Health-Related Physical Fitness Evaluation in HIV-Diagnosed Children and Adolescents: A Scoping Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preliminary Search
2.2. Review Questions
2.3. Protocol and Checklist
2.4. Inclusion Criteria
2.4.1. Participants
2.4.2. Concept
2.4.3. Context
2.5. Types of Evidence Sources
2.6. Text Access
2.7. Search Strategy
2.8. Evidence Screening and Selection
2.9. Data Extraction
2.10. Data Analysis
2.11. Presentation of Results
3. Results
3.1. Search
3.2. Characteristic of Studies (Period of Publication, Regions, Design, Studies Purpose, and Samples)
3.3. Health-Related Physical Fitness Components
3.4. Investigation of Physical Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Brasil, Ministério da Saúde. Protocolo Clínico e Diretrizes Terapêuticas para Manejo da Infecção pelo HIV em Crianças e Adolescentes; Secretaria de Vigilância em Saúde; Departamento de DST, Aids e Hepatites Virais: Rio de Janeiro, Brazil, 2014. [Google Scholar]
- Gortmaker, S.L.; Hughes, M.; Cervia, J.; Brady, M.; Johnson, G.M.; Seage, G.R., 3rd; Song, L.Y.; Dankner, W.M.; Oleske, J.M. Effect of combination therapy including protease inhibitors on mortality among children and adolescents infected with HIV-1. N. Engl. J. Med. 2001, 345, 1522–1528. [Google Scholar] [CrossRef] [PubMed]
- Hazra, R.; Siberry, G.K.; Mofenson, L.M. Growing up with HIV: Children, adolescents, and young adults with perinatally acquired HIV infection. Annu. Rev. Med. 2010, 61, 169–185. [Google Scholar] [CrossRef] [PubMed]
- Fortuny, C.; Deya, A.; Chiappini, E.; Galli, L.; De Martino, M.; Noguera-Julian, A. Metabolic and Renal Adverse Effects of Antiretroviral Therapy in HIV-Infected Children and Adolescents. Pediatr. Infect. Dis. J. 2015, 34, S36–S43. [Google Scholar] [CrossRef] [PubMed]
- McComsey, G.A.; Leonard, E. Metabolic complications of HIV therapy in children. AIDS 2004, 18, 1753–1768. [Google Scholar] [CrossRef] [PubMed]
- Joint United Nations Programme on HIV/AIDS (UNAIDS). Danger: UNAIDS Global AIDS Update 2022; UNAIDS: Geneva, Switzerland, 2022. [Google Scholar]
- Miller, T.L.; Awnetwant, E.L.; Evans, S.; Morris, V.M.; Vazquez, I.M.; McIntosh, K. Gastrostomy tube supplementation for HIV-infected children. Pediatrics 1995, 96, 696–702. [Google Scholar] [CrossRef] [PubMed]
- Arpadi, S.M.; Cuff, P.A.; Kotler, D.P.; Wang, J.; Bamji, M.; Lange, M.; Pierson, R.N.; Matthews, D.E. Growth velocity, fat-free mass energy intake are inversely related to viral load in HIV-infected children. J. Nutr. 2000, 130, 2498–2502. [Google Scholar] [CrossRef] [PubMed]
- Gafni, R.I.; Hazra, R.; Reynolds, J.C.; Maldarelli, F.; Tullio, A.N.; DeCarlo, E.; Worrell, C.J.; Flaherty, J.F.; Yale, K.; Kearney, B.P.; et al. Tenofovir disoproxil fumarate and an optimized background regimen of antiretroviral agents as salvage therapy: Impact on bone mineral density in HIV-infected children. Pediatrics 2006, 118, e711–e718. [Google Scholar] [CrossRef] [PubMed]
- Hartman, K.; Verweel, G.; de Groot, R.; Hartwig, N.G. Detection of lipoatrophy in human immunodeficiency virus-1-infected children treated with highly active antiretroviral therapy. Pediatr. Infect. Dis. J. 2006, 25, 427–431. [Google Scholar] [CrossRef] [PubMed]
- Arpadi, S.M.; Bethel, J.; Horlick, M.; Sarr, M.; Bamji, M.; Abrams, E.J.; Purswani, M.; Engelson, E.S. Longitudinal changes in regional fat content in HIV-infected children and adolescents. AIDS 2009, 23, 1501–1509. [Google Scholar] [CrossRef]
- Agustinho, A.; Escobal, N.; Bologna, R.; Bravo, M.; Buchovsky, A.; Araujo, M.B.; Mazza, C. Prevalencia de factores de riesgo de enfermedad cardiovascular en niños y adolescentes con infección por HIV. Med. Infant 2014, 21, 301–309. [Google Scholar]
- Vreeman, R.C.; Nyandiko, W.M.; Liechty, E.A.; Busakhala, N.; Bartelink, I.H.; Savic, R.M.; Scanlon, M.L.; Ayaya, S.O.; Blaschke, T.F. Impact of adherence and anthropometric characteristics on nevirapine pharmacokinetics and exposure among HIV-infected Kenyan children. J. Acquir. Immune Defic. Syndr. 2014, 67, 277–286. [Google Scholar] [CrossRef]
- Cohen, S.; Innes, S.; Geelen, S.P.M.; Wells, J.C.K.; Smit, C.; Wolfs, T.F.W.; van Eck-Smit, B.L.F.; Kuijpers, T.W.; Reiss, P.; Scherpbier, H.J.; et al. Long-Term Changes of Subcutaneous Fat Mass in HIV-Infected Children on Antiretroviral Therapy: A Retrospective Analysis of Longitudinal Data from Two Pediatric HIV-Cohorts. PLoS ONE 2015, 10, e0120927, Erratum in PLoS ONE 2015, 13, e0190726. [Google Scholar] [CrossRef]
- Jiménez, B.; Sainz, T.; Díaz, L.; Mellado, M.J.; Navarro, M.L.; Rojo, P.; González-Tomé, M.I.; Prieto, L.; Martínez, J.; de José, M.I.; et al. Low Bone Mineral Density in Vertically HIV-infected Children and Adolescents: Risk Factors and the Role of T-cell Activation and Senescence. Pediatr. Infect. Dis. J. 2017, 36, 578–583. [Google Scholar] [CrossRef]
- Innes, S.; van der Laan, L.; Anderson, P.L.; Cotton, M.; Denti, P. Can We Improve Stavudine’s Safety Profile in Children? Pharmacokinetics of Intracellular Stavudine Triphosphate with Reduced Dosing. Antimicrob. Agents Chemother. 2018, 62, e00761-18. [Google Scholar] [CrossRef]
- Sudjaritruk, T.; Bunupuradah, T.; Aurpibul, L.; Kanjanavanit, S.; Chotecharoentanan, T.; Sricharoen, N.; Ounchanum, P.; Suntarattiwong, P.; Pornpaisalsakul, K.; Puthanakit, T.; et al. Impact of Vitamin D and Calcium Supplementation on Bone Mineral Density and Bone Metabolism Among Thai Adolescents with Perinatally Acquired Human Immunodeficiency Virus (HIV) Infection: A Randomized Clinical Trial. Clin. Infect. Dis. 2021, 73, 1555–1564. [Google Scholar] [CrossRef]
- Dirajlal-Fargo, S.; Jacobson, D.L.; Yu, W.; Mirza, A.; Geffner, M.E.; Jao, J.; McComsey, G.A. Gut Dysfunction Markers Are Associated with Body Composition in Youth Living with Perinatally Acquired Human Immunodeficiency Virus. Clin. Infect. Dis. 2022, 75, 945–952. [Google Scholar] [CrossRef]
- Mukwasi-Kahari, C.; Rehman, A.M.; Ó Breasail, M.; Rukuni, R.; Madanhire, T.; Chipanga, J.; Stranix-Chibanda, L.; Micklesfield, L.K.; Ferrand, R.A.; Ward, K.A.; et al. Impaired Bone Architecture in Peripubertal Children With HIV, Despite Treatment with Antiretroviral Therapy: A Cross-Sectional Study from Zimbabwe. J. Bone Miner. Res. 2023, 38, 248–260. [Google Scholar] [CrossRef]
- Natukunda, E.; Szubert, A.; Otike, C.; Namyalo, I.; Nambi, E.; Bamford, A.; Doerholt, K.; Gibb, D.M.; Musiime, V.; Musoke, P. Bone mineral density among children living with HIV failing first-line anti-retroviral therapy in Uganda: A sub-study of the CHAPAS-4 trial. PLoS ONE 2023, 18, e0288877. [Google Scholar] [CrossRef]
- Gregson, C.L.; Rehman, A.M.; Rukuni, R.; Mukwasi-Kahari, C.; Madanhire, T.; Kowo-Nyakoko, F.; Breasail, M.; Jeena, L.; McHugh, G.; Filteau, S.; et al. Perinatal HIV infection is associated with deficits in muscle function in children and adolescents: A cross-sectional study in Zimbabwe. AIDS 2023, 38, 853–863. [Google Scholar] [CrossRef]
- Keyser, R.E.; Peralta, L.; Cade, W.T.; Miller, S.; Anixt, J. Functional aerobic impairment in adolescents seropositive for HIV: A quasiexperimental analysis. Arch. Phys. Med. Rehabil. 2000, 81, 1479–1484. [Google Scholar] [CrossRef]
- Cade, W.T.; Peralta, L.; Keyser, R.E. Aerobic capacity in late adolescents infected with HIV and controls. Pediatr. Rehabil. 2002, 5, 161–169. [Google Scholar] [CrossRef]
- Somarriba, G.; Lopez-Mitnik, G.; Ludwig, D.A.; Neri, D.; Schaefer, N.; Lipshultz, S.E.; Scott, G.B.; Miller, T.L. Physical fitness in children infected with the human immunodeficiency virus: Associations with highly active antiretroviral therapy. AIDS Res. Hum. Retroviruses 2013, 29, 112–120. [Google Scholar] [CrossRef]
- de Lima, L.R.A.; Santos Silva, D.A.; Samara da Silva, K.; Pelegrini, A.; de Carlos Back, I.; Petroski, E.L. Aerobic Fitness and Moderate to Vigorous Physical Activity in Children and Adolescents Living with HIV. Pediatr. Exerc. Sci. 2017, 29, 377–387. [Google Scholar] [CrossRef]
- Metgud, D.C.; Chheda, R.J. Muscle strength, flexibility and cardiorespiratory endurance in children with human immunodeficiency virus on antiretroviral therapy: A case control study. Sri Lanka J. Child Health 2022, 51, 560–564. [Google Scholar] [CrossRef]
- Barros, C.; Araújo, T.; Andrade, E.; Cruciani, F.; Matsudo, V. Avaliação das variáveis de força muscular, agilidade e composição corporal em crianças vivendo com HIV/AIDS. Rev. Bras. Ciên. E Mov. 2006, 14, 47–54. [Google Scholar]
- Miller, T.L.; Somarriba, G.; Kinnamon, D.D.; Weinberg, G.A.; Friedman, L.B.; Scott, G.B. The effect of a structured exercise program on nutrition and fitness outcomes in human immunodeficiency virus-infected children. AIDS Res. Hum. Retroviruses 2010, 26, 313–319. [Google Scholar] [CrossRef]
- Macdonald, H.; Nettlefold, L.; Maan, E.J.; Côté, H.; Alimenti, A. Muscle power in children, youth and young adults who acquired HIV perinatally. J. Musculoskelet. Neuronal Interact. 2017, 17, 27–37. [Google Scholar]
- Potterton, J.; Strehlau, R.; Shiau, S.; Comley-White, N.; Kuhn, L.; Arpadi, S. Muscle strength in young children perinatally infected with HIV who were initiated on antiretroviral therapy early. SAJCH South Afr. J. Child Health 2021, 15, 107–111. [Google Scholar]
- Chirindza, N.; Leach, L.; Mangona, L.; Nhaca, G.; Daca, T.; Prista, A. Body composition, physical fitness and physical activity in Mozambican children and adolescents living with HIV. PLoS ONE 2022, 17, e0275963. [Google Scholar] [CrossRef]
- de Castro, J.A.C.; de Lima, L.R.A.; Silva, D.A.S. Accuracy of octa-polar bioelectrical impedance analysis for the assessment of total and appendicular body composition in children and adolescents with HIV: Comparison with dual energy X-ray absorptiometry and air displacement plethysmography. J. Hum. Nutr. Diet. 2018, 31, 276–285. [Google Scholar] [CrossRef]
- de Lima, L.R.A.; Back, I.d.C.; Nunes, E.A.; Silva, D.A.S.; Petroski, E.L. Aerobic fitness and physical activity are inversely associated with body fat, dyslipidemia and inflammatory mediators in children and adolescents living with HIV. J. Sports Sci. 2019, 37, 50–58. [Google Scholar] [CrossRef]
- de Lima, L.R.A.; Silva, D.A.S.; do Nascimento Salvador, P.C.; Alves Junior, C.A.S.; Martins, P.C.; de Castro, J.A.C.; Guglielmo, L.G.A.; Petroski, E.L. Prediction of peak VO2 in Children and Adolescents With HIV From an Incremental Cycle Ergometer Test. Res. Q. Exerc. Sport 2019, 90, 163–171. [Google Scholar] [CrossRef]
- Palchetti, C.Z.; Patin, R.V.; Machado, D.M.; Szejnfeld, V.L.; Succi, R.C.; Oliveira, F.L. Body composition in prepubertal, HIV-infected children: A comparison of bioelectrical impedance analysis and dual-energy X-ray absorptiometry. Nutr. Clin. Pract. 2013, 28, 247–252. [Google Scholar] [CrossRef]
