Spatio-Temporal Variation in the Exceedance of Enterococci in Lake Burley Griffin: An Analysis of 16 Years’ Recreational Water Quality Monitoring Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Water Quality Data
2.3. Sampling and Laboratory Analysis
2.4. Data Analysis
2.5. Enterococci Exceedances
3. Results
3.1. Distribution of Enterococci
3.2. Exceedance
3.3. Collinearity Diagnostics
3.4. Multivariate Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neil, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Wetlands and Water Synthesis; World Resources Institute: Washington, DC, USA, 2005. [Google Scholar]
- Jennings, G. Water-based tourism, sport, leisure, and recreation experiences. In Water-Based Tourism, Sport, Leisure, and Recreation Experiences; Jennings, G., Ed.; Routledge: New York, NY, USA, 2011; p. 320. [Google Scholar]
- Stott, T. Water sports and water-based recreation. In Outdoor Recreation; Palgrave Macmillan: Cham, Switzerland, 2019; pp. 331–359. [Google Scholar]
- Adhikary, R.K.; Mahfuj, M.S.E.; Starrs, D.; Croke, B.; Glass, K.; Lal, A. Risk of human illness from recreational exposure to microbial pathogens in freshwater bodies: A systematic review. Expo. Health 2022, 14, 325–343. [Google Scholar] [CrossRef]
- Wiedenmann, A.; Kruger, P.; Dietz, K.; Lopez-Pila, J.M.; Szewzyk, R.; Botzenhart, K. A randomized controlled trial assessing infectious disease risks from bathing in fresh recreational waters in relation to the concentration of Escherichia coli, intestinal enterococci, Clostridium perfringens, and somatic coliphages. Environ. Health Perspect. 2006, 114, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Savichtcheva, O.; Okabe, S. Alternative indicators of fecal pollution: Relations with pathogens and conventional indicators, current methodologies for direct pathogen monitoring and future application perspectives. Water Res. 2006, 40, 2463–2476. [Google Scholar] [CrossRef] [PubMed]
- Korajkic, A.; McMinn, B.R.; Harwood, V.J. Relationships between microbial indicators and pathogens in recreational water settings. Int. J. Environ. Res. Public Health 2018, 15, 2842. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Long, S.C.; Das, D.; Dorner, S.M. Are microbial indicators and pathogens correlated? A statistical analysis of 40 years of research. J. Water Health 2011, 9, 265–278. [Google Scholar] [CrossRef]
- Kay, D.; Jones, F.; Wyer, M.D.; Fleisher, J.M.; Salmon, R.L.; Godfree, A.F.; Zelenauch-Jacquotte, A.; Shore, R. Predicting likelihood of gastroenteritis from sea bathing: Results from randomised exposure. Lancet 1994, 344, 905–909. [Google Scholar] [CrossRef] [PubMed]
- Motlagh, A.M.; Yang, Z. Detection and occurrence of indicator organisms and pathogens. Water Environ. Res 2019, 91, 1402–1408. [Google Scholar] [CrossRef]
- US EPA. Indicators: Enterococci. Available online: https://www.epa.gov/national-aquatic-resource-surveys/indicators-enterococci (accessed on 4 September 2023).
- WHO. Guidelines on Recreational Water Quality. Volume 1: Coastal and Fresh Waters; WHO: Geneva, Switzerland, 2021; p. 164.
- Byappanahalli, M.N.; Nevers, M.B.; Korajkic, A.; Staley, Z.R.; Harwood, V.J. Enterococci in the environment. Microbiol. Mol. Biol. Rev. 2012, 76, 685–706. [Google Scholar] [CrossRef] [PubMed]
- NHMRC. Guidelines for Managing Risks in Recreational Water; NHMRC; Australian Government Publishing Service: Canberra, Australia, 2008; p. 216.
