Contemporary Insights into the Biological Mechanisms of Parkia biglobosa
Abstract
:1. Introduction
2. Methodology
3. Results and Discussion
3.1. Ethnomedicinal Applications and Phytochemistry
Chemical Class | Compound Name | Plant Part | Extraction Method | Isolation/Analytical Technique | Reference | |||||
---|---|---|---|---|---|---|---|---|---|---|
Phenols | 2-methoxy phenol | Seed | Simultaneous distillation–extraction (SDE) | GC-MS | [22] | |||||
2-methoxy-4-methyl-phenol | ||||||||||
4-ethyl-2-methoxy phenol | ||||||||||
2,4-disiopropyl-phenol | ||||||||||
Phenol/Phenolic acids | Caffeic acid | Leaf | Aqueous–methanol maceration | HPLC | [28] | |||||
Gallic acid | Leaf | |||||||||
Chorogenic acid | Leaf | |||||||||
Flavonoids/tannins | Catechin Epicatechin Epigallocatechin Epigallocatechin gallate Epigallocatechin-O-glucuronide Epicatechin-O-gallate-O-glucuronide Epigallocatechin-O-gallate-O-glucuronide Rutin Quercetin Kaempferol Naringenin 7-4’-di-O-β-d-glucopyranoside Methoxyluteolin-7-O-rutinoside 1-(ω-Feruloyllignoceryl) –glycerol 1-(ω-Isoferuloylalkanoyl) –glycerols 4-O-Methyl-epigallocatechin | Leaf, bark Leaf, bark, root Leaf, bark, root Leaf, bark, root Bark, root Bark, root Bark, root Fruit pulp Stem bark Bark Bark Bark | Water, aqueous–methanol, methanol, dichloromethane–methanol, ethyl acetate, butanol, hexane, and chloroform maceration and/or fractionation | Column chromatography, TLC, HPLC, mass spectrometry, HPLC/ESI-IT-MS, FIA-ESI-IT-MS, LC-HR-QTOF, and NMR | [23,25,26,28] [24] | |||||
Phytosterols | b-Sitosterol | Seed | N-hexane, diethyl ether percolation and maceration | TLC, gas chromatography, and GC-MS | [20,21] | |||||
Campesterol | Seed | |||||||||
Stigmasterol | Seed | |||||||||
Δ5-Avenasterol | Seed | |||||||||
Δ7-Stigmasterol | Seed | |||||||||
Cholesterol | Seed | |||||||||
Terpenoids | Limonene | Seed | Ethylacetate maceration, | SDE | [22,26] | |||||
Lupeol | Bark | |||||||||
Lipid/Fatty acids | Dodecanoic acid | Stem bark | N-butanol, N-hexane, and petroleum ether maceration and percolation | TLC, GC-FID, and GC-MS | [20,27,29,30,31] | |||||
1,2,3-propanetriol | Stem bark | |||||||||
Arachidic acid | Seed | |||||||||
Arachidonic acid | Seed | |||||||||
Methyl-6-cis-9-11-trans-octadecatrienoate Palmitic acid | Seed | |||||||||
Stearic acid | Seed | |||||||||
Oleic acid | Seed | |||||||||
Linoleic acid | Seed | |||||||||
Linolenic acid | Seed | |||||||||
Docosanoic acid | Seed |
3.2. Pharmacological Activities and Biochemical Signaling
3.2.1. Cardioprotective and Antihypertensive Properties
Cardioprotective Mechanisms
- Antioxidant, Anti-Inflammatory, and Antihyperlipidemic Mechanisms
- Vasorelaxation and Endothelium-Dependent Nitric Oxide (ENOS) Activity
- Inhibition of Angiotensin-Converting Enzyme (ACE)
3.2.2. Antidiabetic and Hypolipidemic Effects
Antidiabetic Mechanisms
- Insulin-like Function, Antioxidant/Anti-Inflammatory Effects, and Modulation of Carbohydrate Metabolizing Enzymes
3.2.3. Antimicrobial Activity of Parkia biglobosa
Mechanisms of Antimicrobial Effects
- Cytotoxic Activities of Essential Oils and Polyphenols
3.2.4. Antimalarial (Antiplasmodial), Antipyretic, and Analgesic Activities
Mechanisms of Antimalarial and Analgesic effects
- Disruption of Redox Homeostasis
3.2.5. Neuroprotective Activity
Mechanisms of Neuroprotection
- GABAergic, Antioxidant, Anti-inflammatory Activity, Protein Precipitation, and Chelation
Biological Effects | Part Used | Processing | Active Component or Phytochemicals | Dosages/ Concentrations | EC50/IC50 or MIC Values | Major Findings | Mechanisms Implicated | Refs |
---|---|---|---|---|---|---|---|---|
Cardioprotective Activity | ||||||||
Hypotensive | Seed | Fermented condiments | Not described | 100 g/day (in meal) | NA | Individuals known to traditionally consume condiments containing fermented Parkia biglobosa seed had significantly lower systolic and diastolic blood pressures, TC/HDL-C ratios, and LDL-C/HDL-C ratios when compared to the group that never consumed the seed | Antihyperlipidemic, antiatherogenic effects | [10] |