- Alves Junior, C.A.S.; de Lima, L.R.A.; de Souza, M.C.; Silva, D.A.S. Anthropometric measures associated with fat mass estimation in children and adolescents with HIV. Appl. Physiol. Nutr. Metab. 2019, 44, 493–498. [Google Scholar] [CrossRef]
- Margossian, R.; Williams, P.L.; Yu, W.; Jacobson, D.L.; Geffner, M.E.; DiMeglio, L.A.; Van Dyke, R.B.; Spector, S.A.; Schuster, G.U.; Stephensen, C.B.; et al. Markers of Bone Mineral Metabolism and Cardiac Structure and Function in Perinatally HIV-Infected and HIV-Exposed but Uninfected Children and Adolescents. J. Acquir. Immune Defic. Syndr. 2019, 81, 238–246. [Google Scholar] [CrossRef]
- Shiau, S.; Yin, M.T.; Strehlau, R.; Burke, M.; Patel, F.; Kuhn, L.; Coovadia, A.; Norris, S.A.; Arpadi, S.M. Deficits in Bone Architecture and Strength in Children Living With HIV on Antiretroviral Therapy. J. Acquir. Immune Defic. Syndr. 2020, 84, 101–106. [Google Scholar] [CrossRef]
- Andrade, L.B.d.; Nogueira, T.F.; Vargas, D.M. Height adjustment reduces occurrence of low bone mineral density in children and adolescents with HIV. Rev. Assoc. Med. Bras. 2021, 67, 1240–1245. [Google Scholar] [CrossRef]
- Rukuni, R.; Rehman, A.M.; Mukwasi-Kahari, C.; Madanhire, T.; Kowo-Nyakoko, F.; McHugh, G.; Filteau, S.; Chipanga, J.; Simms, V.; Mujuru, H.; et al. Effect of HIV infection on growth and bone density in peripubertal children in the era of antiretroviral therapy: A cross-sectional study in Zimbabwe. Lancet Child. Adolesc. Health 2021, 5, 569–581. [Google Scholar] [CrossRef]
- Rego, C.V.; Potterton, J.L. Motor function, muscle strength and health-related quality of life of children perinatally infected with HIV. S. Afr. J. Physiother. 2022, 78, 1812. [Google Scholar] [CrossRef]
- Alves Junior, C.A.S.; Martins, P.C.; Gonçalves, E.C.D.A.; de Lima, L.R.A.; Luiz Petroski, É.; Silva, D.A.S. Association between lipid and glycemic profile and total body and trunk fat in children and adolescents diagnosed with HIV+. Clin. Nutr. ESPEN 2023, 53, 7–12. [Google Scholar] [CrossRef]
- Bhise, S.; Jain, A.; Savardekar, L.; Shetty, N.; Shah, I. Bone health in HIV-infected children on antiretroviral therapy: An Indian study. Indian J. Sex. Transm. Dis. AIDS 2021, 42, 138–143. [Google Scholar] [CrossRef]
- Giacomet, V.; Lazzarin, S.; Manzo, A.; Paradiso, L.; Maruca, K.; Barera, G.; Zuccotti, G.V.; Mora, S. Body Fat Distribution and Metabolic Changes in a Cohort of Adolescents Living With HIV Switched to an Antiretroviral Regimen Containing Dolutegravir. Pediatr. Infect. Dis. J. 2021, 40, 457–459. [Google Scholar] [CrossRef]
- Jacobson, D.; Liu, J.Z.; Lindsey, J.C.; Shiau, S.; Coull, B.; Aldrovandi, G. Immune Markers and Their Association with Bone Density in Children, Adolescents, and Young Adults with Perinatally Acquired HIV. AIDS Res. Hum. Retroviruses 2021, 37, 122–129. [Google Scholar] [CrossRef]
- Lindsey, J.C.; Jacobson, D.L.; Spiegel, H.M.; Gordon, C.M.; Hazra, R.; Siberry, G.K. Safety and Efficacy of 48 and 96 Weeks of Alendronate in Children and Adolescents With Perinatal Human Immunodeficiency Virus Infection and Low Bone Mineral Density for Age. Clin. Infect. Dis. 2021, 72, 1059–1063. [Google Scholar] [CrossRef]
- Martins, P.C.; Alves Junior, C.A.S.; Lima, L.R.A.; Petroski, E.L.; Silva, D.A.S. Does antiretroviral therapy change the relationship between body composition and muscle strength in children and adolescents diagnosed with HIV? HIV Res. Clin. Pract. 2022, 23, 22–27. [Google Scholar]
- Bar-Or, O.; Rowland, T.W. Pediatric Exercise Medicine: From Physiologic Principles to Health Care Application; Human Kinetics: Champaign, IL, USA, 2004. [Google Scholar]
- Kenney, W.L.; Wilmore, J.H.; Costill, D.L. Physiology of Sport and Exercise; Human Kinetics: Champaign, IL, USA, 2021. [Google Scholar]
- Lima, L.R.A.d.; Back, I.d.C.; Beck, C.C.; Caramelli, B. Exercise Improves Cardiovascular Risk Factors, Fitness, and Quality Of Life in Hiv+ Children and Adolescents: Pilot Study. Int. J. Cardiovasc. Sci. 2017, 30, 171–176. [Google Scholar] [CrossRef]
- Malete, L.; Tladi, D.M.; Etnier, J.L.; Makhanda, J.; Anabwani, G.M. Examining psychosocial correlates of physical activity and sedentary behavior in youth with and without HIV. PLoS ONE 2019, 14, e0225890. [Google Scholar] [CrossRef]
- Naidoo, C.N.; Benjamin-Damons, N.; Strehlau, R.; Potterton, J. The effects of a home exercise programme on the exercise endurance of children infected with HIV. S. Afr. J. Child Health 2020, 14, 174–179. [Google Scholar]
- Poitras, V.J.; Gray, C.E.; Borghese, M.M.; Carson, V.; Chaput, J.P.; Janssen, I.; Katzmarzyk, P.T.; Pate, R.R.; Connor Gorber, S.; Kho, M.E.; et al. Systematic review of the relationships between objectively measured physical activity and health indicators in school-aged children and youth. Appl. Physiol. Nutr. Metab. Physiol. Appl. Nutr. Et Metab. 2016, 41, S197–S239. [Google Scholar] [CrossRef]
- Gomes-Neto, M.; Rodriguez, I.; Lédo, A.P.; Vieira, J.P.B.; Brites, C. Muscle Strength and Aerobic Capacity in HIV-Infected Patients: A Systematic Review and Meta-Analysis. J. Acquir. Immune Defic. Syndr. 2018, 79, 491–500. [Google Scholar] [CrossRef]
- de Medeiros, R.; dos Santos, I.K.; de Oliveira, A.L.V.; de Goes, C.J.D.; de Medeiros, J.A.; da Silva, T.A.L.; Araujo, J.D.; Varela, P.W.D.; Cobucci, R.N.; Cabral, B.; et al. Comparison of Muscle Strength, Aerobic Capacity and Body Composition between Healthy Adolescents and Those Living with HIV: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 18, 5675. [Google Scholar] [CrossRef]
- Peters, M.D.J.; Marnie, C.; Tricco, A.C.; Pollock, D.; Munn, Z.; Alexander, L.; McInerney, P.; Godfrey, C.M.; Khalil, H. Updated methodological guidance for the conduct of scoping reviews. JBI Evid. Synth. 2020, 18, 2119–2126. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- UNICEF, D. HIV Statistics-Global and Regional Trends-UNICEF DATA. Available online: https://data.unicef.org/topic/hivaids/global-regional-trends/(accessed on 12 September 2023).
- Falk, B.; Dotan, R. Measurement and Interpretation of Maximal Aerobic Power in Children. Pediatr. Exerc. Sci. 2019, 31, 144–151. [Google Scholar] [CrossRef]
- Lemos, T.; Gallagher, D. Current body composition measurement techniques. Curr. Opin. Endocrinol. Diabetes Obes. 2017, 24, 310–314. [Google Scholar] [CrossRef]
- Lohman, T.G.; Hingle, M.; Going, S.B. Body composition in children. Pediatr. Exerc. Sci. 2013, 25, 573–590. [Google Scholar] [CrossRef]
- Marasso, D.; Lupo, C.; Collura, S.; Rainoldi, A.; Brustio, P.R. Subjective versus Objective Measure of Physical Activity: A Systematic Review and Meta-Analysis of the Convergent Validity of the Physical Activity Questionnaire for Children (PAQ-C). Int. J. Environ. Res. Public. Health 2021, 18, 3413. [Google Scholar] [CrossRef]
- Marques, A.; Henriques-Neto, D.; Peralta, M.; Martins, J.; Gomes, F.; Popovic, S.; Masanovic, B.; Demetriou, Y.; Schlund, A.; Ihle, A. Field-Based Health-Related Physical Fitness Tests in Children and Adolescents: A Systematic Review. Front. Pediatr. 2021, 9, 640028. [Google Scholar] [CrossRef]
- Arpadi, S.M.; Wang, J.; Cuff, P.A.; Thornton, J.; Horlick, M.; Kotler, D.P.; Pierson, R.N. Application of bioimpedance analysis for estimating body composition in prepubertal children infected with human immunodeficiency virus type 1. J. Pediatr. 1996, 129, 755–757. [Google Scholar] [CrossRef]
- Heller, L.; Fox, S.; Hell, K.J.; Church, J.A. Development of an instrument to assess nutritional risk factors for children infected with human immunodeficiency virus. J. Am. Diet. Assoc. 2000, 100, 323–329. [Google Scholar] [CrossRef]
- Ellis, K.J.; Shypailo, R.J.; Hardin, D.S.; Perez, M.D.; Motil, K.J.; Wong, W.W.; Abrams, S.A. Z score prediction model for assessment of bone mineral content in pediatric diseases. J. Bone Miner. Res. 2001, 16, 1658–1664. [Google Scholar] [CrossRef]
- Horlick, M.; Arpadi, S.M.; Bethel, J.; Wang, J.; Moye, J., Jr.; Cuff, P.; Pierson, R.N., Jr.; Kotler, D. Bioelectrical impedance analysis models for prediction of total body water and fat-free mass in healthy and HIV-infected children and adolescents. Am. J. Clin. Nutr. 2002, 76, 991–999. [Google Scholar] [CrossRef]
- Mora, S.; Viganò, A.; Cafarelli, L.; Pattarino, G.; Giacomet, V.; Gabiano, C.; Mignone, F.; Zuccotti, G. Applicability of quantitative ultrasonography of the radius and tibia in HIV-infected children and adolescents. J. Acquir. Immune Defic. Syndr. 2009, 51, 588–592. [Google Scholar] [CrossRef]
- Innes, S.; Schulte-Kemna, E.; Cotton, M.F.; Zöllner, E.W.; Haubrich, R.; Klinker, H.; Sun, X.; Jain, S.; Edson, C.; van Niekerk, M.; et al. Biceps skin-fold thickness may detect and predict early lipoatrophy in HIV-infected children. Pediatr. Infect. Dis. J. 2013, 32, e254–e262. [Google Scholar] [CrossRef]
- Lima, L.R.A.D.; Krug, R.D.R.; Silva, R.C.R.D.; Carvalho, A.P.D.; González-Chica, D.A.; Back, I.D.C.; Petroski, E.L. Prediction of Areal Bone Mineral Density and Bone Mineral Content in Children and Adolescents Living With HIV Based on Anthropometric Variables. J. Clin. Densitom. 2016, 19, 457–464. [Google Scholar] [CrossRef]
- Lima, L.R.A.D.; Martins, P.C.; Junior, C.A.S.A.; Castro, J.A.C.D.; Silva, D.A.S.; Petroski, E.L. Are traditional body fat equations and anthropometry valid to estimate body fat in children and adolescents living with HIV? Braz. J. Infect. Dis. 2017, 21, 448–456. [Google Scholar] [CrossRef]
- de Castro, J.A.C.; de Lima, L.R.A.; Silva, D.A.S. Bone Mineral Content Prediction by Bioelectrical Impedance Analysis in Children and Adolescents Diagnosed with HIV Infection: Comparison with Dual Energy X-ray Absorptiometry: A Cross-Sectional Study. Appl. Sci. 2022, 12, 12466. [Google Scholar] [CrossRef]
- Roberts, J.A.; Shen, Y.; Strehlau, R.; Patel, F.; Kuhn, L.; Coovadia, A.; Kaufman, J.J.; Shiau, S.; Arpadi, S.M.; Yin, M.T. Comparison of quantitative ultrasonography and dual X-ray absorptiometry for bone status assessment in South African children living with HIV. PLoS ONE 2022, 17, e0276290. [Google Scholar] [CrossRef]
- Lang, J.J.; Zhang, K.; Agostinis-Sobrinho, C.; Andersen, L.B.; Basterfield, L.; Berglind, D.; Blain, D.O.; Cadenas-Sanchez, C.; Cameron, C.; Carson, V.; et al. Top 10 International Priorities for Physical Fitness Research and Surveillance Among Children and Adolescents: A Twin-Panel Delphi Study. Sports Med. 2023, 53, 549–564. [Google Scholar] [CrossRef]
- Ruiz, J.R.; Castro-Piñero, J.; Artero, E.G.; Ortega, F.B.; Sjöström, M.; Suni, J.; Castillo, M.J. Predictive validity of health-related fitness in youth: A systematic review. Br. J. Sports Med. 2009, 43, 909–923. [Google Scholar] [CrossRef]