- Devane, M.L.; Moriarty, E.; Weaver, L.; Cookson, A.; Gilpin, B. Fecal indicator bacteria from environmental sources; strategies for identification to improve water quality monitoring. Water Res. 2020, 185, 116204. [Google Scholar] [CrossRef]
- Muller, A.; Osterlund, H.; Marsalek, J.; Viklander, M. The pollution conveyed by urban runoff: A review of sources. Sci. Total Environ. 2020, 709, 136125. [Google Scholar] [CrossRef] [PubMed]
- Geldreich, E.E. Pathogenic agents in freshwater resources. Hydrol. Process. 1996, 10, 315–333. [Google Scholar] [CrossRef]
- Baral, D.; Speicher, A.; Dvorak, B.; Admiraal, D.; Li, X. Quantifying the relative contributions of environmental sources to the microbial community in an urban stream under dry and wet weather conditions. Appl. Environ. Microbiol. 2018, 84, e00896-18. [Google Scholar] [CrossRef] [PubMed]
- Ritter, L.; Solomon, K.; Sibley, P.; Hall, K.; Keen, P.; Mattu, G.; Linton, B. Sources, pathways, and relative risks of contaminants in surface water and groundwater: A perspective prepared for the Walkerton inquiry. J. Toxicol. Environ. Health A 2002, 65, 1–142. [Google Scholar] [PubMed]
- Ahmed, W.; Payyappat, S.; Cassidy, M.; Besley, C. Enhanced insights from human and animal host-associated molecular marker genes in a freshwater lake receiving wet weather overflows. Sci. Rep. 2019, 9, 12503. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Falconer, R.A.; Lin, B. Integrated river and coastal flow, sediment and Escherichia coli modelling for bathing water quality. Water 2015, 7, 4752–4777. [Google Scholar] [CrossRef]
- Ferguson, C.; Husman, A.M.R.; Altavilla, N.; Deere, D.; Ashbolt, N. Fate and transport of surface water pathogens in watersheds. Crit. Rev. Environ. Sci. Technol. 2003, 33, 299–361. [Google Scholar] [CrossRef]
- Li, D.; Van De Werfhorst, L.C.; Steets, B.; Ervin, J.; Murray, J.L.S.; Blackwell, A.; Devarajan, N.; Holden, P.A. Sources of low level human fecal markers in recreational waters of two Santa Barbara, CA beaches: Roles of WWTP outfalls and swimmers. Water Res. 2021, 202, 117378. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Van De Werfhorst, L.C.; Steets, B.; Ervin, J.; Murray, J.L.S.; Devarajan, N.; Holden, P.A. Bather shedding as a source of human fecal markers to a recreational beach. Front. Microbiol. 2021, 12, 673190. [Google Scholar] [CrossRef] [PubMed]
- Elmir, S.M.; Shibata, T.; Solo-Gabriele, H.M.; Sinigalliano, C.D.; Gidley, M.L.; Miller, G.; Plano, L.R.; Kish, J.; Withum, K.; Fleming, L.E. Quantitative evaluation of enterococci and Bacteroidales released by adults and toddlers in marine water. Water Res. 2009, 43, 4610–4616. [Google Scholar] [CrossRef] [PubMed]
- Marion, J.W.; Burrowes, V.; Lee, C.S.; Lee, J. Changes in microbial water quality associated with an extreme recreational water event in Ohio, United States. Water Qual. Expo. Health 2015, 7, 491–501. [Google Scholar] [CrossRef]
- Paule-Mercado, M.A.; Ventura, J.S.; Memon, S.A.; Jahng, D.; Kang, J.H.; Lee, C.H. Monitoring and predicting the fecal indicator bacteria concentrations from agricultural, mixed land use and urban stormwater runoff. Sci. Total Environ. 2016, 550, 1171–1181. [Google Scholar] [CrossRef]
- Vincent, K.; Starrs, D.; Wansink, V.; Waters, N.; Lal, A. Relationships between extreme flows and microbial contamination in inland recreational swimming areas. J. Water Health 2022, 20, 781–793. [Google Scholar] [CrossRef] [PubMed]
- Schillinger, J.E. Bacterial Adsorption to Suspended Particles in Urban Stormwater; The University of Michigan: Ann Arbor, MI, USA, 1982. [Google Scholar]
- Myers, E.M.; Juhl, A.R. Particle association of Enterococcus sp. increases growth rates and simulated persistence in water columns of varying light attenuation and turbulent diffusivity. Water Res. 2020, 186, 116140. [Google Scholar] [CrossRef] [PubMed]
- Vogel, L.J.; O’Carroll, D.M.; Edge, T.A.; Robinson, C.E. Release of Escherichia coli from foreshore sand and pore water during intensified wave conditions at a recreational beach. Environ. Sci. Technol. 2016, 50, 5676–5684. [Google Scholar] [CrossRef] [PubMed]
- National Capital Authority (NCA). Lake Burley Griffin Recreation Policy; National Capital Authority: Canberra, Australia, 2017; p. 20.
