Microbial Composition Dynamics in Peloids Used for Spa Procedures in Lithuania: Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Microbiological Properties of Peloids and Their Dynamic during Preheating
3.2. Bacterial Diversity and Dynamics in Peloid Samples
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Munteanu, C.; Rotariu, M.; Dogaru, G.; Ionescu, E.V.; Ciobanu, V.; Onose, G. Mud therapy and rehabilitation—Scientifc relevance in the last six years (2015–2020) Systematic literature review and meta-analysis based on the PRISMA paradigm. Balneo PRM Res. J. 2020, 12, 1–15. [Google Scholar] [CrossRef]
- Gomes, C.; Carretero, M.I.; Pozo, M.; Maraver, F.; Cantista, P.; Armijo, F.; Legido, J.L.; Teixeira, F.; Rautureau, M.; Delgado, R. Peloids and pelotherapy: Historical evolution, classification and glossary. Appl. Clay Sci. 2013, 75, 28–38. [Google Scholar] [CrossRef]
- Pavlovska, I.; Klavina, A.; Auce, A.; Vanadzins, I.; Silova, A.; Komarovska, L.; Silamikele, B.; Dobkevica, L.; Paegle, L. Assessment of sapropel use for pharmaceutical products according to legislation, pollution parameters, and concentration of biologically active substances. Sci. Rep. 2020, 10, 21527. [Google Scholar] [CrossRef] [PubMed]
- Rebelo, M.; Viseras, C.; López-Galindo, A.; Rocha, F.; da Silva, E.F. Rheological and thermal characterisation of peloids made of selected Portuguese geological materials. Appl. Clay Sci. 2011, 52, 219–227. [Google Scholar] [CrossRef]
- Lampropoulou, P.; Petrounias, P.; Rogkala, A.; Giannakopoulou, P.P.; Gianni, E.; Mantzoukas, S.; Lagogiannis, I.; Koukouzas, N.; Hatziantoniou, S.; Papoulis, D. Microstructural and Microbiological Properties of Peloids and Clay Materials from Lixouri (Kefalonia Island, Greece) Used in Pelotherapy. Appl. Sci. 2023, 13, 5772. [Google Scholar] [CrossRef]
- Gomes, C.S.; Rautureau, M. Historical evolution of the use of minerals in human health. In Minerals Latu Sensu and Human Health: Benefits, Toxicity and Pathologies; Springer International Publishing: Cham, Switzerland, 2021; pp. 43–79. [Google Scholar]
- Gomes, C.d.S.F. Healing and edible clays: A review of basic concepts, benefits and risks. Environ. Geochem. Health 2018, 40, 1739–1765. [Google Scholar] [CrossRef] [PubMed]
- Antonelli, M.; Donelli, D. Mud therapy and skin microbiome: A review. Int. J. Biometeorol. 2018, 62, 2037–2044. [Google Scholar] [CrossRef]
- Pipite, A.; Siro, G.; Subramani, R.; Srinivasan, S. Microbiological analysis, antimicrobial activity, heavy-metals content and physico-chemical properties of Fijian mud pool samples. Sci. Total Environ. 2023, 854, 158725. [Google Scholar] [CrossRef]
- Sharma, S.; Grewal, S.; Vakhlu, J. Phylogenetic diversity and metabolic potential of microbiome of natural healing clay from Chamliyal (J&K). Arch. Microbiol. 2018, 200, 1333–1343. [Google Scholar]
- Sun, X.; Qiu, L.; Kolton, M.; Häggblom, M.; Xu, R.; Kong, T.; Gao, P.; Li, B.; Jiang, C.; Sun, W. VV reduction by Polaromonas spp. in vanadium mine tailings. Environ. Sci. Technol. 2020, 54, 14442–14454. [Google Scholar] [CrossRef]
- Carretero, M.I. Clays in pelotherapy. A review. Part II: Organic compounds, microbiology and medical applications. Appl. Clay Sci. 2020, 189, 105531. [Google Scholar] [CrossRef]
- Fonberg, I. Opisanie Wody Mineralnej Druskinickiej//Wizerunki I Roztrząsania Naukowe.—T. XI.—1935.—S. 5–59. Gonberg. I. Opisanie Wody Mineralnej Druskinickiej; Drukiem Jozefa Zawadzkiego: Wilno, Lithuania, 1838. [Google Scholar]