- Busch, E.L. Cut points and contexts. Cancer 2021, 127, 4348–4355. [Google Scholar] [CrossRef] [PubMed]
- Sirard, J.R.; Pate, R.R. Physical Activity Assessment in Children and Adolescents. Sports Med. 2001, 31, 439–454. [Google Scholar] [CrossRef] [PubMed]
- de Onis, M.; Onyango, A.W.; Borghi, E.; Siyam, A.; Nishida, C.; Siekmann, J. Development of a WHO growth reference for school-aged children and adolescents. Bull. World Health Organ. 2007, 85, 660–667. [Google Scholar] [CrossRef] [PubMed]
- Gaya, A.R.; Gaya, A.C.A.; Pedretti, A.; Mello, J.B. Projeto Esporte Brasil, PROESP-Br: Manual de Medidas, Testes e Avaliações; UFRGS/ESEFID: Porto Alegre, Brazil, 2021. [Google Scholar]
- Meredith, M.D.; Welk, G. Fitnessgram and Activitygram Test Administration Manual-Updated, 4th ed.; Human Kinetics: Champaign, IL, USA, 2010. [Google Scholar]
- Selik, R.M.; Mokotoff, E.D.; Branson, B.; Owen, S.M.; Whitmore, S.; Hall, H.I. Revised surveillance case definition for HIV infection—United States, 2014. Morb. Mortal. Wkly. Rep. Recomm. Rep. 2014, 63, 1–10. [Google Scholar]
- World Health Organization. Consolidated Guidelines on the Use of Antiretroviral Drugs for Treating and Preventing HIV Infection: Recommendations for a Public Health Approach; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Kolimechkov, S.; Petrov, L.; Alexandrova, A. Alpha-fit test battery norms for children and adolescents from 5 to 18 years of age obtained by a linear interpolation of existing European physical fitness references. Eur. J. Phys. Educ. Sport. Sci. 2019, 5, 1–11. [Google Scholar]
- Mora, S.; Zamproni, I.; Beccio, S.; Bianchi, R.; Giacomet, V.; Viganò, A. Longitudinal changes of bone mineral density and metabolism in antiretroviral-treated human immunodeficiency virus-infected children. J. Clin. Endocrinol. Metab. 2004, 89, 24–28. [Google Scholar] [CrossRef]
- Jacobson, D.L.; Spiegelman, D.; Duggan, C.; Weinberg, G.A.; Bechard, L.; Furuta, L.; Nicchitta, J.; Gorbach, S.L.; Miller, T.L. Predictors of bone mineral density in human immunodeficiency virus-1 infected children. J. Pediatr. Gastroenterol. Nutr. 2005, 41, 339–346. [Google Scholar] [CrossRef]
- Chantry, C.J.; Frederick, M.M.; Meyer, W.A., 3rd; Handelsman, E.; Rich, K.; Paul, M.E.; Diaz, C.; Cooper, E.R.; Foca, M.; Adeniyi-Jones, S.K.; et al. Endocrine abnormalities and impaired growth in human immunodeficiency virus-infected children. Pediatr. Infect. Dis. J. 2007, 26, 53–60. [Google Scholar] [CrossRef]
- Aldrovandi, G.M.; Lindsey, J.C.; Jacobson, D.L.; Zadzilka, A.; Sheeran, E.; Moye, J.; Borum, P.; Meyer, W.A., 3rd; Hardin, D.S.; Mulligan, K. Morphologic and metabolic abnormalities in vertically HIV-infected children and youth. AIDS 2009, 23, 661–672. [Google Scholar] [CrossRef]
- Jacobson, D.L.; Lindsey, J.C.; Gordon, C.M.; Moye, J.; Hardin, D.S.; Mulligan, K.; Aldrovandi, G.M.; Pediatric AIDS Clinical Trials Group P1045 Team. Total body and spinal bone mineral density across Tanner stage in perinatally HIV-infected and uninfected children and youth in PACTG 1045. AIDS 2010, 24, 687–696. [Google Scholar] [CrossRef]
- Miller, T.L.; Somarriba, G.; Orav, E.J.; Mendez, A.J.; Neri, D.; Schaefer, N.; Forster, L.; Goldberg, R.; Scott, G.B.; Lipshultz, S.E. Biomarkers of vascular dysfunction in children infected with human immunodeficiency virus-1. J. Acquir. Immune Defic. Syndr. 2010, 55, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, D.L.; Patel, K.; Siberry, G.K.; Van Dyke, R.B.; DiMeglio, L.A.; Geffner, M.E.; Chen, J.S.; McFarland, E.J.; Borkowsky, W.; Silio, M.; et al. Body fat distribution in perinatally HIV-infected and HIV-exposed but uninfected children in the era of highly active antiretroviral therapy: Outcomes from the Pediatric HIV/AIDS Cohort Study. Am. J. Clin. Nutr. 2011, 94, 1485–1495. [Google Scholar] [CrossRef]
- Ramalho, L.C.D.; Gonçalves, E.M.; de Carvalho, W.R.G.; Guerra, G.; Centeville, M.; Aoki, F.H.; Morcillo, A.M.; Vilela, M.M.D.; da Silva, M.T.N. Abnormalities in body composition and nutritional status in HIV-infected children and adolescents on antiretroviral therapy. Int. J. STD AIDS 2011, 22, 453–456. [Google Scholar] [CrossRef] [PubMed]
- Tremeschin, M.H.; Sartorelli, D.S.; Cervi, M.C.; Negrini, B.V.d.M.; Salomão, R.G.; Monteiro, J.P. Nutritional assessment and lipid profile in HIV-infected children and adolescents treated with highly active antiretroviral therapy. Rev. Soc. Bras. Med. Trop. 2011, 44, 274–281. [Google Scholar]
- Lindsey, J.C.; Jacobson, D.L.; Li, H.; Houseman, E.A.; Aldrovandi, G.M.; Mulligan, K. Using cluster heat maps to investigate relationships between body composition and laboratory measurements in HIV-infected and HIV-uninfected children and young adults. J. Acquir. Immune Defic. Syndr. 2012, 59, 325–328. [Google Scholar] [CrossRef]
- Miller, T.L.; Borkowsky, W.; DiMeglio, L.A.; Dooley, L.; Geffner, M.E.; Hazra, R.; McFarland, E.J.; Mendez, A.J.; Patel, K.; Siberry, G.K.; et al. Metabolic abnormalities and viral replication are associated with biomarkers of vascular dysfunction in HIV-infected children. HIV Med. 2012, 13, 264–275. [Google Scholar] [CrossRef] [PubMed]
- DiMeglio, L.A.; Wang, J.; Siberry, G.K.; Miller, T.L.; Geffner, M.E.; Hazra, R.; Borkowsky, W.; Chen, J.S.; Dooley, L.; Patel, K.; et al. Bone mineral density in children and adolescents with perinatal HIV infection. AIDS 2013, 27, 211–220. [Google Scholar] [CrossRef]
- Musiime, V.; Cook, A.; Kayiwa, J.; Zangata, D.; Nansubuga, C.; Arach, B.; Kenny, J.; Wavamunno, P.; Komunyena, J.; Kabamba, D.; et al. Anthropometric measurements and lipid profiles to detect early lipodystrophy in antiretroviral therapy experienced HIV-infected children in the CHAPAS-3 trial. Antivir. Ther. 2014, 19, 269–276. [Google Scholar] [CrossRef]
- Mora, S.; Puzzovio, M.; Giacomet, V.; Fabiano, V.; Maruca, K.; Capelli, S.; Nannini, P.; Lombardi, G.; Zuccotti, G.V. Sclerostin and DKK-1: Two important regulators of bone metabolism in HIV-infected youths. Endocrine 2015, 49, 783–790. [Google Scholar] [CrossRef]
- Arpadi, S.M.; Shiau, S.; Strehlau, R.; Patel, F.; Mbete, N.; McMahon, D.J.; Kaufman, J.J.; Coovadia, A.; Kuhn, L.; Yin, M.T. Efavirenz is associated with higher bone mass in South African children with HIV. AIDS 2016, 30, 2459–2467. [Google Scholar] [CrossRef]
- Wong, M.; Shiau, S.; Yin, M.T.; Strehlau, R.; Patel, F.; Coovadia, A.; Micklesfield, L.K.; Kuhn, L.; Arpadi, S.M. Decreased Vigorous Physical Activity in School-Aged Children with Human Immunodeficiency Virus in Johannesburg, South Africa. J. Pediatr. 2016, 172, 103–109. [Google Scholar] [CrossRef]
- Martins, P.C.; De Lima, L.R.A.; Teixeira, D.M.; De Carvalho, A.P.; Petroski, E.L. Physical activity and body fat in adolescents living with HIV: A comparative study. Rev. Paul. Pediatr. 2017, 35, 69–77. [Google Scholar] [CrossRef] [PubMed]
- De Lima, L.R.A.; Petroski, E.L.; Moreno, Y.M.F.; Silva, D.A.S.; De Moraes Santos Trindade, E.B.; De Carvalho, A.P.; De Carlos Back, I. Dyslipidemia, chronic inflammation, and subclinical atherosclerosis in children and adolescents infected with HIV: The PositHIVe Health Study. PLoS ONE 2018, 13, e0190785. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, D.L.; Lindsey, J.C.; Coull, B.A.; Mulligan, K.; Bhagwat, P.; Aldrovandi, G.M.; Silio, M.; Alchediak, T.; Borne, C.; Bradford, S.; et al. The Association of Fat and Lean Tissue with Whole Body and Spine Bone Mineral Density Is Modified by HIV Status and Sex in Children and Youth. Pediatr. Infect. Dis. J. 2018, 37, 71–77. [Google Scholar] [CrossRef]
- Ramteke, S.M.; Shiau, S.; Foca, M.; Strehlau, R.; Pinillos, F.; Patel, F.; Violari, A.; Liberty, A.; Coovadia, A.; Kuhn, L.; et al. Patterns of Growth, Body Composition, and Lipid Profiles in a South African Cohort of Human Immunodeficiency Virus-Infected and Uninfected Children: A Cross-Sectional Study. J. Pediatr. Infect. Dis. Soc. 2018, 7, 143–150. [Google Scholar] [CrossRef]
- Sharma, T.S.; Somarriba, G.; Arheart, K.L.; Neri, D.; Mathew, M.S.; Graham, P.L.; Scott, G.B.; Miller, T.L. Longitudinal Changes in Body Composition by Dual-energy Radiograph Absorptiometry Among Perinatally HIV-infected and HIV-uninfected Youth: Increased Risk of Adiposity Among HIV-infected Female Youth. Pediatr. Infect. Dis. J. 2018, 37, 1002–1007. [Google Scholar] [CrossRef]
- Shiau, S.; Yin, M.T.; Strehlau, R.; Patel, F.; Mbete, N.; Kuhn, L.; Coovadia, A.; Arpadi, S.M. Decreased bone turnover in HIV-infected children on antiretroviral therapy. Arch. Osteoporos. 2018, 13, 40. [Google Scholar] [CrossRef]
- Malete, L.; Etnier, J.L.; Tladi, D.M.; Vance, J.C.; Anabwani, G.M. Predicting cognitive performance from physical activity and fitness in adolescents and young adults in Botswana relative to HIV status. Sci. Rep. 2019, 9, 19583. [Google Scholar] [CrossRef]
- Marsico, F.; Lo Vecchio, A.; Paolillo, S.; D’Andrea, C.; De Lucia, V.; Bruzzese, E.; Vallone, G.; Dellegrottaglie, S.; Marciano, C.; Trimarco, B.; et al. Left Ventricular Function, Epicardial Adipose Tissue, and Carotid Intima-Media Thickness in Children and Adolescents With Vertical HIV Infection. J. Acquir. Immune Defic. Syndr. 2019, 82, 462–467. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.H.; Shiau, S.; Strehlau, R.; Burke, M.; Patel, F.; Johnson, C.T.; Rizkalla, B.; Dympna, G.; Kuhn, L.; Coovadia, A.; et al. Persistently lower bone mass and bone turnover among South African children living with well controlled HIV. AIDS 2021, 35, 2137–2147. [Google Scholar] [CrossRef]
- Su, J.W.; Shiau, S.; Arpadi, S.M.; Strehlau, R.; Burke, M.; Patel, F.; Kuhn, L.; Coovadia, A.; Yin, M.T.; Changes Bone Study, T. Switch to Efavirenz Attenuates Lipoatrophy in Girls With Perinatal HIV. J. Pediatr. Gastroenterol. Nutr. 2021, 72, E15–E20. [Google Scholar] [CrossRef] [PubMed]
- Comley-White, N.; Ntsiea, V.; Potterton, J. Physical functioning in adolescents with perinatal HIV. AIDS Care 2023, 36, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Davies, C.; Vaida, F.; Otwombe, K.; Cotton, M.F.; Browne, S.; Innes, S. Longitudinal comparison of insulin resistance and dyslipidemia in children with and without perinatal HIV infection in South Africa. AIDS 2023, 37, 523–533. [Google Scholar] [CrossRef] [PubMed]
- Franco-Oliva, A.; Pinzón-Navarro, B.A.; Martínez-Soto-Holguín, M.C.; León-Lara, X.; Ordoñez-Ortega, J.; Pardo-Gutiérrez, A.L.; Guevara-Cruz, M.; Avila-Nava, A.; García-Guzmán, A.D.; Guevara-Pedraza, L.; et al. High resting energy expenditure, less fat-free mass, and less muscle strength in HIV-infected children: A matched, cross-sectional study. Front. Nutr. 2023, 10, 1220013. [Google Scholar] [CrossRef] [PubMed]