- Commissioner for Sustainability and the Environment. Report on the State of the Watercourses and Catchments for Lake Burley Griffin; ACT Government Canberra: Canberra, Australia, 2012; p. 604.
- Swim Guide. Swim Guide: Australian Government—National Capital Authority. Available online: https://www.theswimguide.org/affiliates/national-capital-authority-australia/ (accessed on 4 September 2023).
- Cullen, P. Responses to changing nutrient inputs over a 20 year period in Lake Burley Griffin, Australia. Int. Assoc. Theor. Appl. Limnol. 1991, 24, 1471–1476. [Google Scholar]
- Cullen, P.; Rosich, R.; Bek, P. A Phosphorus Budget for Lake Burley Griffin and Management Implications for Urban Lakes; Australian Water Resources Council technical paper, no. 31; Australian Water Resources Council: Australia, Australia, 1978; p. 220. [Google Scholar]
- Cullen, P.; Rosich, R.S. Effects of rural and urban sources of phosphorus of Lake Burley Griffin. Prog. Water Technol. 1979, 11, 219–230. [Google Scholar]
- Leeming, R.; Maher, W. Sources of polycyclic aromatic hydrocarbons in Lake Burley Griffin, Australia. Org. Geochem. 1992, 18, 647–655. [Google Scholar] [CrossRef]
- Maher, W.; Tomlins, C.; Furlonger, J. Petroleum hydrocarbon pollution of Lake Burley Griffin. Oil Chem. Pollut. 1990, 6, 81–90. [Google Scholar] [CrossRef]
- Maher, W.A.; Norris, R.H.; Curran, S.; Gell, F.; O’Connell, D.; Taylor, K.; Swanson, P.; Thurtell, L. Zinc in the sediments, water and biota of Lake Burley Griffin, Canberra. Sci. Total Environ. 1992, 125, 235–252. [Google Scholar] [CrossRef]
- Rosich, R.S.; Cullen, P. Sediments, algae, nutrients—Interrelationships in Lakes Burley Griffin and Ginninderra. Int. Ver. Für Theor. Und Angew. Limnol. Verhandlungen 1981, 21, 1009–1016. [Google Scholar] [CrossRef]
- Weatherley, A.H.; Dawson, P. Zinc pollution in a freshwater system: Analysis and proposed solutions. Search 1973, 4, 471–476. [Google Scholar]
- Craze, B. Mine Waste Pollution Control at Captains Flat, New South Wales. In Biogeochemistry of Ancient and Modern Environments: Proceedings of the Fourth International Symposium on Environmental Biogeochemistry (ISEB) and, Conference on Biogeochemistry in Relation to the Mining Industry and Environmental Pollution (Leaching Conference), Canberra, Australia, 26 August–4 September 1979; Trudinger, P.A., Walter, M.R., Ralph, B.J., Eds.; Springer: Berlin/Heidelberg, Germany, 1980; pp. 705–712. [Google Scholar]
- Norris, R.H. Mine waste pollution of the Molonglo River, New South Wales and the Australian Capital Territory: Effectiveness of remedial works at Captains Flat mining area. Mar. Freshw. Res. 1986, 37, 147–157. [Google Scholar] [CrossRef]
- Wallbrink, P.J.; Fogarty, P.J. Sediment Sourcing in the Lake Burley Griffin Catchment; CSIRO Land and Water: Melbourne, Australia, 1998; p. 40. [Google Scholar]
- Roberts, J.; Kumar, A.; Du, J.; Hepplewhite, C.; Ellis, D.J.; Christy, A.G.; Beavis, S.G. Pharmaceuticals and personal care products (PPCPs) in Australia’s largest inland sewage treatment plant, and its contribution to a major Australian river during high and low flow. Sci. Total Environ. 2016, 541, 1625–1637. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, J.; Stevenson, J.; Zawadski, A. Increasingly allergenic airborne pollen revealed in sediment of Lake Burley Griffin, Canberra. J. Urban Ecol. 2019, 5, juy029. [Google Scholar] [CrossRef]
- ANZECC. Australian and New Zealand Guidelines for Fresh and Marine Water Quality; Australian and New Zealand Environment and Conservation Council; Agriculture and Resource Management Council of Australia and New Zealand: Canberra, Australia, 2000; Volume 1, p. 317.
