Pathophysiological Mechanisms in Long COVID: A Mixed Method Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. Eligibility Criteria
2.3. Data Extraction and Synthesis
2.4. Quality Assessment
3. Results
3.1. Search Results
3.2. Quality Assessment Results
3.2.1. Review 1
3.2.2. Review 2
3.2.3. Symptoms Strongly Linked to Identifiable Pathophysiological Pathway Immune System
Central Nervous System
Respiratory System
Other Direct Organ System Damage
3.2.4. Symptoms with Reasonable Link to Identifiable Pathophysiological Pathway
Endothelial and Blood Clotting Disturbances
Mast Cells
3.2.5. Symptoms with Weak Evidence Linking Them to Identifiable Pathophysiological Pathway
3.3. Summary
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Search Terms and Search Strategy
References
- England Summary|Coronavirus (COVID-19) in the UK. Available online: https://coronavirus.data.gov.uk/ (accessed on 30 January 2024).
- Coronavirus Disease (COVID-19): Post COVID-19 Condition. Available online: https://www.who.int/news-room/questions-and-answers/item/coronavirus-disease-(covid-19)-post-covid-19-condition (accessed on 30 January 2024).
- Prevalence of Ongoing Symptoms following Coronavirus (COVID-19) Infection in the UK—Office for National Statistics. Available online: https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/datasets/alldatarelatingtoprevalenceofongoingsymptomsfollowingcoronaviruscovid19infectionintheuk (accessed on 30 January 2024).
- Davis, H.E.; Assaf, G.S.; McCorkell, L.; Wei, H.; Low, R.J.; Re’Em, Y.; Redfield, S.; Austin, J.P.; Akrami, A. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. EClinicalMedicine 2021, 38, 101019. [Google Scholar] [CrossRef] [PubMed]
- Sivan, M.; Taylor, S. NICE guideline on long covid. BMJ 2020, 371, m4938. [Google Scholar] [CrossRef] [PubMed]
- Overview|COVID-19 Rapid Guideline: Managing the Long-Term Effects of COVID-19|Guidance|NICE. Available online: https://www.nice.org.uk/guidance/ng188 (accessed on 30 January 2024).
- Michelen, M.; Manoharan, L.; Elkheir, N.; Cheng, V.; Dagens, A.; Hastie, C.; O’Hara, M.; Suett, J.; Dahmash, D.; Bugaeva, P.; et al. Characterising long COVID: A living systematic review. BMJ Glob. Health 2021, 6, e005427. [Google Scholar] [CrossRef]
- SeyedAlinaghi, S.; Afsahi, A.M.; MohsseniPour, M.; Behnezhad, F.; Salehi, M.A.; Barzegary, A.; Mirzapour, P.; Mehraeen, E.; Dadras, O. Late Complications of COVID-19; a Systematic Review of Current Evidence. Arch. Acad. Emerg. Med. 2021, 9, e14. [Google Scholar] [CrossRef] [PubMed]
- Burke, H.; Freeman, A.; Cellura, D.C.; Stuart, B.L.; Brendish, N.J.; Poole, S.; Phan, H.T.T.; Sheard, N.; Williams, S.; Spalluto, C.M.; et al. Inflammatory phenotyping predicts clinical outcome in COVID-19. Respir. Res. 2020, 21, 245. [Google Scholar] [CrossRef] [PubMed]
- Lusczek, E.R.; Ingraham, N.E.; Karam, B.S.; Proper, J.; Siegel, L.; Helgeson, E.S.; Lotfi-Emran, S.; Zolfaghari, E.J.; Jones, E.; Usher, M.G.; et al. Characterizing COVID-19 clinical phenotypes and associated comorbidities and complication profiles. PLoS ONE 2021, 16, e0248956. [Google Scholar] [CrossRef] [PubMed]
- da Silva, J.F.; Hernandez-Romieu, A.C.; Browning, S.D.; Bruce, B.B.; Natarajan, P.; Morris, S.B.; Gold, J.A.W.; Fanfair, R.N.; Rogers-Brown, J.; Rossow, J.; et al. COVID-19 Clinical Phenotypes: Presentation and Temporal Progression of Disease in a Cohort of Hospitalized Adults in Georgia, United States. Open Forum Infect. Dis. 2021, 8, ofaa596. [Google Scholar] [CrossRef] [PubMed]
- Pretorius, E.; Vlok, M.; Venter, C.; Bezuidenhout, J.A.; Laubscher, G.J.; Steenkamp, J.; Kell, D.B. Persistent clotting protein pathology in Long COVID/Post-Acute Sequelae of COVID-19 (PASC) is accompanied by increased levels of antiplasmin. Cardiovasc. Diabetol. 2021, 20, 172. [Google Scholar] [CrossRef] [PubMed]
- Shuwa, H.A.; Shaw, T.N.; Knight, S.B.; Wemyss, K.; McClure, F.A.; Pearmain, L.; Prise, I.; Jagger, C.; Morgan, D.J.; Khan, S.; et al. Alterations in T and B cell function persist in convalescent COVID-19 patients. Med 2021, 2, 720–735.e4. [Google Scholar] [CrossRef]
- Sivan, M.; Parkin, A.; Makower, S.; Greenwood, D.C. Post-COVID syndrome symptoms, functional disability, and clinical severity phenotypes in hospitalized and nonhospitalized individuals: A cross-sectional evaluation from a community COVID rehabilitation service. J. Med. Virol. 2021, 94, 1419–1427. [Google Scholar] [CrossRef]
- Evans, R.A.; McAuley, H.; Harrison, E.M.; Shikotra, A.; Singapuri, A.; Sereno, M.; Elneima, O.; Docherty, A.B.; I Lone, N.; Leavy, O.C.; et al. Physical, cognitive, and mental health impacts of COVID-19 after hospitalisation (PHOSP-COVID): A UK multicentre, prospective cohort study. Lancet Respir. Med. 2021, 9, 1275–1287. [Google Scholar] [CrossRef] [PubMed]
- Rachael, E.; Leicester University, Leicester, UK. Tocilizumab in Post-Hospital Inflammatory Long Covid Study (PHOSP-I). Personal email communication, 2003. [Google Scholar]
- Davis, H.E.; McCorkell, L.; Vogel, J.M.; Topol, E.J. Long COVID: Major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 2023, 21, 133–146. [Google Scholar] [CrossRef] [PubMed]
- Covidence Systematic Review Software, Veritas Health Innovation, Melbourne, Australia. Available online: www.covidence.org (accessed on 15 December 2023).