- Olibamoyo, O.B.; Akintan, P.E.; Adeniyi, O.F.; Soriyan, O.O. Serum vitamin E levels in children with human immunodeficiency virus infection in Lagos Nigeria. Egypt. Pediatr. Assoc. Gaz. 2023, 71, 19. [Google Scholar] [CrossRef]
- Rehman, A.M.; Sekitoleko, I.; Rukuni, R.; Webb, E.L.; McHugh, G.; Bandason, T.; Moyo, B.; Ngwira, L.G.; Mukwasi-Kahari, C.; Gregson, C.L.; et al. Growth Profiles of Children and Adolescents Living with and without Perinatal HIV Infection in Southern Africa: A Secondary Analysis of Cohort Data. Nutrients 2023, 15, 4589. [Google Scholar] [CrossRef] [PubMed]
- Rukuni, R.; Simms, V.; Rehman, A.M.; Mukwasi-Kahari, C.; Mujuru, H.; Ferrand, R.A.; Gregson, C.L. Fracture prevalence and its association with bone density among children living with HIV in Zimbabwe. AIDS 2023, 37, 759–767. [Google Scholar] [CrossRef] [PubMed]
- Potterton, J.; Strehlau, R.; Shiau, S.; Comley-White, N.; Kuhn, L.; Yin, M.; Arpadi, S. Evaluation of submaximal endurance in young children living with HIV. South Afr. J. Physiother. 2022, 78, 6. [Google Scholar] [CrossRef]
- Amaya, R.A.; Kozinetz, C.A.; McMeans, A.; Schwarzwald, H.; Kline, M.W. Lipodystrophy syndrome in human immunodeficiency virus-infected children. Pediatr. Infect. Dis. J. 2002, 21, 405–410. [Google Scholar] [CrossRef]
- Rojo Conejo, P.; Ramos Amador, J.T.; García Piñar, L.; Ruano Fajardo, C.; Sánchez Granados, J.M.; González Tomé, M.I.; Ruiz Contreras, J. Decreased bone mineral density in HIV-infected children receiving highly active antiretroviral therapy. An. Pediatr. 2004, 60, 249–253. [Google Scholar] [CrossRef]
- Gutierréz, S.; De León, M.; Cuñetti, L.; Gutiérrez, G.; Giménez, V.; Quian, J. Dislipemia y lipodistrofia en niños uruguayos VIH positivos en tratamiento antirretroviral. Rev. Méd. Urug. 2006, 22, 197–202. [Google Scholar]
- Ene, L.; Goetghebuer, T.; Hainaut, M.; Peltier, A.; Toppet, V.; Levy, J. Prevalence of lipodystrophy in HIV-infected children: A cross-sectional study. Eur. J. Pediatr. 2007, 166, 13–21. [Google Scholar] [CrossRef]
- Geffner, M.E.; Patel, K.; Miller, T.L.; Hazra, R.; Silio, M.; Van Dyke, R.B.; Borkowsky, W.; Worrell, C.; DiMeglio, L.A.; Jacobson, D.L.; et al. Factors Associated with Insulin Resistance among Children and Adolescents Perinatally Infected with HIV-1 in the Pediatric HIV/AIDS Cohort Study. Horm. Res. Paediatr. 2011, 76, 386–391. [Google Scholar] [CrossRef]
- Chokephaibulkit, K.; Saksawad, R.; Bunupuradah, T.; Rungmaitree, S.; Phongsamart, W.; Lapphra, K.; Maleesatharn, A.; Puthanakit, T. Prevalence of vitamin d deficiency among perinatally HIV-infected thai adolescents receiving antiretroviral therapy. Pediatr. Infect. Dis. J. 2013, 32, 1237–1239. [Google Scholar] [CrossRef]
- Sonego, M.; Sagrado, M.J.; Escobar, G.; Lazzerini, M.; Rivas, E.; Martín-Cañavate, R.; de López, E.P.; Ayala, S.; Castaneda, L.; Aparicio, P.; et al. Dyslipidemia, Diet and Physical Exercise in Children on Treatment With Antiretroviral Medication in El Salvador: A Cross-sectional Study. Pediatr. Infect. Dis. J. 2016, 35, 1111–1116. [Google Scholar] [CrossRef]
- Donà, D.; Mozzo, E.; Luise, D.; Lundin, R.; Padoan, A.; Rampon, O.; Giaquinto, C. Impact of HIV-1 Infection and Antiretroviral Therapy on Bone Homeostasis and Mineral Density in Vertically Infected Patients. J. Osteoporos. 2019, 2019, 1279318. [Google Scholar] [CrossRef]
- Saavedra, J.M.; Henderson, R.A.; Perman, J.A.; Hutton, N.; Livingston, R.A.; Yolken, R.H. Longitudinal Assessment of Growth in Children Born to Mothers with Human-Immunodeficiency-Virus Infection. Arch. Pediatr. Adolesc. Med. 1995, 149, 497–502. [Google Scholar] [CrossRef]
- Miller, T.L.; Orav, E.J.; Colan, S.D.; Lipshultz, S.E. Nutritional status and cardiac mass and function in children infected with the human immunodeficiency virus. Am. J. Clin. Nutr. 1997, 66, 660–664. [Google Scholar] [CrossRef]
- Arpadi, S.M.; Horlick, M.N.B.; Wang, J.; Cuff, P.; Bamji, M.; Kotler, D.P. Body composition in prepubertal children with human immunodeficiency virus type I infection. Arch. Pediatr. Adolesc. Med. 1998, 152, 688–693. [Google Scholar] [CrossRef]
- Henderson, R.A.; Talusan, K.; Hutton, N.; Yolken, R.H.; Caballero, B. Resting energy expenditure and body composition in children with HIV infection. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol 1998, 19, 150–157. [Google Scholar] [CrossRef]
- Fontana, M.; Zuin, G.; Plebani, A.; Bastoni, K.; Visconti, G.; Principi, N. Body composition in HIV-infected children: Relations with disease progression and survival. Am. J. Clin. Nutr. 1999, 69, 1282–1286. [Google Scholar] [CrossRef] [PubMed]
- Fiore, P.; Donelli, E.; Boni, S.; Pontali, E.; Tramalloni, R.; Bassetti, D. Nutritional status changes in HIV-infected children receiving combined antiretroviral therapy including protease inhibitors. Int. J. Antimicrob. Agents 2000, 16, 365–369. [Google Scholar] [CrossRef] [PubMed]
- Jansen, A.K.; Lopez, F.A. Avaliação da composição corporal por antropometria: Crianças com síndrome da imunodeficiência humana. Rev. Paul. Pediatr. 2000, 18, 59–68. [Google Scholar]
- Jaquet, D.; Lévine, M.; Ortega-Rodriguez, E.; Faye, A.; Polak, M.; Vilmer, E.; Lévy-Marchal, C. Clinical and metabolic presentation of the lipodystrophic syndrome in HIV-infected children. AIDS 2000, 14, 2123–2128. [Google Scholar] [CrossRef] [PubMed]
- Missmer, S.A.; Spiegelman, D.; Gorbach, S.L.; Miller, T.L. Predictors of change in the functional status of children with human immunodeficiency virus infection. Pediatrics 2000, 106, e24. [Google Scholar] [CrossRef] [PubMed]
- Arpadi, S.M.; Cuff, P.A.; Horlick, M.; Wang, J.; Kotler, D.P. Lipodystrophy in HIV-infected children is associated with high viral load and low CD4+ -lymphocyte count and CD4+-lymphocyte percentage at baseline and use of protease inhibitors and stavudine. J. Acquir. Immune Defic. Syndr. 2001, 27, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Brambilla, P.; Bricalli, D.; Sala, N.; Renzetti, F.; Manzoni, P.; Vanzulli, A.; Chiumello, G.; di Natale, B.; Viganò, A. Highly active antiretroviral-treated HIV-infected children show fat distribution changes even in absence of lipodystrophy. AIDS 2001, 15, 2415–2422. [Google Scholar] [CrossRef] [PubMed]
- Melvin, A.J.; Lennon, S.; Mohan, K.M.; Purnell, J.Q. Metabolic abnormalities in HIV type 1-infected children treated and not treated with protease inhibitors. AIDS Res. Hum. Retroviruses 2001, 17, 1117–1123. [Google Scholar] [CrossRef]
- Mora, S.; Sala, N.; Bricalli, D.; Zuin, G.; Chiumello, G.; Viganò, A. Bone mineral loss through increased bone turnover in HIV-infected children treated with highly active antiretroviral therapy. AIDS 2001, 15, 1823–1829. [Google Scholar] [CrossRef]
- O’Brien, K.O.; Razavi, M.; Henderson, R.A.; Caballero, B.; Ellis, K.J. Bone mineral content in girls perinatally infected with HIV. Am. J. Clin. Nutr. 2001, 73, 821–826. [Google Scholar] [CrossRef]
- Tan, B.M.; Nelson, R.P., Jr.; James-Yarish, M.; Emmanuel, P.J.; Schurman, S.J. Bone metabolism in children with human immunodeficiency virus infection receiving highly active anti-retroviral therapy including a protease inhibitor. J. Pediatr. 2001, 139, 447–451. [Google Scholar] [CrossRef] [PubMed]
- Arpadi, S.M.; Horlick, M.; Thornton, J.; Cuff, P.A.; Wang, J.; Kotler, D.P. Bone mineral content is lower in prepubertal HIV-infected children. J. Acquir. Immune Defic. Syndr. 2002, 29, 450–454. [Google Scholar] [CrossRef] [PubMed]
- Cossarizza, A.; Pinti, M.; Moretti, L.; Bricalli, D.; Bianchi, R.; Troiano, L.; Garcia Fernandez, M.; Balli, F.; Brambilla, P.; Mussini, C.; et al. Mitochondrial functionality and mitochondrial DNA content in lymphocytes of vertically infected human immunodeficiency virus-positive children with highly active antiretroviral therapy-related lipodystrophy. J. Infect. Dis. 2002, 185, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Nachman, S.A.; Lindsey, J.C.; Pelton, S.; Mofenson, L.; McIntosh, K.; Wiznia, A.; Stanley, K.; Yogev, R. Growth in human immunodeficiency virus-infected children receiving ritonavir-containing antiretroviral therapy. Arch. Pediatr. Adolesc. Med. 2002, 156, 497–503. [Google Scholar] [CrossRef] [PubMed]
- Rondanelli, M.; Caselli, D.; Aricò, M.; Maccabruni, A.; Magnani, B.; Bacchella, L.; De Stefano, A.; Maghnie, M.; Solerte, S.B.; Minoli, L. Insulin-like growth factor I (IGF-I) and IGF-binding protein 3 response to growth hormone is impaired in HIV-infected children. AIDS Res. Hum. Retroviruses 2002, 18, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Beregszàszi, M.; Jaquet, D.; Lévine, M.; Ortega-Rodriguez, E.; Baltakse, V.; Polak, M.; Lévy-Marchal, C. Severe insulin resistance contrasting with mild anthropometric changes in the adipose tissue of HIV-infected children with lipohypertrophy. Int. J. Obes. Relat. Metab. Disord. 2003, 27, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Bitnun, A.; Sochett, E.; Babyn, P.; Holowka, S.; Stephens, D.; Read, S.; King, S.M. Serum lipids, glucose homeostasis and abdominal adipose tissue distribution in protease inhibitor-treated and naive HIV-infected children. AIDS 2003, 17, 1319–1327. [Google Scholar] [CrossRef] [PubMed]
- Bockhorst, J.L.; Ksseiry, I.; Toye, M.; Chipkin, S.R.; Stechenberg, B.W.; Fisher, D.J.; Allen, H.F. Evidence of human immunodeficiency virus-associated lipodystrophy syndrome in children treated with protease inhibitors. Pediatr. Infect. Dis. J. 2003, 22, 463–465. [Google Scholar] [CrossRef] [PubMed]
- Viganò, A.; Mora, S.; Brambilla, P.; Schneider, L.; Merlo, M.; Monti, L.D.; Manzoni, P. Impaired growth hormone secretion correlates with visceral adiposity in highly active antiretroviral treated HIV-infected adolescents. AIDS 2003, 17, 1435–1441. [Google Scholar] [CrossRef]
- Viganò, A.; Mora, S.; Testolin, C.; Beccio, S.; Schneider, L.; Bricalli, D.; Vanzulli, A.; Manzoni, P.; Brambilla, P. Increased lipodystrophy is associated with increased exposure to highly active antiretroviral therapy in HIV-infected children. J. Acquir. Immune Defic. Syndr. 2003, 32, 482–489. [Google Scholar] [CrossRef]
- Zamboni, G.; Antoniazzi, F.; Bertoldo, F.; Lauriola, S.; Antozzi, L.; Tatò, L. Altered bone metabolism in children infected with human immunodeficiency virus. Acta Paediatr. 2003, 92, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Ghaffari, G.; Passalacqua, D.J.; Caicedo, J.L.; Goodenow, M.M.; Sleasman, J.W. Two-year clinical and immune outcomes in human immunodeficiency virus-infected children who reconstitute CD4 T cells without control of viral replication after combination antiretroviral therapy. Pediatrics 2004, 114, e604–e611. [Google Scholar] [CrossRef]