- Webb, T.; Glamore, W.C.; Miller, B.M. Lake Molonglo Water Quality Study; WRL Technical Report 2006/35; Water Research Laboratory, The University of New South Wales: Canberra, Australia, 2007; p. 65. [Google Scholar]
- Office of the Commissioner for Sustainability and the Environment. State of the Lakes and Waterways in the ACT; Office of the Commissioner for Sustainability and the Environment: Canberra, Australia, 2022.
- ACT Government. ACT and Region Catchment Strategy 2016–2046; Director-General, Environment and Planning Directorate: Canberra, Australia, 2016; p. 76.
- National Capital Authority. Lake Burley Griffin. Available online: https://www.nca.gov.au/national-land/lake-burley-griffin (accessed on 4 September 2023).
- Esri. ArcGIS Pro, 3.0.2; Environmental Systems Research Institute: Redlands, CA, USA, 2022. [Google Scholar]
- US EPA. Method 1600: Enterococci in Water by Membrane Filtration Using Membrane-Enterococcus Indoxyl-Beta-D-Glucoside Agar (mEI); EPA-821-R-02-022; US EPA: Washington, DC, USA, 2002; p. 14.
- US EPA. Method 1600: Enterococci in Water by Membrane Filtration Using Membrane Enterococcus Indoxyl-B-D-Glucoside Agar (mEI); EPA-821-R-09-016; U.S. Environmental Protection Agency Office of Water: Washington, DC, USA, 2009; p. 42.
- Budnick, G.E.; Howard, R.T.; Mayo, D.R. Evaluation of Enterolert for enumeration of enterococci in recreational waters. Appl. Environ. Microbiol. 1996, 62, 3881–3884. [Google Scholar] [CrossRef] [PubMed]
- Yakub, G.P.; Castric, D.A.; Stadterman-Knauer, K.L.; Tobin, M.J.; Blazina, M.; Heineman, T.N.; Yee, G.Y.; Frazier, L. Evaluation of Colilert and Enterolert defined substrate methodology for wastewater applications. Water Environ. Res. 2002, 74, 131–135. [Google Scholar] [CrossRef]
- Kinzelman, J.; Ng, C.; Jackson, E.; Gradus, S.; Bagley, R. Enterococci as indicators of Lake Michigan recreational water quality: Comparison of two methodologies and their impacts on public health regulatory events. Appl. Environ. Microbiol. 2003, 69, 92–96. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- ACT Government. ACT Guidelines for Recreational Water Quality; ACT Government: Canberra, Australia, 2014.
- Crame’r, H. Mathematical Methods of Statistics (PMS-9); Princeton University Press: Princeton, NJ, USA, 2016; Volume 9. [Google Scholar]
- Bursac, Z.; Gauss, C.H.; Williams, D.K.; Hosmer, D.W. Purposeful selection of variables in logistic regression. Source Code Biol. Med. 2008, 3, 17. [Google Scholar] [CrossRef] [PubMed]
- Dyer, F. Nutrients in Sullivan’s Creek; 2/00; CSIRO Land and Water: Canberra, Australia, 2000; p. 95. [Google Scholar]
- Madani, M.; Seth, R.; Leon, L.F.; Valipour, R.; McCrimmon, C. Microbial modelling of Lake St. Clair: Impact of local tributaries on the shoreline water quality. Ecol. Model. 2021, 458, 109709. [Google Scholar] [CrossRef]
- Yannarell, A.C.; Triplett, E.W. Geographic and environmental sources of variation in lake bacterial community composition. Appl. Environ. Microbiol. 2005, 71, 227–239. [Google Scholar] [CrossRef] [PubMed]
- ACT Government. ACT Water Strategy 2014–44: Striking the Balance; ACT Government: Canberra, Australia, 2014.