- Study Quality Assessment Tools|NHLBI, NIH. Available online: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools (accessed on 30 January 2024).
- Akbarialiabad, H.; Taghrir, M.H.; Abdollahi, A.; Ghahramani, N.; Kumar, M.; Paydar, S.; Razani, B.; Mwangi, J.; Asadi-Pooya, A.A.; Malekmakan, L.; et al. Long COVID, a comprehensive systematic scoping review. Infection 2021, 49, 1163–1186. [Google Scholar] [CrossRef] [PubMed]
- Anaya, J.-M.; Rojas, M.; Salinas, M.L.; Rodríguez, Y.; Roa, G.; Lozano, M.; Rodríguez-Jiménez, M.; Montoya, N.; Zapata, E.; Monsalve, D.M.; et al. Post-COVID syndrome. A case series and comprehensive review. Autoimmun. Rev. 2021, 20, 102947. [Google Scholar] [CrossRef] [PubMed]
- Bergantini, L.; Mainardi, A.; D’alessandro, M.; Cameli, P.; Bennett, D.; Bargagli, E.; Sestini, P. Common Molecular Pathways Between Post-COVID19 Syndrome and Lung Fibrosis: A Scoping Review. Front. Pharmacol. 2022, 13, 748931. [Google Scholar] [CrossRef] [PubMed]
- Castanares-Zapatero, D.; Chalon, P.; Kohn, L.; Dauvrin, M.; Detollenaere, J.; de Noordhout, C.M.; Jong, C.P.-D.; Cleemput, I.; Heede, K.V.D. Pathophysiology and mechanism of long COVID: A comprehensive review. Ann. Med. 2022, 54, 1473–1487. [Google Scholar] [CrossRef]
- Ceban, F.; Ling, S.; Lui, L.M.; Lee, Y.; Gill, H.; Teopiz, K.M.; Rodrigues, N.B.; Subramaniapillai, M.; Di Vincenzo, J.D.; Cao, B.; et al. Fatigue and cognitive impairment in Post-COVID-19 Syndrome: A systematic review and meta-analysis. Brain Behav. Immun. 2022, 101, 93–135. [Google Scholar] [CrossRef]
- Garg, M.; Maralakunte, M.; Garg, S.; Dhooria, S.; Sehgal, I.; Bhalla, A.S.; Vijayvergiya, R.; Grover, S.; Bhatia, V.; Jagia, P.; et al. The conundrum of long-covid-19: A narrative review. Int. J. Gen. Med. 2021, 14, 2491–2506. [Google Scholar] [CrossRef]
- Houben, S.; Bonnechère, B. The Impact of COVID-19 Infection on Cognitive Function and the Implication for Rehabilitation: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 7748. [Google Scholar] [CrossRef]
- Hussain, N.; Agarwala, P.; Iqbal, K.; Omar, H.M.S.; Jangid, G.; Patel, V.; Rathore, S.S.; Kumari, C.; Velasquez-Botero, F.; López, G.A.B.; et al. A systematic review of acute telogen effluvium, a harrowing post-COVID-19 manifestation. J. Med. Virol. 2022, 94, 1391–1401. [Google Scholar] [CrossRef]
- Joshee, S.; Vatti, N.; Chang, C. Long-Term Effects of COVID-19. Mayo Clin. Proc. 2022, 97, 579–599. [Google Scholar] [CrossRef]
- Meyer, P.T.; Hellwig, S.; Blazhenets, G.; Hosp, J.A. Molecular imaging findings on acute and long-term effects of COVID-19 on the brain: A systematic review. J. Nucl. Med. 2022, 63, 971–980. [Google Scholar] [CrossRef]
- Pierce, J.D.; Shen, Q.; Cintron, S.A.; Hiebert, J.B. Post-COVID-19 Syndrome. Nurs. Res. 2022, 71, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Piri, S.M.; Edalatfar, M.; Shool, S.; Jalalian, M.N.; Tavakolpour, S. A systematic review on the recurrence of SARS-CoV-2 virus: Frequency, risk factors, and possible explanations. Infect. Dis. 2021, 53, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, M.S.; Bertolino, L.; Zampino, R.; Durante-Mangoni, E.; Iossa, D.; Ursi, M.P.; D’Amico, F.; Karruli, A.; Andini, R.; Bernardo, M.; et al. Cardiac sequelae after coronavirus disease 2019 recovery: A systematic review. Clin. Microbiol. Infect. 2021, 27, 1250–1261. [Google Scholar] [CrossRef] [PubMed]
- Renaud-Charest, O.; Lui, L.M.; Eskander, S.; Ceban, F.; Ho, R.; Di Vincenzo, J.D.; Rosenblat, J.D.; Lee, Y.; Subramaniapillai, M.; McIntyre, R.S. Onset and frequency of depression in post-COVID-19 syndrome: A systematic review. J. Psychiatr. Res. 2021, 144, 129–137. [Google Scholar] [CrossRef]
- Salamanna, F.; Veronesi, F.; Martini, L.; Landini, M.P.; Fini, M. Post-COVID-19 Syndrome: The Persistent Symptoms at the Post-viral Stage of the Disease. A Systematic Review of the Current Data. Front. Med. 2021, 8, 653516. [Google Scholar] [CrossRef]
- Sansone, A.; Mollaioli, D.; Limoncin, E.; Ciocca, G.; Bắc, N.H.; Cao, T.N.; Hou, G.; Yuan, J.; Zitzmann, M.; Giraldi, A.; et al. The Sexual Long COVID (SLC): Erectile Dysfunction as a Biomarker of Systemic Complications for COVID-19 Long Haulers. Sex. Med. Rev. 2022, 10, 271–285. [Google Scholar] [CrossRef]
- Tesarz, J.; Nees, F. Pain, the brain, and SARS-CoV-2: Evidence for pain-specific alterations in brain-related structure–function properties. Neuroforum 2022, 28, 105–116. [Google Scholar] [CrossRef]
- Willi, S.; Lüthold, R.; Hunt, A.; Hänggi, N.V.; Sejdiu, D.; Scaff, C.; Bender, N.; Staub, K.; Schlagenhauf, P. COVID-19 sequelae in adults aged less than 50 years: A systematic review. Travel Med. Infect. Dis. 2021, 40, 101995. [Google Scholar] [CrossRef]