- Panamonta, O.; Kosalaraksa, P.; Thinkhamrop, B.; Kirdpon, W.; Ingchanin, C.; Lumbiganon, P. Endocrine function in Thai children infected with human immunodeficiency virus. J. Pediatr. Endocrinol. Metab. 2004, 17, 33–40. [Google Scholar] [CrossRef]
- Stagi, S.; Bindi, G.; Galluzzi, F.; Galli, L.; Salti, R.; de Martino, M. Changed bone status in human immunodeficiency virus type 1 (HIV-1) perinatally infected children is related to low serum free IGF-1. Clin. Endocrinol. 2004, 61, 692–699. [Google Scholar] [CrossRef]
- Taylor, P.; Worrell, C.; Steinberg, S.M.; Hazra, R.; Jankelevich, S.; Wood, L.V.; Zwerski, S.; Yarchoan, R.; Zeichner, S. Natural history of lipid abnormalities and fat redistribution among human immunodeficiency virus-infected children receiving long-term, protease inhibitor-containing, highly active antiretroviral therapy regimens. Pediatrics 2004, 114, e235–e242. [Google Scholar] [CrossRef]
- Aldámiz-Echevarría, L.; Pocheville, I.; Sanjurjo, P.; Elorz, J.; Prieto, J.A.; Rodríguez-Soriano, J. Abnormalities in plasma fatty acid composition in human immunodeficiency virus-infected children treated with protease inhibitors. Acta Paediatr. 2005, 94, 672–677. [Google Scholar] [CrossRef]
- Bitnun, A.; Sochett, E.; Dick, P.T.; To, T.; Jefferies, C.; Babyn, P.; Forbes, J.; Read, S.; King, S.M. Insulin sensitivity and β-cell function in protease inhibitor-treated and -naive human immunodeficiency virus-infected children. J. Clin. Endocrinol. Metab. 2005, 90, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Mora, S.; Zamproni, I.; Giacomet, V.; Cafarelli, L.; Figini, C.; Viganò, S. Analysis of bone mineral content in horizontally HIV-infected children naïve to antiretroviral treatment. Calcif. Tissue Int. 2005, 76, 336–340. [Google Scholar] [CrossRef] [PubMed]
- Pitukcheewanont, P.; Safani, D.; Church, J.; Gilsanz, V. Bone measures in HIV-1 infected children and adolescents: Disparity between quantitative computed tomography and dual-energy X-ray absorptiometry measurements. Osteoporos. Int. 2005, 16, 1393–1396. [Google Scholar] [CrossRef]
- Rosso, R.; Vignolo, M.; Parodi, A.; Di Biagio, A.; Sormani, M.P.; Bassetti, M.; Aicardi, G.; Bassetti, D. Bone quality in perinatally HIV-infected children: Role of age, sex, growth, HIV infection, and antiretroviral therapy. AIDS Res. Hum. Retroviruses 2005, 21, 927–932. [Google Scholar] [CrossRef]
- Ergun-Longmire, B.; Lin-Su, K.; Dunn, A.M.; Chan, L.; Ham, K.; Sison, C.; Stavola, J.; Vogiatzi, M.G. Effects of protease inhibitors on glucose tolerance, lipid metabolism, and body composition in children and adolescents infected with human immunodeficiency virus. Endocr. Pract. 2006, 12, 514–521. [Google Scholar] [CrossRef] [PubMed]
- Haroun, D.; Wells, J.; Lau, C.; Hadji-Lucas, E.; Lawson, M. Assessment of obesity status in outpatients from three disease states. Acta Paediatr. Int. J. Paediatr. 2006, 95, 970–974. [Google Scholar] [CrossRef] [PubMed]
- Moscicki, A.B.; Ellenberg, J.H.; Murphy, D.A.; Xu, J.H. Associations among body composition, androgen levels, and human immunodeficiency virus status in adolescents. J. Adolesc. Health 2006, 39, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Verkauskiene, R.; Dollfus, C.; Levine, M.; Faye, A.; Deghmoun, S.; Houang, M.; Chevenne, D.; Bresson, J.L.; Blanche, S.; Lévy-Marchal, C. Serum adiponectin and leptin concentrations in HIV-infected children with fat redistribution syndrome. Pediatr. Res. 2006, 60, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Weidle, P.J.; Abrams, E.J.; Gvetadze, R.; Rivadeneira, E.; Kline, M.W. A simplified weight-based method for pediatric drug dosing for zidovudine and didanosine in resource-limited settings. Pediatr. Infect. Dis. J. 2006, 25, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Dzwonek, A.B.; Novelli, V.; Schwenk, A. Serum leptin concentrations and fat redistribution in HIV-1-infected children on highly active antiretroviral therapy. HIV Med. 2007, 8, 433–438. [Google Scholar] [CrossRef] [PubMed]
- Kim, R.J.; Carlow, D.C.; Rutstein, J.H.; Rutstein, R.M. Hypoadiponectinemia, dyslipidemia, and impaired growth in children with HIV-associated facial lipoatrophy. J. Pediatr. Endocrinol. Metab. 2007, 20, 65–74. [Google Scholar] [CrossRef] [PubMed]
- McComsey, G.A.; O’Riordan, M.; Hazen, S.L.; El-Bejjani, D.; Bhatt, S.; Brennan, M.L.; Storer, N.; Adell, J.; Nakamoto, D.A.; Dogra, V. Increased carotid intima media thickness and cardiac biomarkers in HIV infected children. AIDS 2007, 21, 921–927. [Google Scholar] [CrossRef] [PubMed]
- Mora, S.; Zamproni, I.; Cafarelli, L.; Giacomet, V.; Erba, P.; Zuccotti, G.; Viganò, A. Alterations in circulating osteoimmune factors may be responsible for high bone resorption rate in HIV-infected children and adolescents. AIDS 2007, 21, 1129–1135. [Google Scholar] [CrossRef] [PubMed]
- Papaevangelou, V.; Papassotiriou, I.; Vounatsou, M.; Chrousos, G.; Theodoridou, M. Changes in leptin serum levels in HIV-infected children receiving highly active antiretroviral therapy. Scand. J. Clin. Lab. Investig. 2007, 67, 291–296. [Google Scholar] [CrossRef]
- Tremeschin, M.H.; Cervi, M.C.; Camelo Júnior, J.S.; Negrini, B.V.; Martinez, F.E.; Motta, F.; Meirelles, M.S.; Vanucchhi, H.; Monteiro, J.P. Niacin nutritional status in HIV type 1-positive children: Preliminary data. J. Pediatr. Gastroenterol. Nutr. 2007, 44, 629–633. [Google Scholar] [CrossRef]
- Miller, T.L.; Orav, E.J.; Lipshultz, S.E.; Arheart, K.L.; Duggan, C.; Weinberg, G.A.; Bechard, L.; Furuta, L.; Nicchitta, J.; Gorbach, S.L.; et al. Risk Factors for Cardiovascular Disease in Children Infected with Human Immunodeficiency Virus-1. J. Pediatr. 2008, 153, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Sharma, T.S.; Kinnamon, D.D.; Duggan, C.; Weinberg, G.A.; Furuta, L.; Bechard, L.; Nicchitta, J.; Gorbach, S.L.; Miller, T.L. Changes in macronutrient intake among HIV-infected children between 1995 and 2004. Am. J. Clin. Nutr. 2008, 88, 384–391. [Google Scholar] [CrossRef] [PubMed]
- Spagnuolo, M.I.; Bruzzese, E.; Vallone, G.F.; Fasano, N.; De Marco, G.; Officioso, A.; Valerio, G.; Volpicelli, M.; Iorio, R.; Franzese, A.; et al. Is resistin a link between highly active antiretroviral therapy and fat redistribution in HIV-infected children? J. Endocrinol. Investig. 2008, 31, 592–596. [Google Scholar] [CrossRef] [PubMed]
- López, P.; Caicedo, Y.; Rubiano, L.C.; Cortés, C.A.; Valencia, Á.; Ramírez, Ó.; Sierra, A.; Echeverri, L.M. Alteraciones metabólicas con terapia antirretroviral altamente efectiva en niños positivos para VIH, Cali, Colombia. Infectio 2009, 13, 283–292. [Google Scholar] [CrossRef]
- Sarni, R.O.S.; Souza, F.I.S.d.; Battistini, T.R.B.; Pitta, T.S.; Fernandes, A.P.; Tardini, P.C.; Fonseca, F.L.A.; Santos, V.P.d.; Lopez, F.A. Lipodistrofia em crianças e adolescentes com síndrome da imunodeficiência adquirida e sua relação com a terapia antirretroviral empregada. J. Pediatr. 2009, 85, 329–334. [Google Scholar] [CrossRef]
- Viganò, A.; Brambilla, P.; Pattarino, G.; Stucchi, S.; Fasan, S.; Raimondi, C.; Cerini, C.; Giacomet, V.; Zuccotti, G.V.; Bedogni, G. Long-Term Evaluation of Glucose Homeostasis in a Cohort of HAART-Treated HIV-Infected Children: A Longitudinal, Observational Cohort Study. Clin. Drug Investig. 2009, 29, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Cervia, J.S.; Chantry, C.J.; Hughes, M.D.; Alvero, C.; Meyer, W.A.; Hodge, J.; Borum, P.; Moye, J.; Spector, S.A.; Team, P. Associations of Proinflammatory Cytokine Levels With Lipid Profiles, Growth, and Body Composition in HIV-infected Children Initiating or Changing Antiretroviral Therapy. Pediatr. Infect. Dis. J. 2010, 29, 1118–1122. [Google Scholar] [CrossRef] [PubMed]
- Chantry, C.J.; Cervia, J.S.; Hughes, M.D.; Alvero, C.; Hodge, J.; Borum, P.; Moye, J.; Team, P. Predictors of growth and body composition in HIV-infected children beginning or changing antiretroviral therapy. HIV Med. 2010, 11, 573–583. [Google Scholar] [CrossRef]
- Stagi, S.; Galli, L.; Cecchi, C.; Chiappini, E.; Losi, S.; Gattinara, C.G.; Gabiano, C.; Tovo, P.A.; Bernardi, S.; Chiarelli, F.; et al. Final Height in Patients Perinatally Infected with the Human Immunodeficiency Virus. Horm. Res. Paediatr. 2010, 74, 165–171. [Google Scholar] [CrossRef]
- Werner, M.L.F.; Pone, M.V.d.S.; Fonseca, V.M.; Chaves, C.R.M.d.M. Síndrome da lipodistrofia e fatores de risco cardiovasculares em crianças e adolescentes infectados pelo HIV/AIDS em uso de terapia antirretroviral de alta potência. J. Pediatr. 2010, 86, 27–32. [Google Scholar] [CrossRef]
- Zuccotti, G.; Viganò, A.; Gabiano, C.; Giacomet, V.; Mignone, F.; Stucchi, S.; Manfredini, V.; Marinacci, F.; Mora, S. Antiretroviral therapy and bone mineral measurements in HIV-infected youths. Bone 2010, 46, 1633–1638. [Google Scholar] [CrossRef] [PubMed]
- Contri, P.V.; Berchielli, É.M.; Tremeschin, M.H.; Negrini, B.V.M.; Salomão, R.G.; Monteiro, J.P. Nutritional status and lipid profile of HIV-positive children and adolescents using antiretroviral therapy. Clinics 2011, 66, 997–1002. [Google Scholar] [CrossRef] [PubMed]
- da Silva, Q.H.; Pedro, F.L.; Kirsten, V.R. Body satisfaction and lipodystrophy characteristics in HIV/AIDS children and teenagers undergoing highly active antiretroviral therapy. Rev. Paul. Pediatr. 2011, 29, 357–363. [Google Scholar] [CrossRef]
- Dimock, D.; Thomas, V.; Cushing, A.; Purdy, J.B.; Worrell, C.; Kopp, J.B.; Hazra, R.; Hadigan, C. Longitudinal assessment of metabolic abnormalities in adolescents and young adults with HIV-infection acquired perinatally or in early childhood. Metabolism 2011, 60, 874–880. [Google Scholar] [CrossRef] [PubMed]
- Mohd, N.M.; Yeo, J.; Huang, M.S.; Kamarul, A.M.; Koh, M.T.; Khor, G.L. Nutritional status of children living with HIV and receiving antiretroviral (ARV) medication in the Klang Valley, Malaysia. Malays. J. Nutr. 2011, 17, 19–30. [Google Scholar] [PubMed]
- Morén, C.; Noguera-Julian, A.; Rovira, N.; Corrales, E.; Garrabou, G.; Hernández, S.; Nicolás, M.; Tobías, E.; Cardellach, F.; Miró, O.; et al. Mitochondrial impact of human immunodeficiency virus and antiretrovirals on infected pediatric patients with or without lipodystrophy. Pediatr. Infect. Dis. J. 2011, 30, 992–995. [Google Scholar] [CrossRef] [PubMed]
- Spoulou, V.; Kanaka-Gantenbein, C.; Bathrellou, I.; Mora, S.; Mostrou, G.; Sidossis, L.; Chrousos, G.; Theodoridou, M. Monitoring of lipodystrophic and metabolic abnormalities in HIV-1 infected children on antiretroviral therapy. Hormones 2011, 10, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Viganò, A.; Zuccotti, G.V.; Cerini, C.; Stucchi, S.; Puzzovio, M.; Giacomet, V.; Mora, S. Lipodystrophy, insulin resistance, and adiponectin concentration in HIV-infected children and adolescents. Curr. HIV Res. 2011, 9, 321–326. [Google Scholar] [CrossRef]