Vasorelaxant, antihypertensive | Seed (roasted, fermented) | Aqueous extract | Not described | Up to 10 mg/mL | Fermented (EC50): 5.37 ± 0.12 and 4.19 ± 1.02 mg/mL Roasted (EC50): 5.39 ± 1.12 and 5.93 ± 0.95 mg/mL | Seed extract caused concentration-dependent relaxation of intact and endothelium-denuded aorta of rats subjected to contraction through phenylepinephrine stimulation | Direct action on the smooth muscle and generation of vasodilatory prostaglandins like PGI2 | [12] |
Vasorelaxant | Leaf | Hydroalcoholic extract, procyanidin-rich fractions | Procyanidins, polyphenolics | 0.0001–0.1 g/L | NA | In porcine coronary artery rings previously contracted with U46619, Parkia biglobosa extract and phenol-rich fractions elicited redox-sensitive, endothelium-dependent relaxations | Induction of redox-sensitive, endothelium-derived relaxing factors like NO and EDHF using the procyanidin polyphenols; promotion of endothelial NO synthase activity via activation of the Src/PI3-kinase/Akt pathway | [7] |
Angiotensin-converting enzyme inhibition | Leaf | Phenol-rich extract | Polyphenols | 10, 25, and 50 μg/mL | Free phenolics: IC50 = 15.35 ± 4.0 μg/mL Bound phenolics: IC50 = 46.85 ± 3.3 μg/mL) | Treatment using ACE preparation derived from rat lung with free phenolics of Parkia biglobosa caused inhibition of the activity of the vasoconstrictor | Probable chelation of the zinc ions in the ACE active site via free hydroxyl groups of phenolic compounds in Parkia biglobosa leaf | [28] |
Cardioprotective | Seed (raw, fermented) | Protein-rich extract | Protein isolates | 200 and 400 mg/kg, | NA | Protein isolates from fermented PB seeds mitigated diabetes-induced dyslipidemia and cardiac oxidative stress in rats | Stimulation of endogenous enzymatic and non-enzymatic antioxidant production and suppression of mitochondrial ROS generation | [11] |
Cardioprotective | Leaf | Hydromethanol extract | Not described | 25, 50, 75, and 100 mg/kg, p.o. | NA | PB leaf extract ameliorated doxorubicin-induced cardiac damage, aberrant lipid profile, and oxidative stress | Possible antioxidant and antihyperlipdemic mechanisms | [5] |
Cardioprotective | Stem bark | Hydroethanol extract | Not described | 60 and 90 mg/kg p.o | Parkia biglobosa leaf extract mitigated isoproterenol-induced hypertrophy, cardiac injury, and oxidative stress | Unknown | [34] | |
Antidiabetic and hypolipidemic activities | ||||||||
Antidiabetic, antihyperlipidemic | Seed (fermented) | Aqueous and methanol extract | Not described | 6 g/kg | NA | Aqueous extract of fermented Parkia biglobosa seed exhibited antihyperglycemic effect and increased HDL-C/LDL-C ratio in alloxan-induced diabetic rats | Unknown | [38] |
Antidiabetic | Seed | Aqueous extract | Not described | 200, 400, and 800 mg/kg p.o | NA | PB seed corrected hyperglycemia and derangements in diabetes-induced hematological, biochemical, and tissue histological markers in stimulation of b-cell function and insulin secretion and inhibition of carbohydrate-metabolizing enzyme STZ-induced rats | Unclear; possible involvement of antioxidant and anti-inflammatory signaling | [51] |
Antidiabetic | Leaf | Butanol fraction | Lupeol | 150 and 300 mg/kg b.w. p.o | NA | Extract decreased antioxidant actions and release of insulin and insulin-like proteins; postprandial blood glucose level and diabetic complications in type 2 diabetic rats; inhibited α-amylase and α-glucosidase activities in vitro | Stimulation of b-cell function and insulin secretion and inhibition of carbohydrate-metabolizing enzymes | [3] |
Antidiabetic, antihyperlipidemic | Seed | Protein-rich extract | Protein isolates | 200 and 400 mg/kg b.w. | NA | Parkia biglobosa seed protein reversed hyperglycemia and hyperlipidemia in STZ-induced diabetic rats | Antioxidant actions and release of insulin and insulin-like proteins | [11] |
Hypoglycemic, hypolipidemic | Seed (fermented) | Methanol extract | Not described | 3 mL/100 g b.w. p.o. | NA | Extract of fermented Parkia biglobosa seed caused hypoglycemic and hypolipidemic effects in normoglycemic rats | Not described | [46] |
Antimicrobial activity | ||||||||