- Apple, A.C.; Oddi, A.; Peluso, M.J.; Asken, B.M.; Henrich, T.J.; Kelly, J.D.; Pleasure, S.J.; Deeks, S.G.; Allen, I.E.; Martin, J.N.; et al. Risk factors and abnormal cerebrospinal fluid associate with cognitive symptoms after mild COVID-19. Ann. Clin. Transl. Neurol. 2022, 9, 221–226. [Google Scholar] [CrossRef]
- Beaudry, R.I.; Brotto, A.R.; Varughese, R.A.; de Waal, S.; Fuhr, D.P.; Damant, R.W.; Ferrara, G.; Lam, G.Y.; Smith, M.P.; Stickland, M.K. Persistent dyspnea after COVID-19 is not related to cardiopulmonary impairment; a cross-sectional study of persistently dyspneic COVID-19, non-dyspneic COVID-19 and controls. Front. Physiol. 2022, 13, 917886. [Google Scholar] [CrossRef] [PubMed]
- Besteher, B.; Machnik, M.; Troll, M.; Toepffer, A.; Zerekidze, A.; Rocktäschel, T.; Heller, C.; Kikinis, Z.; Brodoehl, S.; Finke, K.; et al. Larger gray matter volumes in neuropsychiatric long-COVID syndrome. Psychiatry Res. 2022, 317, 114836. [Google Scholar] [CrossRef]
- Chudzik, M.; Cender, A.; Mordaka, R.; Zielinski, J.; Katarzynska, J.; Marcinek, A.; Gebicki, J. Chronic Fatigue Associated with Post-COVID Syndrome versus Transient Fatigue Caused by High-Intensity Exercise: Are They Comparable in Terms of Vascular Effects? Vasc. Health Risk Manag. 2022, 18, 711–719. [Google Scholar] [CrossRef]
- Clark, D.E.; Dendy, J.M.; Li, D.L.; Crum, K.; Dixon, D.; George-Durrett, K.; Parikh, A.P.; Wassenaar, J.W.; Hughes, S.G.; Soslow, J.H. Cardiovascular magnetic resonance evaluation of soldiers after recovery from symptomatic SARS-CoV-2 infection: A case–control study of cardiovascular post-acute sequelae of SARS-CoV-2 infection (CV PASC). J. Cardiovasc. Magn. Reson. 2021, 23, 106–109. [Google Scholar] [CrossRef] [PubMed]
- Crunfli, F.; Carregari, V.C.; Veras, F.P.; Silva, L.S.; Nogueira, M.H.; Antunes, A.S.L.M.; Vendramini, P.H.; Valença, A.G.F.; Brandão-Teles, C.; Zuccoli, G.d.S.; et al. Morphological, cellular, and molecular basis of brain infection in COVID-19 patients. Proc. Natl. Acad. Sci. USA 2022, 119, e2200960119. [Google Scholar] [CrossRef]
- Dennis, A.; Cuthbertson, D.J.; Wootton, D.; Crooks, M.; Gabbay, M.; Eichert, N.; Mouchti, S.; Pansini, M.; Roca-Fernandez, A.; Thomaides-Brears, H.; et al. Multi-organ impairment and long COVID: A 1-year prospective, longitudinal cohort study. J. R. Soc. Med. 2023, 116, 97–112. [Google Scholar] [CrossRef] [PubMed]
- Durstenfeld, M.; Peluso, M.; Win, S.; Deeks, S.; Hsue, P.Y. ROLE OF Antibodies, Inflammatory Markers, and Echocardiographic Findings in Post-Acute Cardiopulmonary Symptoms after SARS-CoV-2 Infection. J. Am. Coll. Cardiol. 2022, 79, 2108. [Google Scholar] [CrossRef]
- Durstenfeld, M.S.; Peluso, M.J.; Kaveti, P.; Hill, C.; Li, D.; Sander, E.; Swaminathan, S.; Arechiga, V.M.; Lu, S.; A Goldberg, S.; et al. Reduced Exercise Capacity, Chronotropic Incompetence, and Early Systemic Inflammation in Cardiopulmonary Phenotype Long Coronavirus Disease 2019. J. Infect. Dis. 2023, 228, 542–554. [Google Scholar] [CrossRef]
- Fancourt, D.; Steptoe, A.; Bu, F. Psychological consequences of long COVID: Comparing trajectories of depressive and anxiety symptoms before and after contracting SARS-CoV-2 between matched long- and short-COVID groups. Br. J. Psychiatry 2023, 222, 74–81. [Google Scholar] [CrossRef]
- Ferrando, S.J.; Dornbush, R.; Lynch, S.; Shahar, S.; Klepacz, L.; Karmen, C.L.; Chen, D.; Lobo, S.A.; Lerman, D. Neuropsychological, Medical, and Psychiatric Findings after Recovery from Acute COVID-19: A Cross-sectional Study. J. Acad. Consult. Liaison Psychiatry 2022, 63, 474–484. [Google Scholar] [CrossRef] [PubMed]
- Files, J.K.; Sarkar, S.; Fram, T.R.; Boppana, S.; Sterrett, S.; Qin, K.; Bansal, A.; Long, D.M.; Sabbaj, S.; Kobie, J.J.; et al. Duration of post-COVID-19 symptoms are associated with sustained SARS-CoV-2 specific immune responses. J. Clin. Investig. 2021, 6, e151544. [Google Scholar] [CrossRef] [PubMed]
- Flaskamp, L.; Roubal, C.; Uddin, S.; Sotzny, F.; Kedor, C.; Bauer, S.; Scheibenbogen, C.; Seifert, M. Serum of Post-COVID-19 Syndrome Patients with or without ME/CFS Differentially Affects Endothelial Cell Function In Vitro. Cells 2022, 11, 2376. [Google Scholar] [CrossRef] [PubMed]
- Finlay, J.B.; Brann, D.H.; Abi-Hachem, R.; Jang, D.W.; Oliva, A.D.; Ko, T.; Gupta, R.; Wellford, S.A.; Moseman, E.A.; Jang, S.S.; et al. Persistent Post-COVID-19 Smell Loss Is Associated with Inflammatory Infiltration and Altered Olfactory Epithelium. Sci Transl. Med. 2022, 14, eadd0484. [Google Scholar] [CrossRef] [PubMed]