- Albu, M.; Banks, D.; Nash, H.; Juodkazis, V.; Suveizdis, P.; Rastenienė, V. Geothermal and mineral water resources of Lithuania. In Mineral and Thermal Groundwater Resources; Springer: Dordrecht, The Netherlands, 1997; pp. 281–316. [Google Scholar]
- Varzaityte, L.; Kubilius, R.; Rapoliene, L.; Bartuseviciute, R.; Balcius, A.; Ramanauskas, K.; Nedzelskiene, I. The effect of balneotherapy and peloid therapy on changes in the functional state of patients with knee joint osteoarthritis: A randomised, controlled, single-blind pilot study. Int. J. Biometeorol. 2020, 64, 955–964. [Google Scholar] [CrossRef] [PubMed]
- Taletavičienė, G. Elektrokardiografinių Rodiklių ir jų Dinaminių Sąsajų Kaita Bendrosios Krioterapijos ir Peloidoterapijos Procedūrų Metu. Ph.D. Thesis, Lietuvos Sveikatos Mokslų Universitetas, Kaunas, Lithuania, 2014. [Google Scholar]
- HN 126:2010; Lietuvos Respublikos Sveikatos Apsaugos Ministro Įsakymas dėl Lietuvos Higienos Normos HN 125:2010 “Peloidai. Sveikatos Saugos Reikalavimai” Patvirintimo. Lietuvos Respublikos Sveikatos Apsaugos Ministerija: Vilnius, Lithuania, 2010.
- ISO Standard No. 21426:2018; Tourism and Related Services–Medical Spas–Service Requirements. International Organization for Standardization: Geneva, Switzerland, 2018.
- Łukasz, M.; Marta, B.; Mazańska, M.; Szynal, T.; Jolanta, S. Metagenomics analysis of therapeutical peats samples mined from the deposits of the “Puścizna Wielka” peat bog in Poland. Preprint (Version 1) Research Square. 2023. Available online: https://www.researchsquare.com/article/rs-3331288/v1 (accessed on 10 January 2024). [CrossRef]
- Quintela, A.; Terroso, D.; Da Silva, E.F.; Rocha, F. Certification and quality criteria of peloids used for therapeutic purposes. Clay Miner. 2012, 47, 441–451. [Google Scholar] [CrossRef]
- Andrei, A.Ş.; Baricz, A.; Robeson, M.S.; Păuşan, M.R.; Tămaş, T.; Chiriac, C.; Szekeres, E.; Barbu-Tudoran, L.; Levei, E.A.; Coman, C.; et al. Hypersaline sapropels act as hotspots for microbial dark matter. Sci. Rep. 2017, 7, 6150. [Google Scholar] [CrossRef] [PubMed]
- Brandão, J.; Gangneux, J.P.; Arikan-Akdagli, S.E.V.T.A.P.; Barac, A.; Bostanaru, A.C.; Brito, S.; Bull, M.; Çerikçioğlu, N.; Chapman, B.; Efstratiou, M.A.; et al. Mycosands: Fungal diversity and abundance in beach sand and recreational waters—Relevance to human health. Sci. Total Environ. 2021, 781, 146598. [Google Scholar] [CrossRef]
- Bokulich, N.A.; Kaehler, B.D.; Rideout, J.R.; Dillon, M.; Bolyen, E.; Knight, R.; Huttley, G.A.; Gregory Caporaso, J. Optimising taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 2018, 6, 90. [Google Scholar] [CrossRef] [PubMed]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581. [Google Scholar] [CrossRef]
- Pruesse, E.; Quast, C.; Knittel, K.; Fuchs, B.M.; Ludwig, W.; Peplies, J.; Glockner, F.O. SILVA: A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 2007, 35, 7188–7196. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Robeson, M.S.; O’Rourke, D.R.; Kaehler, B.D.; Ziemski, M.; Dillon, M.R.; Foster, J.T.; Bokulich, N.A. RESCRIPt: Reproducible sequence taxonomy reference database management. PLoS Comput. Biol. 2021, 17, e1009581. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. MMAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Lozupone, C.; Lladser, M.E.; Knights, D.; Stombaugh, J.; Knight, R. UniFrac: An effective distance metric for microbial community comparison. ISME J. 2010, 5, 169–172. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Rambaut, A. Figtree Andrew Rambaut Institute of Evolutionary Biology, University of Edinburgh. 2018. Available online: http://tree.bio.ed.ac.uk/ (accessed on 10 January 2024).