Antibacterial | Stem bark | Methanol extract; aqueous and n-hexane fractions | Not characterized | Up to 20 mg/mL | Methanol extract: MIC = 0.63–5 mg/mL) Aqueous n-hexane fractions: MIC = 0.63–10 mg/mL) | Stem bark extract and fractions inhibited the growth of selected Gram-positive and Gram-negative bacterial isolates | Not described | [19] |
Antibacterial, antifungal | Seed (fermented) | Oil and aqueous extract | Phenolic compounds, p-cymene, fatty acids | 2.5–10.0 mg/mL | Oil: MIC = 2.5–10.0 mg/mL Aqueous extract: MIC = 5.0–10 mg/mL | Aqueous extract and oil of fermented Parkia biglobosa seed exerted growth-inhibitory effects on selected bacterial and fungal clinical isolates | Not described | [54] |
Antibacterial, antifungal | Seed (raw, fermented) | Aqueous and acetone extracts | Not described | 75 and 100 mg/mL | Aqueous extract: MIC = 50–75 mg/mL) Acetone extract: MIC = 50–100 mg/mL | Aqueous and acetone extracts of fermented Parkia biglobosa exhibited bactericidal/fungicidal effects against P. aeruginosa, E.coli, and C. albicans | Not described | [57] |
Antibacterial, antidiarrheal | Stem bark | Methanol extract | 37.5–600 mg/mL | NA | Extract protected against diarrheagenic E. coli- and castor oil-induced diarrhea in rats | Not fully elucidated; could involve the antioxidant action of polyphenols | [59] | |
Antimalarial (antiplasmodial), antipyretic, and analgesic activities | ||||||||
Antiplasmodial | Leaf, stem bark | Decoction, phenol extract | Not characterized | In vivo: 10, 20, and 30 mg/kg In vitro: 1.6, 3.1, and 6.3 µg/mL | Phenol extract: IC50 = 0.51 µg/mL | Extract caused dose-dependent reduction of parasitemia in P. berghei-infected mice; exhibited in vitro cytotoxic effect against P. falciparum | Not fully elucidated; could involve antioxidant mechanisms | [70] |
Antipyretic | Stem bark | Methanol extract and solvent fractions | Not characterized | 25, 50, and 100 mg/kg, p.o. | NA | Extract and fractions caused dose-dependent inhibition of yeast-induced pyrexia in albino rats | Mechanism not elucidated; possible influence on prostaglandin synthesis. | [71] |
Analgesic, anti-inflammatory | Stem bark | Hexane extract | Partially characterized, sterols, fatty acids | Analgesic: 50, 100, and 200 mg/kg, p.o. or 6.25, 12.5, and 25 mg/kg, i.p. Anti-inflammatory: 100, 200, and 400 mg/kg p.o or 25, 50, and 100 µg topical | Analgesic effect: ID50 (p.o.) = 81.5 mg/kg ID50 (i.p.) = 12.5 mg/kg Anti-inflammatory effect: ID50 (p.o.) = 248.8 mg/kg ID50 (topical) = 31.7 µg | Marked inhibition of acetic-acid-induced writhing in mice following intraperitoneal administration of the extract. Protection against phorbol myristate acetate (PMA)-induced ear oedema in mice. | Peripheral mechanisms of pain inhibition; anti-inflammatory mechanisms | [72] |
Neuroprotective Activity | ||||||||
Anti-epileptogenic, anti-amnesic, anxiolytic | Stem bark | Decoction | Not characterized | 80, 160, and 320 mg/kg, p.o. | NA | Protection against pentylenetetrazole-induced seizures and hippocampal necrosis; mitigation of anxiety and memory impairment in mice | Elevation in γ-aminobutyric acid (GABA) level and reduction in oxidative stress and inflammatory events | [4] |
Neuromodulatory | Leaf | Hydroalcoholic extract | Antioxidant Polyphenols, catechin | 25, 50, 100, or 200 µg/mL | NA | Protection of rat hippocampal slices against toxicant-induced damage; increased cerebral Na/K ATPase activity | Antioxidant mechanisms; mild mitochondrial membrane depolarization | [2] |
Anticancer effect | ||||||||
Chemocytotoxic | Leaf | Methanol extract | Not characterized | 0.01 μg/mL–200 μg/mL | 56.1–136.0 µg/mL | Extract showed in vitro cytotoxic effect against selected human breast, colon, and prostate cancer cell lines | Not clarified | [76] |
Chemocytotoxic | Seed | Fermentation | Not characterized | 0.5–2.5 mg/mL | IC50 values 24, 48, and 72 h treatment = HepG2: 1.3, 1.2, and 0.8 mg/mL HeLa: 0.6, 0.4, and 0.3 mg/mL | Extract of fermented seed showed selective cytotoxicity against human hepatocellular (Hep-G2) and cervical (HeLa) cancer and non-cancer cell lines | Possible proapoptotic processes promoted by the bioactive peptides | [77,78] |