- Fogarty, H.; Townsend, L.; Morrin, H.; Ahmad, A.; Comerford, C.; Karampini, E.; Englert, H.; Byrne, M.; Bergin, C.; O’sullivan, J.M.; et al. Persistent endotheliopathy in the pathogenesis of long COVID syndrome. J. Thromb. Haemost. 2021, 19, 2546–2553. [Google Scholar] [CrossRef] [PubMed]
- Galán, M.; Vigón, L.; Fuertes, D.; Murciano-Antón, M.A.; Casado-Fernández, G.; Domínguez-Mateos, S.; Mateos, E.; Ramos-Martín, F.; Planelles, V.; Torres, M.; et al. Persistent Overactive Cytotoxic Immune Response in a Spanish Cohort of Individuals with Long-COVID: Identification of Diagnostic Biomarkers. Front. Immunol. 2022, 13, 848886. [Google Scholar] [CrossRef] [PubMed]
- Giron, L.B.; Peluso, M.J.; Ding, J.; Kenny, G.; Zilberstein, N.F.; Koshy, J.; Hong, K.Y.; Rasmussen, H.; Miller, G.E.; Bishehsari, F.; et al. Markers of fungal translocation are elevated during post-acute sequelae of SARS-CoV-2 and induce NF-kappaB signaling. J. Clin. Investig. 2022, 7, e160989. [Google Scholar] [CrossRef]
- Glynne, P.; Tahmasebi, N.; Gant, V.; Gupta, R. Long COVID following mild SARS-CoV-2 infection: Characteristic T cell alterations and response to antihista-mines. J. Investig. Med. 2022, 70, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Gorecka, M.; Jex, N.; Thirunavukarasu, S.; Chowdhary, A.; Corrado, J.; Davison, J.; Tarrant, R.; Poenar, A.-M.; Sharrack, N.; Parkin, A.; et al. Cardiovascular magnetic resonance imaging and spectroscopy in clinical long-COVID-19 syndrome: A prospective case–control study. J. Cardiovasc. Magn. Reson. 2022, 24, 50. [Google Scholar] [CrossRef]
- Grist, J.T.; Collier, G.J.; Walters, H.; Kim, M.; Chen, M.; Abu Eid, G.; Laws, A.; Matthews, V.; Jacob, K.; Cross, S.; et al. Lung Abnormalities Detected with Hyperpolarized 129Xe MRI in Patients with Long COVID. Radiology 2022, 305, 709–717. [Google Scholar] [CrossRef]
- Guo, P.; Ballesteros, A.B.; Yeung, S.P.; Liu, R.; Saha, A.; Curtis, L.; Kaser, M.; Haggard, M.P.; Cheke, L.G. COVCOG 2: Cognitive and Memory Deficits in Long COVID: A Second Publication from the COVID and Cognition Study. Front. Aging Neurosci. 2022, 14, 804937. [Google Scholar] [CrossRef] [PubMed]
- Holmes, E.; Wist, J.; Masuda, R.; Lodge, S.; Nitschke, P.; Kimhofer, T.; Loo, R.L.; Begum, S.; Boughton, B.; Yang, R.; et al. Incomplete Systemic Recovery and Metabolic Phenoreversion in Post-Acute-Phase Nonhospitalized COVID-19 Patients: Implications for Assessment of Post-Acute COVID-19 Syndrome. J. Proteome Res. 2021, 20, 3315–3329. [Google Scholar] [CrossRef] [PubMed]
- Izzo, R.; Trimarco, V.; Mone, P.; Aloè, T.; Marzani, M.C.; Diana, A.; Fazio, G.; Mallardo, M.; Maniscalco, M.; Marazzi, G.; et al. Combining L-Arginine with vitamin C improves long-COVID symptoms: The LINCOLN Survey. Pharmacol. Res. 2022, 183, 106360. [Google Scholar] [CrossRef] [PubMed]
- Klein, J.; Wood, J.; Jaycox, J.R.; Dhodapkar, R.M.; Lu, P.; Gehlhausen, J.R.; Tabachnikova, A.; Greene, K.; Tabacof, L.; Malik, A.A.; et al. Distinguishing features of long COVID identified through immune profiling. Nature 2023, 623, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Kravchenko, D.; Isaak, A.; Zimmer, S.; Mesropyan, N.; Reinert, M.; Faron, A.; Pieper, C.C.; Heine, A.; Velten, M.; Nattermann, J.; et al. Cardiac MRI in Patients with Prolonged Cardiorespiratory Symptoms after Mild to Moderate COVID-19. Radiology 2021, 301, E419–E425. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Riskedal, E.; Kalleberg, K.T.; Istre, M.; Lind, A.; Lund-Johansen, F.; Reiakvam, O.; Søraas, A.V.L.; Harris, J.R.; Dahl, J.A.; et al. EWAS of post-COVID-19 patients shows methylation differences in the immune-response associated gene, IFI44L, three months after COVID-19 infection. Sci. Rep. 2022, 12, 11478. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, A.; Gysan, M.; Bernitzky, D.; Bal, C.; Prosch, H.; Zehetmayer, S.; Milos, R.-I.; Vonbank, K.; Pohl, W.; Idzko, M.; et al. Comparison of pulmonary function test, diffusion capacity, blood gas analysis and CT scan in patients with and without persistent respiratory symptoms following COVID-19. BMC Pulm. Med. 2022, 22, 196. [Google Scholar] [CrossRef] [PubMed]
- Littlefield, K.M.; Watson, R.O.; Schneider, J.M.; Neff, C.P.; Yamada, E.; Zhang, M.; Campbell, T.B.; Falta, M.T.; Jolley, S.E.; Fontenot, A.P.; et al. SARS-CoV-2-specific T cells associate with inflammation and reduced lung function in pulmonary post-acute sequalae of SARS-CoV-2. PLOS Pathog. 2022, 18, e1010359. [Google Scholar] [CrossRef] [PubMed]
- Maamar, M.; Artime, A.; Pariente, E.; Fierro, P.; Ruiz, Y.; Gutiérrez, S.; Tobalina, M.; Díaz-Salazar, S.; Ramos, C.; Olmos, J.M.; et al. Post-COVID-19 syndrome, low-grade inflammation and inflammatory markers: A cross-sectional study. Curr. Med. Res. Opin. 2022, 38, 901–909. [Google Scholar] [CrossRef]