- Huerta-Cepas, J.; Serra, F.; Bork, P. ETE 3: Reconstruction, Analysis, and Visualization of Phylogenomic Data. Mol. Biol. Evol. 2016, 33, 1635–1638. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef] [PubMed]
- Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Baldovin, T.; Amoruso, I.; Caldara, F.; Buja, A.; Baldo, V.; Cocchio, S.; Bertoncello, C. Microbiological Hygiene Quality of Thermal Muds: A Pilot Study in Pelotherapy Facilities of the Euganean Thermal District (NE Italy). Int. J. Environ. Res. Public Health 2020, 17, 5040, PMCID:PMC7400087. [Google Scholar] [CrossRef] [PubMed]
- Klenner, M.F.; Weber, G. Hygienic problems at the winning of peloids (peats and sludges of lakes) for balneological therapy (author’s transl). Zentralblatt Bakteriol. Mikrobiol. Hygiene. 1 Abt. Orig. B Hyg. 1981, 173, 327–337. [Google Scholar]
- ESPA. Quality Criteria of the European Spas Association; European Spas Association: Bruxelles, Belgium, 2006. [Google Scholar]
- Čekaitytė, I. Gydomojo Purvo Mikrobiologinis Tyrimas. Master’s Thesis, Vytautas Magnus University, Kaunas, Lithuania, 2016. [Google Scholar]
- Wunderlin, T.; Corella, J.P.; Junier, T.; Bueche, M.; Loizeau, J.L.; Girardclos, S.; Junier, P. Endospore-forming bacteria as new proxies to assess impact of eutrophication in Lake Geneva (Switzerland–France). Aquat. Sci. 2014, 76, 103–116. [Google Scholar] [CrossRef]
- Capdepuy, M.; Goya, O.; Quentin-Noury, C. Sanitary aspects of the thermal muds in Aquitaine. Int. J. Environ. Health Res. 1994, 4, 1–6. [Google Scholar] [CrossRef]
- Thabet, O.B.D.; Fardeau, M.-L.; Joulian, C.; Thomas, P.; Hamdi, M.; Garcia, J.-L.; Ollivier, B. Clostridium tunisiense sp. nov., a new proteolytic, sulfur-reducing bacterium isolated from an olive mill wastewater contaminated by phosphogypse. Anaerobe 2004, 10, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Lanjekar, V.B.; Marathe, N.P.; Shouche, Y.S.; Ranade, D.R. Clostridium punense sp. nov., an obligate anaerobe isolated from healthy human faeces. Int. J. Syst. Evol. Microbiol. 2015, 65, 4749–4756. [Google Scholar] [CrossRef] [PubMed]
- Atapattu, G.; Obeng, S.A.; Battersby, T.; Giltrap, M.; Tian, F. Effect of ‘Peatland-Use’ Type on Culturable Microbial Groups in Irish Peatlands in the Midlands. Land 2023, 12, 1614. [Google Scholar] [CrossRef]
- Ramata-Stunda, A.; Petrina, Z.; Mekss, P.; Kizane, G.; Silamikele, B.; Muiznieks, I.; Nikolajeva, V. Microbiological characterisation and sterilisation-induced changes in the profile of the hydrophobic organic substances in Latvian balneological peat. Int. J. Environ. Sci. Technol. 2015, 12, 2371–2380. [Google Scholar] [CrossRef]
- Pesciaroli, C.; Viseras, C.; Aguzzi, C.; Rodelas, B.; González-López, J. Study of bacterial community structure and diversity during the maturation process of a therapeutic peloid. Appl. Clay Sci. 2016, 132, 59–67. [Google Scholar] [CrossRef]
