||||||
Yes | 56 | 27 | 48% | 318 | 166 | 52% |
No | 1311 | 549 | 42% | 1472 | 376 | 26% |
Vaccine < 2 | ||||||
Yes | 1259 | 538 | 43% | 725 | 206 | 28% |
No | 106 | 38 | 36% | 1065 | 336 | 32% |
Number of risk | ||||||
≤1 | 663 | 216 | 33% | 612 | 80 | 13% |
2 | 393 | 183 | 47% | 457 | 148 | 32% |
3 | 210 | 120 | 57% | 424 | 178 | 42% |
≥4 | 101 | 57 | 56% | 297 | 136 | 46% |
Risk Factor | Delta-Dominant Period | Omicron-Dominant Period | ||||||
---|---|---|---|---|---|---|---|---|
Odds Ratio | 95% LI | 95% UI | p Value | Odds Ratio | 95% LI | 95% UI | p Value | |
Age > 65 | 2.59 | 1.75 | 3.84 | <0.0001 | 3.89 | 2.95 | 5.12 | <0.0001 |
Sex (Male) | 1.42 | 1.12 | 1.81 | 0.0039 | 1.76 | 1.40 | 2.21 | <0.0001 |
Current smoker | 1.08 | 0.81 | 1.43 | 0.6044 | 0.91 | 0.58 | 1.42 | 0.6856 |
Obesity | 1.99 | 1.57 | 2.52 | <0.0001 | 1.15 | 0.87 | 1.52 | 0.3399 |
Blood pressure | 1.06 | 0.77 | 1.46 | 0.7326 | 1.30 | 1.02 | 1.65 | 0.0338 |
Diabetes | 2.03 | 1.40 | 2.95 | 0.0002 | 1.14 | 0.87 | 1.50 | 0.332 |
Hemodialisys | 1.39 | 0.33 | 5.90 | 0.6546 | 1.19 | 0.64 | 2.19 | 0.5853 |
Mental disorder | 1.11 | 0.62 | 2.00 | 0.7298 | 2.22 | 1.69 | 2.92 | <0.0001 |
Vaccine < 2 dose | 2.39 | 1.46 | 3.91 | 0.0005 | 1.24 | 0.98 | 1.56 | 0.0684 |
Risk 2 1 | 1.80 | 1.40 | 2.33 | <0.0001 | 3.19 | 2.35 | 4.33 | <0.0001 |
Risk 3 1 | 2.76 | 2.01 | 3.79 | <0.0001 | 4.81 | 3.55 | 6.52 | <0.0001 |
Risk 4 or more 1 | 2.68 | 1.75 | 4.10 | <0.0001 | 5.62 | 4.05 | 7.79 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamaguchi, D.; Chimed-Ochir, O.; Yumiya, Y.; Kishita, E.; Akita, T.; Tanaka, J.; Kubo, T. Potential Risk Factors to COVID-19 Severity: Comparison of SARS-CoV-2 Delta- and Omicron-Dominant Periods. Int. J. Environ. Res. Public Health 2024, 21, 322. https://doi.org/10.3390/ijerph21030322
Yamaguchi D, Chimed-Ochir O, Yumiya Y, Kishita E, Akita T, Tanaka J, Kubo T. Potential Risk Factors to COVID-19 Severity: Comparison of SARS-CoV-2 Delta- and Omicron-Dominant Periods. International Journal of Environmental Research and Public Health. 2024; 21(3):322. https://doi.org/10.3390/ijerph21030322
Chicago/Turabian StyleYamaguchi, Daiki, Odgerel Chimed-Ochir, Yui Yumiya, Eisaku Kishita, Tomoyuki Akita, Junko Tanaka, and Tatsuhiko Kubo. 2024. "Potential Risk Factors to COVID-19 Severity: Comparison of SARS-CoV-2 Delta- and Omicron-Dominant Periods" International Journal of Environmental Research and Public Health 21, no. 3: 322. https://doi.org/10.3390/ijerph21030322
APA StyleYamaguchi, D., Chimed-Ochir, O., Yumiya, Y., Kishita, E., Akita, T., Tanaka, J., & Kubo, T. (2024). Potential Risk Factors to COVID-19 Severity: Comparison of SARS-CoV-2 Delta- and Omicron-Dominant Periods. International Journal of Environmental Research and Public Health, 21(3), 322. https://doi.org/10.3390/ijerph21030322