3.2.6. Anticancer Activity
Mechanisms of Anticancer Effect
- Proapoptotic Signaling
4. Limitation and Future Prospect
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Houndonougbo, J.S.H.; Kassa, B.; Mensah, S.; Salako, V.K.; Glèlè Kakaï, R.; Assogbadjo, A.E. A global systematic review on conservation nd domestication of Parkia biglobosa (Jacq.) R. Br. ex G. Don, an indigenous fruit tree species in Sub-Sahara African traditional parklands: Current knowledge and future directions. Genet. Resour. Crop Evol. 2020, 67, 1051–1066. [Google Scholar] [CrossRef]
- Komolafe, K.; Olaleye, T.M.; Seeger, R.L.; Carvalho, F.B.; Boligon, A.A.; Athayde, M.L.; Klimaczewski, C.V.; Akindahunsi, A.A.; Rocha, J.B. Parkia biglobosa improves mitochondrial functioning and protects against neurotoxic agents in rat brain hippocampal slices. BioMed Res. Int. 2014, 2014, 326290. [Google Scholar] [CrossRef]
- Ibrahim, M.A.; Habila, J.D.; Koorbanally, N.A.; Islam, M.S. Butanol fraction of Parkia biglobosa (Jacq.) G. Don leaves enhance pancreatic β-cell functions, stimulates insulin secretion and ameliorates other type 2 diabetes-associated complications in rats. J. Ethnopharmacol. 2016, 183, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Kandeda, A.K.; Menvouta, S.; Mabou, S.T.; Kouamouo, J.; Dimo, T. Aqueous extract of Parkia biglobosa (Jacq.) R. Br. (Fabaceae) exerts antiepileptogenic, anti-amnesic, and anxiolytic-like effects in mice via mechanisms involving antioxidant and anti-inflammatory pathways. Front. Pharmacol. 2022, 13, 995881. [Google Scholar] [CrossRef]
- Komolafe, K.; Akinmoladun, A.; Olaleye, M. Methanolic leaf extract of Parkia biglobosa protects against doxorubicin-induced cardiotoxicity in rats. Int. J. Appl. Res. Nat. Prod. 2013, 6, 39–47. [Google Scholar]
- Olaleye, T.M.; Komolafe, K.; Akindahunsi, A. Effect of methanolic leaf extract of Parkia biglobosa on some biochemical indices and hemodynamic parameters in rats. J. Chem. Pharm. Res. 2013, 5, 213–220. [Google Scholar]
- Tokoudagba, J.M.; Auger, C.; Bréant, L.; N’Gom, S.; Chabert, P.; Idris-Khodja, N.; Gbaguidi, F.; Gbenou, J.; Moudachirou, M.; Lobstein, A.; et al. Procyanidin-rich fractions from Parkia biglobosa (Mimosaceae) leaves cause redox-sensitive endothelium-dependent relaxation involving NO and EDHF in porcine coronary artery. J. Ethnopharmacol. 2010, 132, 246–250. [Google Scholar] [CrossRef]
- Ajaiyeoba, E. Phytochemical and antibacterial properties of Parkia biglobosa and Parkia bicolor leaf extracts. Afr. J. Biomed. Res. 2002, 5, 125–129. [Google Scholar] [CrossRef]
- Osuntokun, O.; Jemilaiye, T.; Akinrodoye, A. Comparative study between the effect of Parkia Biglobosa (JACQ) benth and conventional antibiotics against multiple antibiotic resistant uropathogenic bacteria (MARUB). MOJ Bioequivalence Bioavailab. 2018, 5, 200–212. [Google Scholar] [CrossRef]
- Ognatan, K.; Adi, K.; Lamboni, C.; Damorou, J.-M.; Aklikokou, K.A.; Gbeassor, M.; Guilland, J.-C. Effect of dietary intake of fermented seeds of Parkia biglobosa (Jacq) benth (African Locust Bean) on hypertension in Bogou and Goumou-kope areas of Togo. Trop. J. Pharm. Res. 2011, 10, 603–609. [Google Scholar] [CrossRef]
- Ogunyinka, B.I.; Oyinloye, B.E.; Osunsanmi, F.O.; Kolanisi, U.; Opoku, A.R.; Kappo, A.P. Protein Isolate from Parkia biglobosa Seeds Improves Dyslipidaemia and Cardiac Oxidative Stress in Streptozotocin-Induced Diabetic Rats. Antioxidants 2019, 8, 481. [Google Scholar] [CrossRef] [PubMed]
- Ouédraogo, S.; Somé, N.; Ouattara, S.; Kini, F.B.; Traore, A.; Bucher, B.; Guissou, I.P. Acute toxicity and vascular properties of seed of Parkia biglobosa (JACQ) R. Br Gift (Mimosaceae) on rat aorta. Afr. J. Tradit. Complement. Altern. Med. 2012, 9, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Pasiecznik, N. Parkia biglobosa (Néré); CABI Compendium: Wallingford, UK, 2022. [Google Scholar]
- The Plant List. Parkia. Available online: http://www.theplantlist.org/tpl1.1/search?q=Parkia (accessed on 21 April 2023).