- Alam, N.; Cortina-Borja, M.; Goetghebuer, T.; Marczynska, M.; Vigano, A.; Thorne, C.; European Paediatric HIV and Lipodystrophy Study Group in EuroCoord. Body Fat Abnormality in HIV-Infected Children and Adolescents Living in Europe: Prevalence and Risk Factors. JAIDS-J. Acquir. Immune Defic. Syndr. 2012, 59, 314–324. [Google Scholar] [CrossRef]
- Bhargav, H.; Huilgol, V.; Metri, K.; Sundell, I.B.; Tripathi, S.; Ramagouda, N.; Jadhav, M.; Raghuram, N.; Ramarao, N.H.; Koka, P.S. Evidence for extended age dependent maternal immunity in infected children: Mother to child transmission of HIV infection and potential interventions including sulfatides of the human fetal adnexa and complementary or alternative medicines. J. Stem Cells 2012, 7, 127–153. [Google Scholar]
- Innes, S.; Cotton, M.F.; Haubrich, R.; Conradie, M.M.; van Niekerk, M.; Edson, C.; Rabie, H.; Jain, S.; Sun, X.Y.; Zöllner, E.W.; et al. High prevalence of lipoatrophy in pre-pubertal South African children on antiretroviral therapy: A cross-sectional study. BMC Pediatr. 2012, 12, 183. [Google Scholar] [CrossRef] [PubMed]
- Puthanakit, T.; Saksawad, R.; Bunupuradah, T.; Wittawatmongkol, O.; Chuanjaroen, T.; Ubolyam, S.; Chaiwatanarat, T.; Nakavachara, P.; Maleesatharn, A.; Chokephaibulkit, K. Prevalence and risk factors of low bone mineral density among perinatally HIV-infected Thai adolescents receiving antiretroviral therapy. J. Acquir. Immune Defic. Syndr. 2012, 61, 477–483. [Google Scholar] [CrossRef] [PubMed]
- Ramos, E.; Guttierrez-Teissoonniere, S.; Conde, J.G.; Baez-Cordova, J.A.; Guzman-Villar, B.; Lopategui-Corsino, E.; Frontera, W.R.; Ramos, E.; Guttierrez-Teissoonniere, S.; Conde, J.G.; et al. Anaerobic power and muscle strength in human immunodeficiency virus-positive preadolescents. PM R J. Inj. Funct. Rehabil. 2012, 4, 171–175. [Google Scholar] [CrossRef] [PubMed]
- Schtscherbyna, A.; Pinheiro, M.F.M.C.; Mendonça, L.M.C.; Gouveia, C.; Luiz, R.R.; Machado, E.S.; Farias, M.L.F. Factors associated with low bone mineral density in a Brazilian cohort of vertically HIV-infected adolescents. Int. J. Infect. Dis. 2012, 16, e872–e878. [Google Scholar] [CrossRef]
- Arpadi, S.; Shiau, S.; Strehlau, R.; Martens, L.; Patel, F.; Coovadia, A.; Abrams, E.J.; Kuhn, L. Metabolic abnormalities and body composition of HIV-infected children on Lopinavir or Nevirapinebased antiretroviral therapy. Arch. Dis. Child. Educ. Pract. Ed. 2013, 98, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Bunders, M.J.; Frinking, O.; Scherpbier, H.J.; van Arnhem, L.A.; van Eck-Smit, B.L.; Kuijpers, T.W.; Zwinderman, A.H.; Reiss, P.; Pajkrt, D. Bone mineral density increases in HIV-infected children treated with long-term combination antiretroviral therapy. Clin. Infect. Dis. 2013, 56, 583–586. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, F.F.; Pereira, F.B.; da Silva, C.L.O.; Lazzarotto, A.R.; Petersen, R.D.S. Immunological and virological characteristics and performance in the variables flexibility and abdominal resistence strength of HIV/AIDS adolescents under highly active antirretroviral therapy. Rev. Bras. Med. Esporte 2013, 19, 40–43. [Google Scholar] [CrossRef]
- Lima, L.R.; Silva, R.C.; Giuliano Ide, C.; Sakuno, T.; Brincas, S.M.; Carvalho, A.P. Bone mass in children and adolescents infected with human immunodeficiency virus. J. Pediatr. 2013, 89, 91–99. [Google Scholar] [CrossRef]
- Macdonald, H.M.; Chu, J.; Nettlefold, L.; Maan, E.J.; Forbes, J.C.; Côtó, H.; Alimenti, A.; Grant, C.E.T. Bone geometry and strength are adapted to muscle force in children and adolescents perinatally infected with HIV. J. Musculoskelet. Neuronal Interact. 2013, 13, 53–65. [Google Scholar]
- Palchetti, C.Z.; Patin, R.V.; Gouvêa, A.d.F.T.B.; Szejnfeld, V.L.; Succi, R.C.d.M.; Oliveira, F.L.C. Body composition and lipodystrophy in prepubertal HIV-infected children. Braz. J. Infect. Dis. 2013, 17, 1–6. [Google Scholar] [PubMed]
- Sharma, T.S.; Jacobson, D.L.; Anderson, L.; Gerschenson, M.; Van Dyke, R.B.; McFarland, E.J.; Miller, T.L.; Pediatric HIV/AIDS Cohort Study (PHACS). Short Communication: The Relationship Between Mitochondrial Dysfunction and Insulin Resistance in HIV-Infected Children Receiving Antiretroviral Therapy. AIDS Res. Hum. Retroviruses 2013, 29, 1211–1217. [Google Scholar] [CrossRef]
- Dejkhamron, P.; Unachak, K.; Aurpibul, L.; Sirisanthana, V. Insulin resistance and lipid profiles in HIV-infected Thai children receiving lopinavir/ritonavir-based highly active antiretroviral therapy. J. Pediatr. Endocrinol. Metab. 2014, 27, 403–412. [Google Scholar] [CrossRef]
- Foissac, F.; Meyzer, C.; Frange, P.; Chappuy, H.; Benaboud, S.; Bouazza, N.; Friedlander, G.; Souberbielle, J.C.; Urien, S.; Blanche, S.; et al. Determination of optimal vitamin D3 dosing regimens in HIV-infected paediatric patients using a population pharmacokinetic approach. Br. J. Clin. Pharmacol. 2014, 78, 1113–1121. [Google Scholar] [CrossRef] [PubMed]
- Hillesheim, E.; Lima, L.R.A.; Silva, R.C.R.; Trindade, E.B.S.M. Dietary intake and nutritional status of HIV-1-infected children and adolescents in Florianópolis, Brazil. Int. J. STD AIDS 2014, 25, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Humphries, C.; Potterton, J.; Mudzi, W. A pilot study to investigate the muscle strength of children infected with HIV. Int. J. Ther. Rehabil. 2014, 21, 19–24. [Google Scholar] [CrossRef]
- Theodoridou, K.; Margeli, A.; Spoulou, V.; Bathrellou, I.; Skevaki, C.; Chrousos, G.P.; Papassotiriou, I.; Kanaka-Gantenbein, C. Non-traditional adipokines in pediatric HIV-related lipodystrophy: A-FABP as a biomarker of central fat accumulation. Scand. J. Clin. Lab. Investig. 2014, 74, 67–73. [Google Scholar] [CrossRef] [PubMed]
- dos Reis, L.C.; Rondó, P.H.D.; Marques, H.H.D.; Segri, N.J. Anthropometry and body composition of vertically HIV-infected children and adolescents under therapy with and without protease inhibitors. Public Health Nutr. 2015, 18, 1255–1261. [Google Scholar] [CrossRef] [PubMed]
- Palchetti, C.Z.; Szejnfeld, V.L.; Succi, R.C.d.M.; Patin, R.V.; Teixeira, P.F.; Machado, D.M.; Oliveira, F.L.C. Impaired bone mineral accrual in prepubertal HIV-infected children: A cohort study. Braz. J. Infect. Dis 2015, 19, 623–630. [Google Scholar] [CrossRef]
- Swetha, G.K.; Hemalatha, R.; Prasad, U.V.; Murali, V.; Damayanti, K.; Bhaskar, V. Health & nutritional status of HIV infected children in Hyderabad, India. Indian. J. Med. Res. 2015, 141, 46–54. [Google Scholar] [CrossRef]
- Sudjaritruk, T.; Bunupuradah, T.; Aurpibul, L.; Kosalaraksa, P.; Kurniati, N.; Prasitsuebsai, W.; Sophonphan, J.; Ananworanich, J.; Puthanakit, T.; Bone-D Study Group. Hypovitaminosis D and hyperparathyroidism: Effects on bone turnover and bone mineral density among perinatally HIV-infected adolescents. AIDS 2016, 30, 1059–1067. [Google Scholar] [CrossRef] [PubMed]
- Carmo, F.B.; Terreri, M.T.; Succi, R.C.M.; Beltrão, S.V.; Gouvea, A.; Paulino, E.R.C.; Machado, D.M. Bone mineral density and vitamin D concentration: The challenges in taking care of children and adolescents infected with HIV. Braz. J. Infect. Dis. 2017, 21, 270–275. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, D.L.; Stephensen, C.B.; Miller, T.L.; Patel, K.; Chen, J.S.; Van Dyke, R.B.; Mirza, A.; Schuster, G.U.; Hazra, R.; Ellis, A.; et al. Associations of Low Vitamin D and Elevated Parathyroid Hormone Concentrations With Bone Mineral Density in Perinatally HIV-Infected Children. J. Acquir. Immune Defic. Syndr. 2017, 76, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Risti Saptarini, P.; Riyanti, E.; Sufiawati, I.; Sasmita, I.S. Level vitamin D, calcium serum and mandibular bone density in HIV/AIDS children. J. Int. Dent. Med. Res. 2017, 10, 313–317. [Google Scholar]
- Sudjaritruk, T.; Bunupuradah, T.; Aurpibul, L.; Kosalaraksa, P.; Kurniati, N.; Prasitsuebsai, W.; Sophonphan, J.; Sohn, A.H.; Ananworanich, J.; Puthanakit, T.; et al. Adverse bone health and abnormal bone turnover among perinatally HIV-infected Asian adolescents with virological suppression. HIV Med. 2017, 18, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Sudjaritruk, T.; Bunupuradah, T.; Aurpibul, L.; Kosalaraksa, P.; Kurniati, N.; Sophonphan, J.; Ananworanich, J.; Puthanakit, T.; Bone, D.S.G. Impact of tenofovir disoproxil fumarate on bone metabolism and bone mass among perinatally HIV-infected Asian adolescents. Antivir. Ther. 2017, 22, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, T.R.; Judd, S.E.; Ruff, J.H.; McComsey, G.A.; Eckard, A.R. Amino Acid Concentrations in HIV-Infected Youth Compared to Healthy Controls and Associations with CD4 Counts and Inflammation. AIDS Res. Hum. Retroviruses 2017, 33, 681–689. [Google Scholar] [CrossRef] [PubMed]
- Cames, C.; Pascal, L.; Ba, A.; Mbodj, H.; Ouattara, B.; Diallo, N.F.; Msellati, P.; Mbaye, N.; Signate, H.S.; Blanche, S.; et al. Low prevalence of lipodystrophy in HIV-infected Senegalese children on long-term antiretroviral treatment: The ANRS 12279 MAGGSEN Pediatric Cohort Study. BMC Infect. Dis. 2018, 18, 374. [Google Scholar] [CrossRef] [PubMed]
- de Lima, L.R.A.; Monteiro Teixeira, D.; Custódio Martins, P.; Rebolho Martins, C.; Pelegrini, A.; Petroski, E.L. Body image and anthropometric indicators in adolescents living with HIV. Braz. J. Kineanthropometry Human. Perform. 2018, 20, 53–63. [Google Scholar] [CrossRef]
- Rosales, J.G.V.; Juárez Moya, A.; García Samano, V.M.; Solórzano Santos, F. Lipodystrophy syndrome in HIV-1 infected pediatric patients, under highly effective antiretroviral therapy (HAART), attending at a high specialty hospital. Enfermedades Infecc. Y Microbiol. 2018, 38, 123–130. [Google Scholar]
- Torrejón, C.; Galaz, M.I.; Vizueta, E.; Álvarez, A.M.; Wu, E.; Chávez, A.; Villarroel, J.; Yohannessen, K.; Hevia, M.; Vivanco, M.; et al. Evaluation of bone mineral density in children with vertical infection by HIV. Rev. Chilena Infectol. 2018, 35, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Arpadi, S.M.; Thurman, C.B.; Patel, F.; Kaufman, J.J.; Strehlau, R.; Burke, M.; Shiau, S.; Coovadia, A.; Yin, M.T. Bone Quality Measured Using Calcaneal Quantitative Ultrasonography Is Reduced Among Children with HIV in Johannesburg, South Africa. J. Pediatr. 2019, 215, 267–271.e262. [Google Scholar] [CrossRef] [PubMed]