- Bonadonna, L.; Briancesco, R.; La Rosa, G. Innovative analytical methods for monitoring microbiological and virological water quality. Microchem. J. 2019, 150, 104160. [Google Scholar] [CrossRef]
- Xiao, X.L.; Tian, C.; Yu, Y.G.; Wu, H. Detection of viable but nonculturable Escherichia coli O157: H7 using propidium monoazide treatments and qPCR. Can. J. Microbiol. 2013, 59, 157–163. [Google Scholar] [CrossRef]
- Pérez-Ibarra, B.M.; Flores, M.E.; García-Varela, M. Isolation and characterisation of Bacillus thioparus sp. nov., chemolithoautotrophic, thiosulfate-oxidising bacterium. FEMS Microbiol. Lett. 2007, 271, 289–296. [Google Scholar] [CrossRef]
- Lesaulnier, C.C.; Herbold, C.W.; Pelikan, C.; Berry, D.; Gérard, C.; Le Coz, X.; Gagnot, S.; Niggemann, J.; Dittmar, T.; Singer, G.A.; et al. Bottled aqua incognita: Microbiota assembly and dissolved organic matter diversity in natural mineral waters. Microbiome 2017, 5, 126. [Google Scholar] [CrossRef]
- Carraturo, F.; Del Giudice, C.; Compagnone, M.; Libralato, G.; Toscanesi, M.; Trifuoggi, M.; Galdiero, E.; Guida, M. Evaluation of microbial communities of bottled mineral waters and preliminary traceability analysis using NGS microbial fingerprints. Water 2021, 13, 2824. [Google Scholar] [CrossRef]
- Paduano, S.; Valeriani, F.; Romano-Spica, V.; Bargellini, A.; Borella, P.; Marchesi, I. Microbial biodiversity of thermal water and mud in an Italian spa by metagenomics: A pilot study. Water Sci. Technol. Water Supply 2018, 18, 1456–1465. [Google Scholar] [CrossRef]
- Mulec, J.; Krištůfek, V.; Chroňáková, A.; Oarga, A.; Scharfen, J.; Šestauberová, M. Microbiology of healing mud (fango) from Roman thermae aquae iasae archaeological site (Varaždinske Toplice, Croatia). Microb. Ecol. 2015, 69, 293–306. [Google Scholar] [CrossRef] [PubMed]
- Rocker, D.; Brinkhoff, T.; Grüner, N.; Dogs, M.; Simon, M. Composition of humic acid-degrading estuarine and marine bacterial communities. FEMS Microbiol. Ecol. 2012, 80, 45–63. [Google Scholar] [CrossRef] [PubMed]
- Hutalle-Schmelzer, K.; Grossart, H. Changes in the bacterioplankton community of oligotrophic Lake Stechlin (northeastern Germany) after humic matter addition. Aquat. Microb. Ecol. 2009, 55, 155–167. [Google Scholar] [CrossRef]
- Ueno, A.; Shimizu, S.; Tamamura, S.; Okuyama, H.; Naganuma, T.; Kaneko, K. Anaerobic decomposition of humic substances by Clostridium from the deep subsurface. Sci. Rep. 2016, 6, 18990. [Google Scholar] [CrossRef]
- Patel, S.; Gupta, R.S. A phylogenomic and comparative genomic framework for resolving the polyphyly of the genus Bacillus: Proposal for six new genera of Bacillus species, Peribacillus gen. nov., Cytobacillus gen. nov., Mesobacillus gen. nov., Neobacillus gen. nov., Metabacillus gen. nov. and Alkalihalobacillus gen. nov. Int. J. Syst. Evol. Microbiol. 2020, 70, 406–438. [Google Scholar]