- Omara, T.; Kiprop, A.K.; Ramkat, R.C.; Cherutoi, J.; Kagoya, S.; Moraa Nyangena, D.; Azeze Tebo, T.; Nteziyaremye, P.; Nyambura Karanja, L.; Jepchirchir, A.; et al. Medicinal Plants Used in Traditional Management of Cancer in Uganda: A Review of Ethnobotanical Surveys, Phytochemistry, and Anticancer Studies. Evid.-Based Complement. Altern. Med. 2020, 2020, 3529081. [Google Scholar] [CrossRef] [PubMed]
- Okoye, T.C.; Uzor, P.F.; Onyeto, C.A.; Okereke, E.K. Safe African Medicinal Plants for Clinical Studies. In Toxicological Survey of African Medicinal Plants; Kuete, V., Ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 535–555. [Google Scholar]
- Alinde, O.B.L.; Esterhuyse, A.J.; Oguntibeju, O.O. Potential Role of Parkia biglobosa in the Management and Treatment of Cardiovascular Diseases. In Antioxidant-Antidiabetic Agents and Human Health; Oluwafemi, O., Ed.; IntechOpen: Rijeka, Croatia, 2014; Chapter 15; pp. 349–369. [Google Scholar]
- Udobi, C.; Onaolapo, J.; Agunu, A. Antibacterial activities and bioactive components of the aqueous fraction of the stem bark of Parkia biglobosa (Jacq) (Mimosaceae). Niger. J. Pharm. Sci. 2008, 7, 49–55. [Google Scholar]
- Abioye, E.O.; Akinpelu, D.A.; Aiyegoro, O.A.; Adegboye, M.F.; Oni, M.O.; Okoh, A.I. Preliminary phytochemical screening and antibacterial properties of crude stem bark extracts and fractions of Parkia biglobosa (Jacq.). Molecules 2013, 18, 8485–8499. [Google Scholar] [CrossRef] [PubMed]
- Akintayo, E.T. Characteristics and composition of Parkia biglobbossa and Jatropha curcas oils and cakes. Bioresour. Technol. 2004, 92, 307–310. [Google Scholar] [CrossRef]
- Olatunya, A.M.; Omojola, A.; Akinpelu, K.; Akintayo, E.T. Vitamin E, Phospholipid, and Phytosterol Contents of Parkia biglobosa and Citrullus colocynthis Seeds and Their Potential Applications to Human Health. Prev. Nutr. Food Sci. 2019, 24, 338–343. [Google Scholar] [CrossRef]
- Ouoba, L.I.; Diawara, B.; Annan, N.T.; Poll, L.; Jakobsen, M. Volatile compounds of Soumbala, a fermented African locust bean (Parkia biglobosa) food condiment. J. Appl. Microbiol. 2005, 99, 1413–1421. [Google Scholar] [CrossRef]
- Tala, V.R.; Candida da Silva, V.; Rodrigues, C.M.; Nkengfack, A.E.; dos Santos, L.C.; Vilegas, W. Characterization of proanthocyanidins from Parkia biglobosa (Jacq.) G. Don. (Fabaceae) by Flow Injection Analysis-Electrospray Ionization Ion Trap Tandem Mass Spectrometry and Liquid Chromatography/Electrospray Ionization Mass Spectrometry. Molecules 2013, 18, 2803–2820. [Google Scholar] [CrossRef]
- Sut, S.; Dall’Acqua, S.; Sinan, K.I.; Zengin, G.; Uba, A.I.; Etienne, O.K.; Jugreet, S.; Mahomoodally, M.F. Bioactive agents from Parkia biglobosa (Jacq.) R.Br. ex G. Don bark extracts for health promotion and nutraceutical uses. J. Sci. Food Agric. 2024, 104, 2820–2831. [Google Scholar] [CrossRef]
- Mohammad, M.; Garba, M.; Haruna, A.; Jimoh, A. Characterization of naringenin from the fruit pulp extract of Parkia biglobosa (Fabaceae). FUW Trends Sci. Technol. J. 2018, 3, 918–920. [Google Scholar]
- Tringali, C.; Spatafora, C.; Longo, O.D. Bioactive constituents of the bark of Parkia biglobosa. Fitoterapia 2000, 71, 118–125. [Google Scholar] [CrossRef]
- Rosemond, O.; Christopher, L.; Herman, L.; Ampem, G.; Emmanuel, D.; Danso, P. Extract of fermented and non-fermented seeds of Parkia biglobosa attenuates hyperglycaemia and related nephropathy in type 2 diabetes mellitus animals. Food Sci. Nutr. Res. 2022, 5, 1–10. [Google Scholar]
- Komolafe, K.; Akinmoladun, A.C.; Komolafe, T.R.; Olaleye, M.T.; Boligon, A.A.; Akindahunsi, A.A.; Rocha, J.B.T. Angiotensin-1-converting enzyme inhibition, antioxidant activity, and modulation of cerebral Na+/K+ ATPase by free phenolics of African locust bean (Parkia biglobosa). Health Sci. Rep. 2018, 1, e17. [Google Scholar] [CrossRef]
- Aiyelaagbe, O.O.; Ajaiyeoba, E.O.; Ekundayo, O. Studies on the seed oils of Parkia biglobosa and Parkia bicolor. Plant Foods Hum. Nutr. 1996, 49, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Oyabambi, A.; Akinnuga, A.M.; Areola, E.D.; Echibiri, S.E.; Imam-Fulani, A.O.; Abdulsalam, A.; Oluranti, O. Aqueous extract of Parkia biglobosa ameliorates risk markers of cardiometabolic diseases in spironolactone treated and high-salt fed Sprague-Dawley male rats. LASU J. Med. Sci. 2022, 7, 1–14. [Google Scholar]