- Maes, M.; Al-Rubaye, H.T.; Almulla, A.F.; Al-Hadrawi, D.S.; Stoyanova, K.; Kubera, M.; Al-Hakeim, H.K. Lowered Quality of Life in Long COVID Is Predicted by Affective Symptoms, Chronic Fatigue Syndrome, Inflammation and Neuroimmunotoxic Pathways. Int. J. Environ. Res. Public Health 2022, 19, 10362. [Google Scholar] [CrossRef]
- Martini, A.L.; Carli, G.; Kiferle, L.; Piersanti, P.; Palumbo, P.; Morbelli, S.; Calcagni, M.L.; Perani, D.; Sestini, S. Time-dependent recovery of brain hypometabolism in neuro-COVID-19 patients. Eur. J. Nucl. Med. Mol. Imaging 2022, 50, 90–102. [Google Scholar] [CrossRef]
- Matheson, A.M.; McIntosh, M.J.; Kooner, H.K.; Lee, J.; Desaigoudar, V.; Bier, E.; Driehuys, B.; Svenningsen, S.; Santyr, G.E.; Kirby, M.; et al. Persistent 129Xe MRI Pulmonary and CT Vascular Abnormalities in Symptomatic Individuals with Post-Acute COVID-19 Syndrome. Radiology 2022, 305, 466–476. [Google Scholar] [CrossRef] [PubMed]
- Munker, D.; Veit, T.; Barton, J.; Mertsch, P.; Mümmler, C.; Osterman, A.; Khatamzas, E.; Barnikel, M.; Hellmuth, J.C.; Münchhoff, M.; et al. Pulmonary function impairment of asymptomatic and persistently symptomatic patients 4 months after COVID-19 according to disease severity. Infection 2022, 50, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Patterson, B.K.; Francisco, E.B.; Yogendra, R.; Long, E.; Pise, A.; Rodrigues, H.; Hall, E.; Herrera, M.; Parikh, P.; Guevara-Coto, J.; et al. Persistence of SARS CoV-2 S1 Protein in CD16+ Monocytes in Post-Acute Sequelae of COVID-19 (PASC) up to 15 Months Post-Infection. Front. Immunol. 2021, 12, 746021. [Google Scholar] [CrossRef] [PubMed]
- Peluso, M.J.; Lu, S.; Tang, A.F.; Durstenfeld, M.S.; Ho, H.-E.; A Goldberg, S.; A Forman, C.; E Munter, S.; Hoh, R.; Tai, V.; et al. Markers of Immune Activation and Inflammation in Individuals with Postacute Sequelae of Severe Acute Respiratory Syndrome Coronavirus 2 Infection. J. Infect. Dis. 2021, 224, 1839–1848. [Google Scholar] [CrossRef]
- Peluso, M.J.; Deveau, T.-M.; Munter, S.E.; Ryder, D.; Buck, A.; Beck-Engeser, G.; Chan, F.; Lu, S.; Goldberg, S.A.; Hoh, R.; et al. Chronic viral coinfections differentially affect the likelihood of developing long COVID. J. Clin. Investig. 2023, 133. [Google Scholar] [CrossRef]
- Peluso, M.J.; Sans, H.M.; Forman, C.A.; Nylander, A.N.; Ho, H.-E.; Lu, S.; Goldberg, S.A.; Hoh, R.; Tai, V.; Munter, S.E.; et al. Plasma Markers of Neurologic Injury and Inflammation in People with Self-Reported Neurologic Postacute Sequelae of SARS-CoV-2 Infection. Neurol. Neuroimmunol. Neuroinflamm. 2022, 9, e200003. [Google Scholar] [CrossRef]
- Roca-Fernandez, A.; Wamil, M.; Telford, A.; Carapella, V.; Borlotti, A.; Monteiro, D.; Thomaides-Brears, H.; Dennis, A.; Banerjee, R.; Robson, M.D.; et al. Cardiac impairment in Long Covid 1-year post SARS-CoV-2 infection. Eur. Heart J. 2022, 43, ehac544.219. [Google Scholar] [CrossRef]
- Schultheiß, C.; Willscher, E.; Paschold, L.; Gottschick, C.; Klee, B.; Henkes, S.-S.; Bosurgi, L.; Dutzmann, J.; Sedding, D.; Frese, T.; et al. The IL-1β, IL-6, and TNF cytokine triad is associated with post-acute sequelae of COVID-19. Cell Rep. Med. 2022, 3, 100663. [Google Scholar] [CrossRef]
- Singh, I.; Joseph, P.; Heerdt, P.M.; Cullinan, M.; Lutchmansingh, D.D.; Gulati, M.; Possick, J.D.; Systrom, D.M.; Waxman, A.B. Persistent Exertional Intolerance after COVID-19: Insights from Invasive Cardiopulmonary Exercise Testing. Chest 2021, 161, 54–63. [Google Scholar] [CrossRef]
- Sollini, M.; Ciccarelli, M.; Cecconi, M.; Aghemo, A.; Morelli, P.; Gelardi, F.; Chiti, A. Vasculitis changes in COVID-19 survivors with persistent symptoms: An [18F]FDG-PET/CT study. Eur. J. Nucl. Med. 2020, 48, 1460–1466. [Google Scholar] [CrossRef] [PubMed]
- Sollini, M.; Morbelli, S.; Ciccarelli, M.; Cecconi, M.; Aghemo, A.; Morelli, P.; Chiola, S.; Gelardi, F.; Chiti, A. Long COVID hallmarks on [18F]FDG-PET/CT: A case-control study. Eur. J. Nucl. Med. 2021, 48, 3187–3197. [Google Scholar] [CrossRef]
- Talla, A.; Vasaikar, S.V.; Szeto, G.L.; Lemos, M.P.; Czartoski, J.L.; MacMillan, H.; Moodie, Z.; Cohen, K.W.; Fleming, L.B.; Thomson, Z.; et al. Persistent serum protein signatures define an inflammatory subset of long COVID. bioRxiv 2022, 2022-05. [Google Scholar] [CrossRef]
- Visvabharathy, L.; Hanson, B.A.; Orban, Z.S.; Lim, P.H.; Palacio, N.M.; Jimenez, M.; Clark, J.R.; Graham, E.L.; Liotta, E.M.; Tachas, G.; et al. Neuro-PASC is characterized by enhanced CD4+ and diminished CD8+ T cell responses to SARS-CoV-2 Nucleocapsid protein. Front. Immunol. 2023, 14, 1155770. [Google Scholar] [CrossRef] [PubMed]