- Hädrich, A.; Taillefert, M.; Akob, D.M.; Cooper, R.E.; Litzba, U.; Wagner, F.E.; Nietzsche, S.; Ciobota, V.; Rösch, P.; Popp, J.; et al. Microbial Fe(II) oxidation by Sideroxydans lithotrophicus ES-1 in the presence of Schlöppnerbrunnen fen-derived humic acids. FEMS Microbiol. Ecol. 2019, 95, fiz034. [Google Scholar] [CrossRef]
- Reitter, C.; Petzoldt, H.; Korth, A.; Schwab, F.; Stange, C.; Hambsch, B.; Tiehm, A.; Lagkouvardos, I.; Gescher, J.; Hügler, M. Seasonal dynamics in the number and composition of coliform bacteria in drinking water reservoirs. Sci. Total. Environ. 2021, 787, 147539. [Google Scholar] [CrossRef]
- Gris, B.; Treu, L.; Zampieri, R.M.; Caldara, F.; Romualdi, C.; Campanaro, S.; La Rocca, N. Microbiota of the therapeutic euganean thermal muds with a focus on the main cyanobacteria species. Microorganisms 2020, 8, 1590. [Google Scholar] [CrossRef]
- Okubo, T.; Tokida, T.; Ikeda, S.; Bao, Z.; Tago, K.; Hayatsu, M.; Nakamura, H.; Sakai, H.; Usui, Y.; Hayashi, K.; et al. Effects of elevated carbon dioxide, elevated temperature, and rice growth stage on the community structure of rice root–associated bacteria. Microbes Environ. 2014, 29, 184–190. [Google Scholar] [CrossRef]
- Zhang, J.; Li, L.; Liu, J.; Han, Y. Temporal variation of microbial population in acclimation and start-up period of a thermophilic desulfurisation biofilter. Int. Biodeterior. Biodegrad. 2016, 109, 157–164. [Google Scholar] [CrossRef]
Sample | Sample Taken | Sample Type | Organic Matter % | Decomposition Rate % |
---|---|---|---|---|
P1.I | From 5-litre plastic containers | Sapropel (brown) | 81.9 | 75.9 |
P2.I | From 10-litre plastic containers | Sapropel (brown) | 91.7 | 79.4 |
P3.I | From container | Peat | 70.7 | 81.4 |
P4.I | Premixed with mineral water, kept in a plastic container | Sapropel (white) | 14.3 | 100 |
Worm Eggs, Units/kg | E. coli Number, CFU/g | Sulphite-Reducing Clostridia, 1 g | Salmonella, 25 g | Staphyloccocus aureus, g | Pseudomonas aeruginosa, g | Colony Forming Units, g | ||
---|---|---|---|---|---|---|---|---|
Sample ID | P1 | 0 | <10 | 3.3 × 103 | 0 | 0 | - | 5.6 × 104 |
P2 | 0 | <10 | 2.2 × 102 | 0 | 0 | - | 7.5 × 104 | |
P3 | 0 | <10 | 2.1 × 102 | 0 | 0 | - | 9.2 × 107 | |
P4 | 0 | <10 | 4.1 × 101 | 0 | 0 | - | 8.4 × 106 | |
Microbial parameters and thresholds in different literature sources | LT Hygiene norm 126:2010 | 0 | <100 | 0 | 0 | 0 | 0 | <5.0 × 105 |
ISO 21426:2018 | * | 100/100 ml | * | 0 | 0 | 0 | at 22 °C, no threshold provided | |
[35] | * | 0 | * | * | 0 | 0 | * | |
[6] (Germany regulation) | * | <102 CFU/g | * | * | 0 | 0 | at 20 °C, <107 CFU/g; | |
at 36 °C <107 CFU/g |
Total Coliform, Average MPN/g | E. coli Number, Average MPN/g | Candida albicans, Average CFU/g | Aspergillus niger, Average CFU/g | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample ID | Initial | 40 °C | 50 °C | Initial | 40 °C | 50 °C | Initial | 40 °C | 50 °C | Initial | 40 °C | 50 °C |