- Sangodare, R.; Okibe, P.; Mohammed, M.; Jajere, M.; Abubakar, A.; Aribido, O.; Bala, S.; Danmallam, A.; Ali, E.; Onuora, O.; et al. Chemical investigation of Parkia Biglobosa fruit hull using GS-MS. Am. J. Res. Commun. 2017, 5, 59–65. [Google Scholar]
- Saleh, M.S.M.; Jalil, J.; Zainalabidin, S.; Asmadi, A.Y.; Mustafa, N.H.; Kamisah, Y. Genus Parkia: Phytochemical, Medicinal Uses, and Pharmacological Properties. Int. J. Mol. Sci. 2021, 22, 618. [Google Scholar] [CrossRef]
- Tain, Y.L.; Hsu, C.N. Novel Insights on Dietary Polyphenols for Prevention in Early-Life Origins of Hypertension: A Review Focusing on Preclinical Animal Models. Int. J. Mol. Sci. 2022, 23, 6620. [Google Scholar] [CrossRef] [PubMed]
- Adi, K.; Metowogo, K.; Mouzou, A.; Lawson-Evi, P.; Eklu-Gadegbeku, K.; Agbonon, A.; Lamboni, C.; Essien, K.; Aklikokou, K.; Gbeassor, M. Evaluation of cardioprotective effects of Parkia biglobosa (Jacq. Benth) Mimosaceae stem bark. J. Appl. Pharm. Sci. 2013, 3, 060–064. [Google Scholar] [CrossRef]
- Xu, H.; Yu, X.; Qu, S.; Chen, Y.; Wang, Z.; Sui, D. In vive and in vitro cardioprotective effects of panax quinquefolium 20(S)-protopanaxadiol saponins (PQDS), isolated from panax quinquefolium. Die Pharm. 2013, 68, 287–292. [Google Scholar]
- Alabi, D.; Akinsulire, O.; Sanyaolu, M. Qualitative determination of chemical and nutritional composition of Parkia biglobosa (Jacq.) Benth. Afr. J. Biotechnol. 2005, 4, 812–815. [Google Scholar]
- Alotaibi, B.S.; Ijaz, M.; Buabeid, M.; Kharaba, Z.J.; Yaseen, H.S.; Murtaza, G. Therapeutic Effects and Safe Uses of Plant-Derived Polyphenolic Compounds in Cardiovascular Diseases: A Review. Drug Des. Dev. Ther. 2021, 15, 4713–4732. [Google Scholar] [CrossRef]
- Odetola, A.A.; Akinloye, O.; Egunjobi, C.; Adekunle, W.A.; Ayoola, A.O. Possible antidiabetic and antihyperlipidaemic effect of fermented Parkia biglobosa (JACQ) extract in alloxan-induced diabetic rats. Clin. Exp. Pharmacol. Physiol. 2006, 33, 808–812. [Google Scholar] [CrossRef] [PubMed]
- Anselm, E.; Socorro, V.F.; Dal-Ros, S.; Schott, C.; Bronner, C.; Schini-Kerth, V.B. Crataegus special extract WS 1442 causes endothelium-dependent relaxation via a redox-sensitive Src- and Akt-dependent activation of endothelial NO synthase but not via activation of estrogen receptors. J. Cardiovasc. Pharmacol. 2009, 53, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Edwards, R.L.; Lyon, T.; Litwin, S.E.; Rabovsky, A.; Symons, J.D.; Jalili, T. Quercetin reduces blood pressure in hypertensive subjects. J. Nutr. 2007, 137, 2405–2411. [Google Scholar] [CrossRef] [PubMed]
- Rivera, L.; Morón, R.; Sánchez, M.; Zarzuelo, A.; Galisteo, M. Quercetin ameliorates metabolic syndrome and improves the inflammatory status in obese Zucker rats. Obesity 2008, 16, 2081–2087. [Google Scholar] [CrossRef]
- Leeya, Y.; Mulvany, M.J.; Queiroz, E.F.; Marston, A.; Hostettmann, K.; Jansakul, C. Hypotensive activity of an n-butanol extract and their purified compounds from leaves of Phyllanthus acidus (L.) Skeels in rats. Eur. J. Pharmacol. 2010, 649, 301–313. [Google Scholar] [CrossRef]
- Galleano, M.; Bernatova, I.; Puzserova, A.; Balis, P.; Sestakova, N.; Pechanova, O.; Fraga, C.G. (-)-Epicatechin reduces blood pressure and improves vasorelaxation in spontaneously hypertensive rats by NO-mediated mechanism. IUBMB Life 2013, 65, 710–715. [Google Scholar] [CrossRef]
- Igarashi, K.; Honma, K.; Yoshinari, O.; Nanjo, F.; Hara, Y. Effects of dietary catechins on glucose tolerance, blood pressure and oxidative status in Goto-Kakizaki rats. J. Nutr. Sci. Vitaminol. 2007, 53, 496–500. [Google Scholar] [CrossRef]
- Guerrero, L.; Castillo, J.; Quiñones, M.; Garcia-Vallvé, S.; Arola, L.; Pujadas, G.; Muguerza, B. Inhibition of angiotensin-converting enzyme activity by flavonoids: Structure-activity relationship studies. PLoS ONE 2012, 7, e49493. [Google Scholar] [CrossRef]
- Airaodion, A.I.; Airaodion, E.O.; Ogbuagu, E.O.; Ogbuagu, U.; Osemwowa, E.U. Effect of Oral Intake of African Locust Bean on Fasting Blood Sugar and Lipid Profile of Albino Rats. Asian J. Res. Biochem. 2019, 4, 1–9. [Google Scholar] [CrossRef]
- Fred-Jaiyesimi, A.; Abo, K. Hypoglycaemic effects of Parkia biglobosa (Jacq) Benth seed extract in glucose-loaded and NIDDM rats. Int. J. Biol. Chem. Sci. 2009, 3, 545–550. [Google Scholar] [CrossRef]