- Weinstock, L.B.; Brook, J.B.; Walters, A.S.; Goris, A.; Afrin, L.B.; Molderings, G.J. Mast cell activation symptoms are prevalent in Long-COVID. Int. J. Infect. Dis. 2021, 112, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.Z.; Granberg, T.; Shams, R.; Petersson, S.; Sköld, M.; Nyrén, S.; Lundberg, J. Lung perfusion disturbances in nonhospitalized post-COVID with dyspnea—A magnetic resonance imaging feasibility study. J. Intern. Med. 2022, 292, 941–956. [Google Scholar] [CrossRef] [PubMed]
- Giamarellos-Bourboulis, E.J.; Netea, M.G.; Rovina, N.; Akinosoglou, K.; Antoniadou, A.; Antonakos, N.; Damoraki, G.; Gkavogianni, T.; Adami, M.-E.; Katsaounou, P.; et al. Complex Immune Dysregulation in COVID-19 Patients with Severe Respiratory Failure. Cell Host Microbe 2020, 27, 992–1000.e3. [Google Scholar] [CrossRef]
- University of Glasgow—University News—First Results from Largescale Long-COVID Study. Available online: https://www.gla.ac.uk/news/headline_885987_en.html (accessed on 15 December 2023).
- A Slater, T.; Straw, S.; Drozd, M.; Kamalathasan, S.; Cowley, A.; Witte, K.K. Dying ‘due to’ or ‘with’ COVID-19: A cause of death analysis in hospitalised patients. Clin. Med. 2020, 20, e189–e190. [Google Scholar] [CrossRef]
- Hui, D.S.; Joynt, G.M.; Wong, K.T.; Gomersall, C.D.; Li, T.S.; Antonio, G.; Ko, F.W.; Chan, M.C.; Chan, D.P.; Tong, M.W.; et al. Impact of severe acute respiratory syndrome (SARS) on pulmonary function, functional capacity and quality of life in a cohort of survivors. Thorax 2005, 60, 401–409. [Google Scholar] [CrossRef]
- Espinosa-Gonzalez, A.B.; Master, H.; Gall, N.; Halpin, S.; Rogers, N.; Greenhalgh, T. Orthostatic tachycardia after COVID-19. BMJ 2023, 380, e073488. [Google Scholar] [CrossRef]
- Hastie, C.E.; Lowe, D.J.; McAuley, A.; Winter, A.J.; Mills, N.L.; Black, C.; Scott, J.T.; O’donnell, C.A.; Blane, D.N.; Browne, S.; et al. Outcomes among confirmed cases and a matched comparison group in the Long-COVID in Scotland study. Nat. Commun. 2022, 13, 5663. [Google Scholar] [CrossRef] [PubMed]
Inclusion | Exclusion |
---|---|
|
|
Study ID | Title | Is the Review Based on a Focused Question That Is Adequately Formulated and Described? | Were Eligibility Criteria for Included and Excluded Studies Predefined and Specified? | Did the Literature Search Strategy Use a Comprehensive, Systematic Approach? | Were Titles, Abstracts, and Full-text Articles Dually and Independently Reviewed for Inclusion and Exclusion to Minimize Bias? | Was the Quality of Each Included Study Rated Independently by Two or More Reviewers Using a Standard Method to Appraise Its Internal Validity? | Were the Included Studies Listed along with Important Characteristics and Results of Each Study? | Was Publication Bias Assessed? |
---|---|---|---|---|---|---|---|---|
Akbarialiabad 2021 [20] | Long COVID, a comprehensive systematic scoping review. | Yes | Yes | Yes | Yes | No | No | No |
Anaya 2021 [21] | Post-COVID syndrome. A case series and comprehensive review | No | Yes | Yes | Yes | No | No | No |
Bergantini 2022 [22] | Common Molecular Pathways Between Post-COVID19 Syndrome and Lung Fibrosis: A Scoping Review. | Yes | Yes | Yes | Yes | Yes | No | No |
Castanares-Zapatero 2022 [23] | Pathophysiology and mechanism of long COVID: a comprehensive review. | Yes | Yes | No | Yes | No | No | No |
Ceban 2022 [24] | Fatigue and cognitive impairment in Post-COVID-19 Syndrome: A systematic review and meta-analysis. | Yes | Yes | Yes | Yes | Yes | Yes | No |
Garg 2021 [25] | The conundrum of ‘long-covid-19: A narrative review | No | No | No | No | No | No | No |
Houben 2022 [26] | The Impact of COVID-19 Infection on Cognitive Function and the Implication for Rehabilitation: A Systematic Review and Meta-Analysis | Yes | Yes | Yes | No | Yes | Yes | No |
Hussain 2022 [27] | A systematic review of acute telogen effluvium, a harrowing post-COVID-19 manifestation. | Yes | Yes | Yes | Yes | Yes | Yes | No |
Joshee 2022 [28] | Long-Term Effects of COVID-19 | Yes | No | No | No | No | Yes | No |
Meyer 2022 [29] | Molecular imaging findings on acute and long-term effects of COVID-19 on the brain: A systematic review. | No | No | Yes | No | No | No | No |
Michelen 2021 [7] | Characterising long COVID: a living systematic review. | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Pierce 2022 [30] | Post-COVID-19 Syndrome. | No | No | Yes | No | Yes | No | No |
Piri 2021 [31] | A systematic review on the recurrence of SARS-CoV-2 virus: frequency, risk factors, and possible explanations. | Yes | No | Yes | No | No | No | No |