- Gregson, C.L.; Hartley, A.; Majonga, E.; McHugh, G.; Crabtree, N.; Rukuni, R.; Bandason, T.; Mukwasi-Kahari, C.; Ward, K.A.; Mujuru, H.; et al. Older age at initiation of antiretroviral therapy predicts low bone mineral density in children with perinatally-infected HIV in Zimbabwe. Bone 2019, 125, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Martins, P.C.; Lima, L.R.A.; Silva, A.M.; Petroski, E.L.; Moreno, Y.M.F.; Silva, D.A.S. Phase angle is associated with the physical fitness of HIV-infected children and adolescents. Scand. J. Med. Sci. Sports 2019, 29, 1006–1012. [Google Scholar] [CrossRef] [PubMed]
- Souza, L.A.A.d.; Nogueira, M.M.; Vianna, T.d.S.; Carneiro, S.R.; Ávila, P.E.S.; Normando, V.M.F. Influence of body composition on the respiratory muscle strength of children exposed to antiretroviral therapy forhuman immunodeficiency virus. Mundo Saúde 2019, 43, 955–975. [Google Scholar] [CrossRef]
- Jacobson, D.L.; Yu, W.; Hazra, R.; Brummel, S.; Geffner, M.E.; Patel, K.; Borkowsky, W.; Wang, J.; Chen, J.S.; Mirza, A.; et al. Fractures in children and adolescents living with perinatally acquired HIV. Bone 2020, 139, 115515. [Google Scholar] [CrossRef] [PubMed]
- Mahtab, S.; Scott, C.; Asafu-Agyei, N.A.A.; Machemedze, T.; Frigati, L.; Myer, L.; Zar, H.J. Prevalence and predictors of bone health among perinatally HIV-infected adolescents. AIDS 2020, 34, 2061–2070. [Google Scholar] [CrossRef] [PubMed]
- McHugh, G.; Rehman, A.M.; Simms, V.; Gonzalez-Martinez, C.; Bandason, T.; Dauya, E.; Moyo, B.; Mujuru, H.; Rylance, J.; Sovershaeva, E.; et al. Chronic lung disease in children and adolescents with HIV: A case–control study. Trop. Med. Int. Health 2020, 25, 590–599. [Google Scholar] [CrossRef] [PubMed]
- Alves Junior, C.A.S.; Martins, P.C.; de Andrade Gonçalves, E.C.; de Lima, L.R.A.; Martins, C.R.; Silva, D.A.S. Association Between Body Fat Distribution Assessed by Different Techniques and Body Image Perception in HIV-Infected Children and Adolescents. J. Pediatr. Nurs. 2021, 60, e74–e79. [Google Scholar] [CrossRef]
- Dobe, I.S.; Mocumbi, A.O.; Majid, N.; Ayele, B.; Browne, S.H.; Innes, S. Earlier antiretroviral initiation is independently associated with better arterial stiffness in children living with perinatally acquired hiv with sustained viral suppression in mozambique. South. Afr. J. HIV Med. 2021, 22, 6. [Google Scholar] [CrossRef]
- Martins, I.D.C.; Asseiceira, I.; Policarpo, S.; Carolino, E.; Prata, F.; Mouzinho, A.; Marques, J.G. Nutritional status, physical activity and quality of life in children and adolescents with human immunodeficiency virus infection. Port. J. Pediatr. 2021, 52, 98–106. [Google Scholar]
- Martins, P.C.; de Lima, L.R.A.; de Lima, T.R.; Petroski, E.L.; Silva, D.A.S. Association between handgrip strength and bone mass parameters in HIV-infected children and adolescents. A cross-sectional study. Sao Paulo Med. J. 2021, 139, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Alves Junior, C.A.S.; Martins, P.C.; Lima, L.R.A.d.; Silva, D.A.S. What anthropometric indicators are associated with insulin resistance? Cross-sectional study on children and adolescents with diagnosed human immunodeficiency virus. Sao Paulo Med. J. 2022, 140, 94–100. [Google Scholar] [CrossRef]
- Mahtab, S.; Jao, J.; Myer, L.; Phillips, N.; Stein, D.J.; Zar, H.J.; Hoare, J. The association between mental health and metabolic outcomes in youth living with perinatally acquired HIV in the Cape Town Adolescent Antiretroviral Cohort. AIDS Care 2022, 34, 1151–1158. [Google Scholar] [CrossRef]
- Martins, P.C.; Souza Alves Junior, C.A.; Augustemak de Lima, L.R.; Petroski, E.L.; Santos Silva, D.A. Muscle mass indicators as fat-free mass and lean soft tissue mass are associated with handgrip strength in HIV-diagnosed children and adolescents. J. Bodyw. Mov. Ther. 2022, 30, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Mellin, J.; Le Prevost, M.; Kenny, J.; Sturgeon, K.; Thompson, L.C.; Foster, C.; Kessler, H.H.; Goswami, N.; Klein, N.; Judd, A.; et al. Arterial Stiffness in a Cohort of Young People Living With Perinatal HIV and HIV Negative Young People in England. Front. Cardiovasc. Med. 2022, 9, 821568. [Google Scholar] [CrossRef]
- Rose, P.C.; Nel, E.D.; Cotton, M.F.; Pitcher, R.D.; Otwombe, K.; Browne, S.H.; Innes, S. Prevalence and Risk Factors for Hepatic Steatosis in Children With Perinatal HIV on Early Antiretroviral Therapy Compared to HIV-Exposed Uninfected and HIV-Unexposed Children. Front. Pediatr. 2022, 10, 893579. [Google Scholar] [CrossRef]
- Vargas, D.M.; Daniela de Oliveira, P.; José Carlos Pereira, G.; Joana, C.W.C.O.; Deisi Maria, V. Massa óssea em crianças e adolescentes com infecção vertical pelo HIV: Uma série de casos. Rev. Assoc. Méd. Rio Gd. Sul. 2022, 66, 01022105. [Google Scholar]
- Zanlorenci, S.; de Souza, M.C.; Martins, C.R.; de Lima, L.R.A.; Silva, D.A.S. Factors Correlated with Body Image Dissatisfaction in Children and Adolescents Diagnosed with HIV: A Cross-Sectional Study. Int. J. Environ. Res. Public. Health 2022, 19, 14197. [Google Scholar] [CrossRef]
- Zanlorenci, S.; Martins, P.C.; Junior, C.A.S.A.; de Castro, J.A.C.; de Lima, L.R.A.; Petroski, E.L.; Silva, D.A.S. Association between bone mineral density and content and physical growth parameters among children and adolescents diagnosed with HIV: A cross-sectional study. Sao Paulo Med. J. 2022, 140, 682–690. [Google Scholar] [CrossRef]
- Alves, C.A.S.; Augustemak De Lima, L.R.; Franco Moreno, Y.M.; Santos Silva, D.A. Anthropometric indicators as discriminators of high body fat in children and adolescents with HIV: Comparison with reference methods. Minerva Pediatr. 2023, 75, 828–835. [Google Scholar] [CrossRef] [PubMed]
- Dirajlal-Fargo, S.; Jacobson, D.L.; Yu, W.; Mirza, A.; Geffner, M.E.; McComsey, G.A.; Jao, J. Longitudinal changes in body fat and metabolic complications in young people with perinatally acquired HIV. HIV Med. 2023, 25, 233–244. [Google Scholar] [CrossRef] [PubMed]
- Iheme, G.O. Health-related quality of life and nutritional status of people living with HIV/AIDS in South-East Nigeria; a facility-based study. Hum. Nutr. Metab. 2023, 32, 200190. [Google Scholar] [CrossRef]
- Maina, R.; He, J.; Abubakar, A.; Perez-Garcia, M.; Kumar, M.; Wicherts, J.M. The effects of height-for-age and HIV on cognitive development of school-aged children in Nairobi, Kenya: A structural equation modelling analysis. Front. Public Health 2023, 11, 1171851. [Google Scholar] [CrossRef]
- Martins, P.C.; de Lima, L.R.A.; Silva, A.M.; Silva, D.A.S. Association between Phase Angle and Body Composition of Children and Adolescents Diagnosed with HIV Infection. Children 2023, 10, 1309. [Google Scholar] [CrossRef] [PubMed]
- Dreimane, D.; Nielsen, K.; Deveikis, A.; Bryson, Y.J.; Geffner, M.E. Effect of protease inhibitors combined with standard antiretroviral therapy on linear growth and weight gain in human immunodeficiency virus type 1-infected children. Pediatr. Infect. Dis. J. 2001, 20, 315–316. [Google Scholar] [CrossRef] [PubMed]
- Group, E.P.L. Antiretroviral therapy, fat redistribution and hyperlipidaemia in HIV-infected children in Europe. AIDS 2004, 18, 1443–1451. [Google Scholar] [CrossRef] [PubMed]
- Fox-Wheeler, S.; Heller, L.; Salata, C.M.; Kaufman, F.; Loro, M.L.; Gilsanz, V.; Haight, M.; Umman, G.C.; Barton, N.; Church, J.A. Evaluation of the effects of oxandrolone on malnourished HIV-positive pediatric patients. Pediatrics 1999, 104, e73. [Google Scholar] [CrossRef]
- Miller, T.L.; Mawn, B.E.; Orav, E.J.; Wilk, D.; Weinberg, G.A.; Nicchitta, J.; Furuta, L.; Cutroni, R.; McIntosh, K.; Burchett, S.K.; et al. The effect of protease inhibitor therapy on growth and body composition in human immunodeficiency virus type 1-infected children. Pediatrics 2001, 107, E77. [Google Scholar] [CrossRef]
- Verweel, G.; van Rossum, A.M.C.; Hartwig, N.G.; Wolfs, T.F.W.; Scherpbier, H.J.; de Groot, R. Treatment with highly active antiretroviral therapy in human immunodeficiency virus type 1-infected children is associated with a sustained effect on growth. Pediatrics 2002, 109, e25. [Google Scholar] [CrossRef]
- McComsey, G.; Bhumbra, N.; Rathore, M.; Alvarez, A. Impact of protease inhibitor substitution with efavirenz in HIV-infected children: Results of the first pediatric switch study. Pediatrics 2003, 111, e275–e281. [Google Scholar] [CrossRef] [PubMed]
- Hardin, D.S.; Ellis, K.J.; Rice, J.; Doyle, M.E. Protease inhibitor therapy improves protein catabolism in prepubertal children with HIV infection. J. Pediatr. Endocrinol. Metab. 2004, 17, 321–325. [Google Scholar] [CrossRef]
- Giacomet, V.; Mora, S.; Martelli, L.; Merlo, M.; Sciannamblo, M.; Viganò, A. A 12-month treatment with tenofovir does not impair bone mineral accrual in HIV-infected children. J. Acquir. Immune Defic. Syndr. 2005, 40, 448–450. [Google Scholar] [CrossRef] [PubMed]
- Hardin, D.S.; Rice, J.; Doyle, M.E.; Pavia, A. Growth hormone improves protein catabolism and growth in prepubertal children with HIV infection. Clin. Endocrinol. 2005, 63, 259–262. [Google Scholar] [CrossRef] [PubMed]
- Hazra, R.; Gafni, R.I.; Maldarelli, F.; Balis, F.M.; Tullio, A.N.; DeCarlo, E.; Worrell, C.J.; Steinberg, S.M.; Flaherty, J.; Yale, K.; et al. Tenofovir disoproxil fumarate and an optimized background regimen of antiretroviral agents as salvage therapy for pediatric HIV infection. Pediatrics 2005, 116, e846–e854. [Google Scholar] [CrossRef] [PubMed]
- Viganò, A.; Mora, S.; Manzoni, P.; Schneider, L.; Beretta, S.; Molinaro, M.; di Natale, B.; Brambilla, P. Effects of recombinant growth hormone on visceral fat accumulation: Pilot study in human immunodeficiency virus-infected adolescents. J. Clin. Endocrinol. Metab. 2005, 90, 4075–4080. [Google Scholar] [CrossRef] [PubMed]
- Viganò, A.; Brambilla, P.; Cafarelli, L.; Giaeomet, V.; Borgonovo, S.; Zamproni, I.; Zuccotti, G.; Mora, S. Normalization of fat accrual in lipoatrophic, HIV-infected children switched from stavudine to tenofovir and from protease inhibitor to efavirenz. Antivir. Ther. 2007, 12, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Viganò, A.; Zuccotti, G.V.; Martelli, L.; Giacomet, V.; Cafarelli, L.; Borgonovo, S.; Beretta, S.; Rombolà, G.; Mora, S. Renal safety of tenofovir in HIV-infected children: A prospective, 96-week longitudinal study. Clin. Drug Investig. 2007, 27, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Chantry, C.J.; Hughes, M.D.; Alvero, C.; Cervia, J.S.; Hodge, J.; Borum, P.; Moye, J.; Team, P. Insulin-like growth factor-1 and lean body mass in HIV-infected children. JAIDS-J. Acquir. Immune Defic. Syndr. 2008, 48, 437–443. [Google Scholar] [CrossRef]
- Gonzalez-Tome, M.I.; Amador, J.T.R.; Peña, J.M.; Gomez, M.L.N.; Conejo, P.R.; Fontelos, P.M. Outcome of protease inhibitor substitution with nevirapine in HIV-1 infected children. BMC Infect. Dis. 2008, 8, 144. [Google Scholar] [CrossRef]