- Ogunyinka, B.I.; Oyinloye, B.E.; Osunsanmi, F.O.; Opoku, A.R.; Kappo, A.P. Protective Effects of Parkia biglobosa Protein Isolate on Streptozotocin-Induced Hepatic Damage and Oxidative Stress in Diabetic Male Rats. Molecules 2017, 22, 1654. [Google Scholar] [CrossRef] [PubMed]
- Pepato, M.T.; Mori, D.M.; Baviera, A.M.; Harami, J.B.; Vendramini, R.C.; Brunetti, I.L. Fruit of the jambolan tree (Eugenia jambolana Lam.) and experimental diabetes. J. Ethnopharmacol. 2005, 96, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Akpor, O.B.; Ndakotsu, J.; Evbuomwan, I.O.; Olaolu, T.D.; Osemwegie, O.O. Bacterial growth inhibition and antioxidant potentials of leaf infusions of (Moringa oleifera), locust beans (Parkia biglobosa) and bitter leaf (Vernonia amygladina). Sci. Afr. 2021, 14, e01001. [Google Scholar] [CrossRef]
- Ekperikpe, U.S.; Owolabi, O.J.; Olapeju, B.I. Effects of Parkia biglobosa aqueous seed extract on some biochemical, haematological and histopathological parameters in streptozotocin induced diabetic rats. J. Ethnopharmacol. 2019, 228, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Niwoye, A.; Ndaman, S.; Akanya, H.; Egwim, E. Antioxidants and hypoglycemic effect of some medicinal plants. GSC Biol. Pharm. Sci. 2019, 8, 070–080. [Google Scholar]
- Tamfu, A.N.; Roland, N.; Munvera Mfifen, A.; Kucukaydin, S.; Gaye, M.; Veronica Botezatu, A.; Emin Duru, M.; Mihaela Dinica, R. Phenolic composition, antioxidant and enzyme inhibitory activities of Parkia biglobosa (Jacq.) Benth., Tithonia diversifolia (Hemsl) A. Gray, and Crossopteryx febrifuga (Afzel.) Benth. Arab. J. Chem. 2022, 15, 103675. [Google Scholar] [CrossRef]
- Eboma, R.N.; Ogidi, C.O.; Akinyele, B.J. Bioactive compounds and antimicrobial activity of extracts from fermented African locust bean (Parkia biglobosa) against pathogenic microorganisms. North Afr. J. Food Nutr. Res. 2021, 4, 343–350. [Google Scholar] [CrossRef]
- Millogo-Kone, H.; Guissou, I.; Nacoulma, O.; Traore, A.S. Antimicrobial effects of the stem bark extracts of Parkia biglobosa (Jacq.) Benth. on Shigellae. Afr. J. Tradit. Complement. Altern. Med. 2007, 4, 392–396. [Google Scholar] [CrossRef] [PubMed]
- Ihuma, J.O.; Kure, S.; Famojuro, T.I.; Malgwi, T.D. Antimicrobial Effects of the Stem Bark Extracts of Parkia biglobosa (Jacq.) G. Don on Escherichia coli and Staphylococcus aureus. Asian J. Biol. 2022, 16, 1–9. [Google Scholar] [CrossRef]
- Ajiboye, A.; Hammed, B. Antimicrobial activity of the crude extracts of Parkia biglobosa (Jacq) seeds on selected clinical isolates. J. Biol. Res. Biotechnol. 2020, 18, 1135–1146. [Google Scholar] [CrossRef]
- Ibekwe, V.; Ezeji, E. Antimicrobial activity of leaf and root extracts of Parkia biglobosa (African locust bean). Afr. J. Plant Sci. Biotechnol. 2011, 5, 70–72. [Google Scholar]
- Banwo, K.; Alao, M.B.; Sanni, A.I. Antioxidant and antidiarrhoeal activities of methanolic extracts of stem bark of Parkia biglobosa and leaves of Parquetina nigrescens. J. Herbs Spices Med. Plants 2020, 26, 14–29. [Google Scholar] [CrossRef]
- El-Mahmood, A.; Ameh, J. In vitro antibacterial activity of Parkia biglobosa (Jacq.) root bark extract against some microorganisms associated with urinary tract infections. Afr. J. Biotechnol. 2007, 6, 1272–1275. [Google Scholar]
- Yahaya, U.; Abubakar, S.; Salisu, A. Antifungal activity of Parkia biglobosa extract on pathogenic strain of Candida albicans. J. Appl. Sci. 2019, 19, 235–240. [Google Scholar] [CrossRef]
- Marchese, A.; Arciola, C.R.; Barbieri, R.; Silva, A.S.; Nabavi, S.F.; Tsetegho Sokeng, A.J.; Izadi, M.; Jafari, N.J.; Suntar, I.; Daglia, M.; et al. Update on Monoterpenes as Antimicrobial Agents: A Particular Focus on p-Cymene. Materials 2017, 10, 947. [Google Scholar] [CrossRef]
- Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial Activity of Some Essential Oils-Present Status and Future Perspectives. Medicines 2017, 4, 58. [Google Scholar] [CrossRef]
- Kim, M.; Seo, Y.; Kim, S.-G.; Choi, Y.; Kim, H.J.; Kim, T.-J. Synergistic Antibiotic Activity of Ricini Semen Extract with Oxacillin against Methicillin-Resistant Staphylococcus aureus. Antibiotics 2023, 12, 340. [Google Scholar] [CrossRef]