Ramadan 2021 [32] | Cardiac sequelae after coronavirus disease 2019 recovery: a systematic review. | Yes | Yes | Yes | Yes | Yes | Yes | No |
Renaud-Charest 2021 [33] | Onset and frequency of depression in post-COVID-19 syndrome: A systematic review. | Yes | Yes | Yes | Yes | Yes | Yes | No |
Salamanna 2021 [34] | Post-COVID-19 Syndrome: The Persistent Symptoms at the Post-viral Stage of the Disease. A Systematic Review of the Current Data | Yes | Yes | Yes | Yes | Yes | Yes | No |
Sansone 2022 [35] | The Sexual Long COVID (SLC): Erectile Dysfunction as a Biomarker of Systemic Complications for COVID-19 Long Haulers. | Yes | No | Yes | No | No | No | No |
Tesarz 2022 [36] | Pain, the brain, and SARS-CoV-2: Evidence for pain-specific alterations in brain-related structure-function properties | No | No | No | No | No | No | No |
Willi 2021 [37] | COVID-19 sequelae in adults aged less than 50 years: A systematic review. | Yes | Yes | Yes | Yes | Yes | Yes | No |
Study ID | Number of Participants | Was the Research Q or Objective in This Paper Clearly Stated and Appropriate? | Was the Study Population Clearly Specified and Defined? | Did the Authors Include a Sample Size Justification? | Were Controls Selected or Recruited from the Same or Similar Population That Gave Rise to the Cases (Including the Same Timeframe)? | Were the Definitions, Inclusion and Exclusion Criteria, Algorithms or Processes Used to Identify or Select Cases and Controls Valid, Reliable, and Implemented Consistently Across All Study Participants? | Were the Cases Clearly Defined and Differentiated from Controls? | If Less than 100 Percent of Eligible Cases and/or Controls Were Selected for the Study, Were the Cases and/or Controls Randomly Selected from Those Eligible? | Was There Use of Concurrent Controls? | Were the Investigators Able to Confirm That the Exposure/Risk Occurred Prior to the Development of the Condition or Event That Defined a Participant as a Case? | Were the Measures of Exposure/Risk Clearly Defined, Valid, Reliable, and Implemented Consistently (Including the Same Time Period) across all Study Participatns? | Were the Assessors of Exposure/Risk Blinded to the Case or Control Status of Participants? | Were Key Potential Confounding Variables Measured and Adjusted Statistically in the Analyses? If Matching Was Used, Did the Investigators Account for Matching during Study Analysis? |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Apple 2022 [38] | 22 | Yes | Yes | No | Yes | Yes | Yes | No | No | No | Yes | No | No |
Beaudry 2022 [39] | 66 | Yes | Yes | Yes | Yes | Yes | Yes | No | No | Yes | Yes | No | No |
Besteher 2022 [40] | 50 | Yes | Yes | No | Yes | Yes | Yes | No | No | Yes | Yes | No | No |
Chudzik 2022 [41] | 103 | Yes | Yes | No | Yes | Yes | Yes | No | No | No | Yes | No | No |
Clark 2021 [42] | 100 | Yes | Yes | No | No | Yes | Yes | No | No | No | No | No | No |
Crunfli 2022 [43] | 26 | Yes | No | No | Yes | Yes | Yes | No | No | No | Yes | No | No |
Dennis 2023 [44] | 2460 | Yes | Yes | Yes | No | Yes | Yes | No | No | No | No | No | No |
Durstenfeld 2022 [45] | 102 | Yes | Yes | No | Yes | Yes | No | No | No | No | Yes | Yes | No |
Durstenfeld 2023 [46] | 60 | Yes | Yes | No | Yes | Yes | No | No | No | No | Yes | Yes | No |
Fancourt 2022 [47] | 1457 | Yes | Yes | No | Yes | Yes | Yes | No | Yes | No | Yes | No | Yes |
Ferrando 2022 [48] | 60 | Yes | Yes | No | Yes | Yes | Yes | No | Yes | No | Yes | No | No |
Files 2021 [49] | 24 | Yes | Yes | No | Yes | Yes | Yes | No | Yes | Yes | Yes | No | No |
Flaskamp 2022 [50] | 44 | Yes | Yes | No | Yes | Yes | Yes | No | Yes | Yes | Yes | No | No |
Finlay 2022 [51] | 50 | Yes | No | No | No | No | Yes | No | No | Yes | Yes | No | No |
Fogarty 2021 [52] | 67 | Yes | No | No | Yes | Yes | No | No | No | No | Yes | No | No |
Galan 2022 [53] | 50 | Yes | Yes | No | Yes | Yes | Yes | No | Yes | Yes | Yes | No | No |
Giron 2022 [54] | 217 | Yes | Yes | No | Yes | Yes | Yes | No | No | Yes | Yes | No | Yes |
Glynne 2022 [55] | 65 | Yes | Yes | No | Yes | Yes | Yes | No | No | Yes | Yes | Yes | No |
Gorecka 2022 [56] | 30 | Yes | Yes | Yes | Yes | Yes | Yes | No | No | Yes | Yes | Yes | No |
Grist 2022 [57] | 38 | Yes | No | No | Yes | Yes | No | No | No | Yes | Yes | Yes | No |
Guo 2022 [58] | 421 | Yes | Yes | No | Yes | Yes | Yes | No | Yes | No | Yes | No | Yes |
Holmes 2021 [59] | 86 | Yes | No | No | No | No | No | No | No | No | No | No | No |
Izzo 2022 [60] | 1390 | Yes | Yes | No | Yes | Yes | Yes | Yes | No | Yes | Yes | No | No |
Klein 2022 [61] | 215 | Yes | No | No | Yes | Yes | Yes | No | No | Yes | Yes | No | Yes |