P1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
P2 | 4.2 | 9.3 | 3.6 | 0.3 | 0 | 0.1 | 0 | 0 | 0 | 0 | 0 | 0 |
P3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
P4 | 101.1 | 85.1 | 27.1 | 0.2 | 2.2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
Genus | Species | BLAST No | Similarity | BLAST Source | Additional Information | Sample | Relative Abundance% |
---|---|---|---|---|---|---|---|
Clostridium | tunisiense | NR_115161 | 98.54% | from an olive mill wastewater | P3.I | 1.98 | |
P4.40 | 1.08 | ||||||
P4.50 | 0.40 | ||||||
bowmanii | NR_114765 | 98.08% | mat sample from the lake | P4.40 | 0.48 | ||
P4.50 | 0.89 | ||||||
punense | NR_145903 | 99.09% | healthy human faeces | P4.40 | 0.36 | ||
P4.50 | 0.20 | ||||||
Phocaeicola | dorei | CP046176 | 99.93% | from human | P3.I | 0.27 | |
Cloacibacterium | normanense | CP034157 | 99.93% | untreated municipal wastewater | P4.I | 6.08 | |
P4.40 | 2.63 | ||||||
P4.50 | 2.97 | ||||||
Chryseobacterium | alike faecale | CP087583 | 96.25% | from faeces | P4.I | 1.6 | |
P4.40 | 0.23 | ||||||
P4.50 | 0.6 | ||||||
Brevundimonas | bullata | NR_113611 | 99.21% | from soil | Some Brevundimonas species are considered potential human pathogens | P4.I | 0.25 |
Sporacetigenium | mesophilum | NR_043101 | 99.37% | from an anaerobic digester treating municipal solid waste and sewage | P4.40 | 1.31 | |
P4.50 | 0.20 | ||||||
Sphingomonas | NR_148321 | 96.60% | from activated sludge | Some species are known as human pathogens | P4.50 | 0.20 | |
Listeria | monocytogenes | LT906436 | 100% | isolated from rabbit | Pathogenic bacteria that causes the infection listeriosis | P2.I P3.50 | 2.1 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kataržytė, M.; Rapolienė, L.; Kalvaitienė, G.; Picazo-Espinosa, R. Microbial Composition Dynamics in Peloids Used for Spa Procedures in Lithuania: Pilot Study. Int. J. Environ. Res. Public Health 2024, 21, 335. https://doi.org/10.3390/ijerph21030335
Kataržytė M, Rapolienė L, Kalvaitienė G, Picazo-Espinosa R. Microbial Composition Dynamics in Peloids Used for Spa Procedures in Lithuania: Pilot Study. International Journal of Environmental Research and Public Health. 2024; 21(3):335. https://doi.org/10.3390/ijerph21030335
Chicago/Turabian StyleKataržytė, Marija, Lolita Rapolienė, Greta Kalvaitienė, and Rafael Picazo-Espinosa. 2024. "Microbial Composition Dynamics in Peloids Used for Spa Procedures in Lithuania: Pilot Study" International Journal of Environmental Research and Public Health 21, no. 3: 335. https://doi.org/10.3390/ijerph21030335
APA StyleKataržytė, M., Rapolienė, L., Kalvaitienė, G., & Picazo-Espinosa, R. (2024). Microbial Composition Dynamics in Peloids Used for Spa Procedures in Lithuania: Pilot Study. International Journal of Environmental Research and Public Health, 21(3), 335. https://doi.org/10.3390/ijerph21030335