- Daglia, M. Polyphenols as antimicrobial agents. Curr. Opin. Biotechnol. 2012, 23, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Bouarab-Chibane, L.; Forquet, V.; Lantéri, P.; Clément, Y.; Léonard-Akkari, L.; Oulahal, N.; Degraeve, P.; Bordes, C. Antibacterial Properties of Polyphenols: Characterization and QSAR (Quantitative Structure–Activity Relationship) Models. Front. Microbiol. 2019, 10, 829. [Google Scholar] [CrossRef] [PubMed]
- Miklasińska-Majdanik, M.; Kępa, M.; Wojtyczka, R.D.; Idzik, D.; Wąsik, T.J. Phenolic Compounds Diminish Antibiotic Resistance of Staphylococcus Aureus Clinical Strains. Int. J. Env. Res Public Health 2018, 15, 2321. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Lan, W.; Xie, J. Natural phenolic compounds: Antimicrobial properties, antimicrobial mechanisms, and potential utilization in the preservation of aquatic products. Food Chem. 2024, 440, 138198. [Google Scholar] [CrossRef]
- Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Rémésy, C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr. 2005, 81, 230S–242S. [Google Scholar] [CrossRef] [PubMed]
- Builders, M.; Alemika, T.; Aguiyi, J. Antimalarial activity and isolation of phenolic compound from Parkia biglobosa. IOSR J. Pharm. Biol. Sci. 2014, 9, 78–85. [Google Scholar] [CrossRef]
- Builders, M.; Tarfa, F.; Aguiyi, J. The potency of African locust bean tree as antimalarial. J. Pharmacol. Toxicol. 2012, 7, 274–287. [Google Scholar] [CrossRef]
- Kouadio, F.; Kanko, C.; Juge, M.; Grimaud, N.; Jean, A.; N’Guessan, Y.T.; Petit, J.Y. Analgesic and antiinflammatory activities of an extract from Parkia biglobosa used in traditional medicine in the Ivory Coast. Phytother. Res. 2000, 14, 635–637. [Google Scholar] [CrossRef]
- Mamede, L.; Ledoux, A.; Jansen, O.; Frédérich, M. Natural Phenolic Compounds and Derivatives as Potential Antimalarial Agents. Planta Med. 2020, 86, 585–618. [Google Scholar] [CrossRef]
- Asuzu, I.U.; Harvey, A.L. The antisnake venom activities of Parkia biglobosa (Mimosaceae) stem bark extract. Toxicon 2003, 42, 763–768. [Google Scholar] [CrossRef]
- Nwaehujor, C.; Ezeigbo, I.; Udeh, N.; Ezeja, M.; Asuzu, I. Anti-inflammatory and anti-oxidant activities of the methanolic extracts of the stalk of Parkia biglobosa (jacq.) Benth. Hygeia J. Drugs Med. 2011, 3, 34–40. [Google Scholar]
- Fadeyi, S.A.; Fadeyi, O.O.; Adejumo, A.A.; Okoro, C.; Myles, E.L. In vitro anticancer screening of 24 locally used Nigerian medicinal plants. BMC Complement. Altern. Med. 2013, 13, 79. [Google Scholar] [CrossRef] [PubMed]
- Ayo-Lawal, R.; Sibuyi, N.; Ekpo, O.; Meyer, M.; Osoniyi, O. Investigation of the anti-cancer and apoptotic properties of aqueous extract from fermented African locust bean seeds. Food Res. 2021, 5, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Ayo-Lawal, R.A.; Osoniyi, O.; E Ilevbare, O.; Ekpo, O. Cytotoxic effects of fermented african locust bean seeds on a breast cancer cell. Innovare J. Health Sci. 2020, 8, 1–4. [Google Scholar]
- Gómez-Betancur, I.; Gogineni, V.; Salazar-Ospina, A.; León, F. Perspective on the Therapeutics of Anti-Snake Venom. Molecules 2019, 24, 3276. [Google Scholar] [CrossRef]
- Sharifi, M.; Moridnia, A.; Mortazavi, D.; Salehi, M.; Bagheri, M.; Sheikhi, A. Kefir: A powerful probiotics with anticancer properties. Med. Oncol. 2017, 34, 183. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komolafe, K.; Olaleye, M.T.; Huang, H.-C.; Pacurari, M. Contemporary Insights into the Biological Mechanisms of Parkia biglobosa. Int. J. Environ. Res. Public Health 2024, 21, 394. https://doi.org/10.3390/ijerph21040394
Komolafe K, Olaleye MT, Huang H-C, Pacurari M. Contemporary Insights into the Biological Mechanisms of Parkia biglobosa. International Journal of Environmental Research and Public Health. 2024; 21(4):394. https://doi.org/10.3390/ijerph21040394
Chicago/Turabian StyleKomolafe, Kayode, Mary Tolulope Olaleye, Hung-Chung Huang, and Maricica Pacurari. 2024. "Contemporary Insights into the Biological Mechanisms of Parkia biglobosa" International Journal of Environmental Research and Public Health 21, no. 4: 394. https://doi.org/10.3390/ijerph21040394
APA StyleKomolafe, K., Olaleye, M. T., Huang, H.-C., & Pacurari, M. (2024). Contemporary Insights into the Biological Mechanisms of Parkia biglobosa. International Journal of Environmental Research and Public Health, 21(4), 394. https://doi.org/10.3390/ijerph21040394