Kravchenko 2021 [62] | 83 | Yes | Yes | No | Yes | Yes | Yes | No | No | Yes | Yes | Yes | No |
Lee 2022 [63] | 182 | Yes | Yes | No | Yes | Yes | No | No | No | Yes | No | No | Yes |
Lehmann 2022 [64] | 135 | Yes | Yes | No | Yes | Yes | Yes | No | No | Yes | Yes | No | No |
Littlefield 2022 [65] | 60 | No | Yes | No | Yes | Yes | Yes | No | No | Yes | Yes | No | Yes |
Maamar 2022 [66] | 121 | Yes | Yes | No | Yes | Yes | Yes | No | No | Yes | Yes | No | Yes |
Maes 2022 [67] | 125 | Yes | No | No | Yes | Yes | No | No | No | Yes | Yes | No | Yes |
Martini 2022 [68] | 26 | Yes | Yes | No | No | Yes | Yes | N/A | No | Yes | No | No | No |
Matheson 2022 [69] | 34 | Yes | Yes | No | Yes | Yes | Yes | No | No | Yes | Yes | Yes | No |
Munker 2022 [70] | 76 | Yes | Yes | No | Yes | Yes | No | No | No | Yes | Yes | No | No |
Patterson 2021 [71] | 144 | Yes | No | No | Yes | Yes | Yes | No | No | Yes | Yes | No | No |
Peluso 2021 [72] | 121 | Yes | Yes | No | Yes | Yes | Yes | No | No | Yes | Yes | No | Yes |
Peluso 2022 [73] | 121 | Yes | Yes | No | Yes | Yes | Yes | No | No | Yes | Yes | No | No |
Peluso 2022 [74] | 280 | Yes | Yes | No | Yes | Yes | Yes | No | No | Yes | Yes | No | Yes |
Roca-Fernandez 2022 [75] | 1151 | Yes | No | No | Yes | Yes | No | No | No | Yes | Yes | No | No |
Schultheiss 2021 [76] | 318 | Yes | Yes | No | Yes | Yes | Yes | Yes | No | Yes | Yes | No | No |
Singh 2021 [77] | 20 | Yes | Yes | No | No | Yes | Yes | No | No | Yes | No | No | No |
Sollini 2020 [78] | 20 | Yes | No | No | No | Yes | Yes | No | No | No | No | No | No |
Sollini 2021 [79] | 39 | Yes | Yes | Yes | No | Yes | Yes | No | No | Yes | Yes | No | No |
Talla 2022 [80] | 101 | Yes | Yes | No | Yes | Yes | Yes | No | No | Yes | Yes | No | Yes |
Visvabharathy 2021 [81] | 159 | Yes | Yes | No | Yes | Yes | Yes | No | No | Yes | Yes | No | No |
Weinstock 2021 [82] | 352 | Yes | Yes | No | Yes | Yes | Yes | No | No | Yes | Yes | No | No |
Yu 2022 [83] | 50 | Yes | Yes | No | Yes | Yes | Yes | No | Yes | Yes | Yes | No | No |
Pathophysiology Identified | Biomarkers | Potential Treatment Target | Suggestions for Trials |
---|---|---|---|
Persisting virus | Viral RNA, Viral proteins | Live SARS-CoV-2 | Antivirals |
Immune activation | Flow cytometry and phenotyping panels, antigen specific activation studies, IL6, IL8 TNF Alpha | TNF Alpha | Anti TNF Alpha class drugs |
Autoantibodies | ELISA panels | Specific autoantibodies | Specific auto-antibody therapy (BC007-aptamer) |
Endothelial damage | Reactive hyperaemia and brachial artery ultrasound. CRP | endothelial function and inflammation | Statins, Colchicine, risk prevention, PD-E5 inhibitors, rehabilitation. |
CNS damage | FDG-PET | Treat inflammation and endothelial damage | As a cause |
Activated platelets | Platelet activation tests. P-selectin | Anti platelet therapy | Anti platelet therapy |
Clotting abnormalities | Staining and microscopy or cell counting for microclots, VWF:Ag ratio | Factor Xa | DOAC |
Mast cell activity | Clinical scoring | H1 receptors | Antihistamines |
Dysautonomia | Lean test for POTS | Cardiac rate limitation, volume expansion | Non-pharmacological, Beta blockers, Ivabradine, Midodrine, Fludrocortisone, rehabilitation |
Decreased oxygen delivery | Mixed venous oxygen | Tissue oxygenation | Hyperbaric Oxygen Therapy |
Lung damage | DLCO, Xe MRI | Treat associated pathology | As cause. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diar Bakerly, N.; Smith, N.; Darbyshire, J.L.; Kwon, J.; Bullock, E.; Baley, S.; Sivan, M.; Delaney, B. Pathophysiological Mechanisms in Long COVID: A Mixed Method Systematic Review. Int. J. Environ. Res. Public Health 2024, 21, 473. https://doi.org/10.3390/ijerph21040473
Diar Bakerly N, Smith N, Darbyshire JL, Kwon J, Bullock E, Baley S, Sivan M, Delaney B. Pathophysiological Mechanisms in Long COVID: A Mixed Method Systematic Review. International Journal of Environmental Research and Public Health. 2024; 21(4):473. https://doi.org/10.3390/ijerph21040473
Chicago/Turabian StyleDiar Bakerly, Nawar, Nikki Smith, Julie L. Darbyshire, Joseph Kwon, Emily Bullock, Sareeta Baley, Manoj Sivan, and Brendan Delaney. 2024. "Pathophysiological Mechanisms in Long COVID: A Mixed Method Systematic Review" International Journal of Environmental Research and Public Health 21, no. 4: 473. https://doi.org/10.3390/ijerph21040473
APA StyleDiar Bakerly, N., Smith, N., Darbyshire, J. L., Kwon, J., Bullock, E., Baley, S., Sivan, M., & Delaney, B. (2024). Pathophysiological Mechanisms in Long COVID: A Mixed Method Systematic Review. International Journal of Environmental Research and Public Health, 21(4), 473. https://doi.org/10.3390/ijerph21040473