- Purdy, J.B.; Gafni, R.I.; Reynolds, J.C.; Zeichner, S.; Hazra, R.; Purdy, J.B.; Gafni, R.I.; Reynolds, J.C.; Zeichner, S.; Hazra, R. Decreased bone mineral density with off-label use of tenofovir in children and adolescents infected with human immunodeficiency virus. J. Pediatr. 2008, 152, 582–584. [Google Scholar] [CrossRef] [PubMed]
- Viganò, A.; Zuccotti, G.V.; Puzzovio, M.; Pivetti, V.; Zamproni, I.; Cerini, C.; Fabiano, V.; Giacomet, V.; Mora, S. Tenofovir disoproxil fumarate and bone mineral density: A 60-month longitudinal study in a cohort of HIV-infected youths. Antivir. Ther. 2010, 15, 1053–1058. [Google Scholar] [CrossRef] [PubMed]
- Resino, S.; Micheloud, D.; Lorente, R.; Bellón, J.M.; Navarro, M.L.; Muñoz-Fernández, M.A. Adipokine profiles and lipodystrophy in HIV-infected children during the first 4 years on highly active antiretroviral therapy. HIV Med. 2011, 12, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Arpadi, S.M.; McMahon, D.J.; Abrams, E.J.; Bamji, M.; Purswani, M.; Engelson, E.S.; Horlick, M.; Shane, E. Effect of supplementation with cholecalciferol and calcium on 2-y bone mass accrual in HIV-infected children and adolescents: A randomized clinical trial. Am. J. Clin. Nutr. 2012, 95, 678–685. [Google Scholar] [CrossRef] [PubMed]
- Negra, M.D.; De Carvalho, A.P.; De Aquino, M.Z.; Da Silva, M.T.N.; Pinto, J.; White, K.; Arterburn, S.; Liu, Y.P.; Enejosa, J.V.; Cheng, A.K.; et al. A randomized study of tenofovir disoproxil fumarate in treatment- experienced HIV-1 infected adolescents. Pediatr. Infect. Dis. J. 2012, 31, 469–473. [Google Scholar] [CrossRef]
- Fabiano, V.; Giacomet, V.; Viganò, A.; Bedogni, G.; Stucchi, S.; Cococcioni, L.; Mora, S.; Zuccotti, G.V. Long-term body composition and metabolic changes in HIV-infected children switched from stavudine to tenofovir and from protease inhibitors to efavirenz. Eur. J. Pediatr. 2013, 172, 1089–1096. [Google Scholar] [CrossRef]
- Aurpibul, L.; Cressey, T.R.; Sricharoenchai, S.; Wittawatmongkol, O.; Sirisanthana, V.; Phongsamart, W.; Sudjaritruk, T.; Chokephaibulkit, K. Efficacy, safety and pharmacokinetics of tenofovir disoproxil fumarate in virologic-suppressed HIV-infected children using weight-band dosing. Pediatr. Infect. Dis. J. 2015, 34, 392–397. [Google Scholar] [CrossRef] [PubMed]
- Della Negra, M.; De Carvalho, A.P.; De Aquino, M.Z.; Pinto, J.A.; Da Silva, M.T.; Andreatta, K.N.; Graham, B.; Liu, Y.P.; Quirk, E.K. Long-term efficacy and safety of tenofovir disoproxil fumarate in HIV-1-infected adolescents failing antiretroviral therapy: The final results of study GS-US-104-0321. Pediatr. Infect. Dis. J. 2015, 34, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Gaur, A.H.; Kizito, H.; Prasitsueubsai, W.; Rakhmanina, N.; Rassool, M.; Chakraborty, R.; Batra, J.; Kosalaraksa, P.; Luesomboon, W.; Porter, D.; et al. Safety, efficacy, and pharmacokinetics of a single-tablet regimen containing elvitegravir, cobicistat, emtricitabine, and tenofovir alafenamide in treatment-naive, HIV-infected adolescents: A single-arm, open-label trial. Lancet HIV 2016, 3, e561–e568. [Google Scholar] [CrossRef]
- Giacomet, V.; Maruca, K.; Ambrosi, A.; Zuccotti, G.V.; Mora, S. A 10–year follow−up of bone mineral density in HIV−infected youths receiving tenofovir disoproxil fumarate. Int. J. Antimicrob. Agents 2017, 50, 365–370. [Google Scholar] [CrossRef]
- Archary, M.; McLlleron, H.; Bobat, R.; Russa, P.L.; Sibaya, T.; Wiesner, L.; Hennig, S. Population Pharmacokinetics of Lopinavir in Severely Malnourished HIV-infected Children and the Effect on Treatment Outcomes. Pediatr. Infect. Dis. J. 2018, 37, 349–355. [Google Scholar] [CrossRef]
- Puthanakit, T.; Wittawatmongkol, O.; Poomlek, V.; Sudjaritruk, T.; Brukesawan, C.; Bunupuradah, T.; Sricharoenchai, S.; Chuanjaroen, T.; Prasitsuebsai, W.; Chokephaibulkit, K. Effect of calcium and vitamin D supplementation on bone mineral accrual among HIV-infected Thai adolescents with low bone mineral density. J. Virus Erad. 2018, 4, 6–11. [Google Scholar] [CrossRef]
- Strehlau, R.; Shiau, S.; Arpadi, S.; Patel, F.; Pinillos, F.; Tsai, W.Y.; Coovadia, A.; Abrams, E.; Kuhn, L. Substituting Abacavir for Stavudine in Children Who Are Virally Suppressed Without Lipodystrophy: Randomized Clinical Trial in Johannesburg, South Africa. J. Pediatric Infect. Dis. Soc. 2018, 7, e70–e77. [Google Scholar] [CrossRef]
- Jacobson, D.L.; Lindsey, J.C.; Gordon, C.; Hazra, R.; Spiegel, H.; Ferreira, F.; Amaral, F.R.; Pagano-Therrien, J.; Gaur, A.; George, K.; et al. Alendronate Improves Bone Mineral Density in Children and Adolescents Perinatally Infected With Human Immunodeficiency Virus With Low Bone Mineral Density for Age. Clin. Infect. Dis. 2020, 71, 1281–1288. [Google Scholar] [CrossRef] [PubMed]
- Braithwaite, K.; McPherson, T.D.; Shen, Y.H.; Arpadi, S.; Shiau, S.; Sorour, G.; Technau, K.G.; Yin, M.T. Bone outcomes in virally suppressed youth with HIV switching to tenofovir disoproxil fumarate. S. Afr. J. HIV Med. 2021, 22, 8. [Google Scholar] [CrossRef] [PubMed]
- de Medeiros, R.C.d.S.C.; da Silva, T.A.L.; de Oliveira, A.L.V.; de Almeida-Neto, P.F.; de Medeiros, J.A.; Bulhões-Correia, A.; Micussi, F.A.; Ururahy, M.A.G.; de Araújo Tinoco Cabral, B.G.; Dantas, P.M.S. Influence of Healthy Habits Counseling on Biochemical and Metabolic Parameters in Children and Adolescents with HIV: Longitudinal Study. Nutrients 2021, 13, 3237. [Google Scholar] [CrossRef]
- de Castro, J.A.C.; de Lima, L.R.A.; Larouche, R.; Tremblay, M.S.; Silva, D.A.S. Physical Activity Questionnaire for Children: Validity and Cut-Points to Identify Sufficient Levels of Moderate- to Vigorous-Intensity Physical Activity Among Children and Adolescents Diagnosed With HIV. Pediatr. Exerc. Sci. 2024, 36, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Adams, J.; Hillier-Brown, F.C.; Moore, H.J.; Lake, A.A.; Araujo-Soares, V.; White, M.; Summerbell, C. Searching and synthesising ‘grey literature’and ‘grey information’ in public health: Critical reflections on three case studies. Syst. Rev. 2016, 5, 164. [Google Scholar] [CrossRef]
- Paez, A. Gray literature: An important resource in systematic reviews. J. Evid.-Based Med. 2017, 10, 233–240. [Google Scholar] [CrossRef]
Period of Publication | Total of Studies (n = 246) | Average Studies per Year |
1995 to 1999 | 8 | 1.6 |
2000 to 2009 | 80 | 8.0 |
2010 to 2019 | 104 | 10.4 |
2020 to May 2023 | 54 | 13.5 |
Region (UNICEF division) | Total of studies per region | % of total studies per region (n = 264) |
North America and Western and Central Europe | 132 | 50.0 |
Latin America and the Caribbean | 65 | 24.6 |
Sub-Saharan Africa | 50 | 18.9 |
Asia and the Pacific | 17 | 6.4 |
Study design | Total of studies | % of total studies (n = 246) |
Descriptive studies | 92 | 37.4 |
Analytic studies | 154 | 62.6 |
Propose of studies (to investigate) | Total of studies | % of total studies (n = 246) |
Associations | 139 | 56.5 |
Differences between HIV+ and HIV− | 44 | 17.9 |
ART-related effects (with or without controls) | 37 | 15.0 |
Method validity | 13 | 5.3 |
Prevalences | 9 | 3.7 |
Interventions effects | 4 | 1.6 |
Component (Method/Protocol) | Total of Studies | % of Total Studies (n = 246) |
---|---|---|
Body composition | n = 244 | 99.2% |
Anthropometry | 235 | |
Dual emission X-ray absorptiometry | 127 | |
Bioelectrical impedance analysis | 21 | |
Computed tomography | 7 | |
Ultrasonography | 5 | |
Deuterium dilution | 4 | |
Visual inspection | 2 | |
Air Displacement Plethysmography | 3 | |
X-ray | 1 | |
Muscular strength/endurance | n = 23 | 9.3% |
Handgrip strength | 11 | |
Abdominal resistance test | 3 | |
Horizontal jump test | 3 | |
Vertical jump test | 3 | |
Handheld dynamometer | 2 | |
Isokinetic isometry | 1 | |
1-maximum repetition | 1 | |
Sit-up | 1 | |
Hand hang resistance test | 1 | |
Respiratory strength | 1 | |
Push-ups test | 1 | |
Cardiorespiratory fitness | n = 15 | 6.1% |
Maximal effort treadmill test | 4 | |
Maximal effort cycle ergometer tests | 4 | |
Submaximal effort treadmill test | 1 | |
Six-minutes walking test | 3 | |
20 m shuttle run test | 2 | |
Incremental waling test | 1 | |
Flexibility | n = 6 | 2.4% |
Sit-to-reach test | 4 | |
Modified sit-to-reach test | 2 |
Body Composition | n = 244 | % * |
NCHS/WHO growth curves | 88 | 36.1% |
Nationals’ growth curves | 34 | 13.9% |
Z-scores | 22 | 9.0% |
Previous study (HIV-sample) | 16 | 6.6% |
NHANES | 14 | 5.7% |
Percentiles | 7 | 2.7% |
Ten-State Nutrition Survey | 4 | 1.6% |
Not reported | 4 | 1.6% |
Osteoporosis WHO taskforce | 3 | 1.2% |
United States BMD in Childhood Study | 3 | 1.2% |
International Society for Clinical Densitometry | 3 | 1.2% |
New cut-point | 1 | 0.4% |
Terciles | 1 | 0.4% |
Not applied | 42 | 17.2% |
Muscular strength/endurance | n = 23 | |
Z-scores | 3 | 13.0% |
Previous study (HIV-sample) | 1 | 4.3% |
PROESP-BR | 1 | 4.3% |
National Presidential Fitness Program | 1 | 4.3% |
Different batteries * | 1 | 4.3% |
Not reported | 2 | 8.7% |
Not applied | 11 | 47.8% |
Cardiorespiratory fitness | n = 15 | |
Previous study (HIV-sample) | 2 | 13.3% |
ACSM guidelines | 1 | 6.6% |
National Presidential Fitness Program | 1 | 6.6% |
American Thoracic Society | 1 | 6.6% |
Not applied | 8 | 53.3% |
Flexibility | n = 6 | |
PROESP-BR | 1 | 16.7% |
National Presidential Fitness Program | 1 | 16.7% |
Different batteries ** | 1 | 16.7% |
Not applied | 3 | 50.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Castro, J.A.C.; de Lima, T.R.; Silva, D.A.S. Health-Related Physical Fitness Evaluation in HIV-Diagnosed Children and Adolescents: A Scoping Review. Int. J. Environ. Res. Public Health 2024, 21, 541. https://doi.org/10.3390/ijerph21050541
de Castro JAC, de Lima TR, Silva DAS. Health-Related Physical Fitness Evaluation in HIV-Diagnosed Children and Adolescents: A Scoping Review. International Journal of Environmental Research and Public Health. 2024; 21(5):541. https://doi.org/10.3390/ijerph21050541
Chicago/Turabian Stylede Castro, João Antônio Chula, Tiago Rodrigues de Lima, and Diego Augusto Santos Silva. 2024. "Health-Related Physical Fitness Evaluation in HIV-Diagnosed Children and Adolescents: A Scoping Review" International Journal of Environmental Research and Public Health 21, no. 5: 541. https://doi.org/10.3390/ijerph21050541
APA Stylede Castro, J. A. C., de Lima, T. R., & Silva, D. A. S. (2024). Health-Related Physical Fitness Evaluation in HIV-Diagnosed Children and Adolescents: A Scoping Review. International Journal of Environmental Research and Public Health, 21(5), 541. https://doi.org/10.3390/ijerph21050541