- Neave, M.; Luter, H.; Padovan, A.; Townsend, S.; Schobben, X.; Gibb, K. Multiple approaches to microbial source tracking in tropical northern Australia. MicrobiologyOpen 2014, 3, 860–874. [Google Scholar] [CrossRef] [PubMed]
- Scott, T.M.; Rose, J.B.; Jenkins, T.M.; Farrah, S.R.; Lukasik, J. Microbial source tracking: Current methodology and future directions. Appl. Environ. Microbiol. 2002, 68, 5796–5803. [Google Scholar] [CrossRef] [PubMed]
- Oxigen. Weston Park Master-Plan, Canberra; Report prepared for Parks and City Services, Territory and Municipal Services Directorate; ACT Government: Canberra, Australia, 2013.
- Barreras, H.; Kelly, E.A.; Kumar, N.; Solo-Gabriele, H.M. Assessment of local and regional strategies to control bacteria levels at beaches with consideration of impacts from climate change. Mar. Pollut. Bull. 2019, 138, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Dorsey, J.H. Improving water quality through California’s Clean Beach Initiative: An assessment of 17 projects. Environ. Monit. Assess. 2010, 166, 95–111. [Google Scholar] [CrossRef] [PubMed]
- Kelly, E.A.; Feng, Z.; Gidley, M.L.; Sinigalliano, C.D.; Kumar, N.; Donahue, A.G.; Reniers, A.; Solo-Gabriele, H.M. Effect of beach management policies on recreational water quality. J. Environ. Manag. 2018, 212, 266–277. [Google Scholar] [CrossRef] [PubMed]
- de Brauwere, A.; Ouattara, N.K.; Servais, P. Modeling fecal indicator bacteria concentrations in natural surface waters: A review. Crit. Rev. Environ. Sci. Technol. 2014, 44, 2380–2453. [Google Scholar] [CrossRef]
- Ksoll, W.B.; Ishii, S.; Sadowsky, M.J.; Hicks, R.E. Presence and sources of fecal coliform bacteria in epilithic periphyton communities of Lake Superior. Appl. Environ. Microbiol. 2007, 73, 3771–3778. [Google Scholar] [CrossRef] [PubMed]
- Numberger, D.; Zoccarato, L.; Woodhouse, J.; Ganzert, L.; Sauer, S.; Márquez, J.R.G.; Domisch, S.; Grossart, H.; Greenwood, A.D. Urbanization promotes specific bacteria in freshwater microbiomes including potential pathogens. Sci. Total Environ. 2022, 845, 157321. [Google Scholar] [CrossRef] [PubMed]
- Mote, B.L.; Turner, J.W.; Lipp, E.K. Persistence and growth of the fecal indicator bacteria enterococci in detritus and natural estuarine plankton communities. Appl. Environ. Microbiol. 2012, 78, 2569–2577. [Google Scholar] [CrossRef]
- Mallin, M.A.; Johnson, V.L.; Ensign, S.H.; MacPherson, T.A. Factors contributing to hypoxia in rivers, lakes, and streams. Limnol. Oceanogr. 2006, 51, 690–701. [Google Scholar] [CrossRef]
- Rochelle-Newall, E.; Nguyen, T.M.; Le, T.P.; Sengtaheuanghoung, O.; Ribolzi, O. A short review of fecal indicator bacteria in tropical aquatic ecosystems: Knowledge gaps and future directions. Front. Microbiol. 2015, 6, 308. [Google Scholar] [CrossRef] [PubMed]
- Dubois, N.; Saulnier-Talbot, É.; Mills, K.; Gell, P.; Battarbee, R.; Bennion, H.; Chawchai, S.; Dong, X.; Francus, P.; Flower, R.; et al. First human impacts and responses of aquatic systems: A review of palaeolimnological records from around the world. Anthr. Rev. 2018, 5, 28–68. [Google Scholar] [CrossRef]
- National Research Council. Management of riparian areas. In Riparian Areas: Functions and Strategies for Management; The National Academies Press: Washington, DC, USA, 2002; pp. 299–424. [Google Scholar]
- McLellan, S.L.; Fisher, J.C.; Newton, R.J. The microbiome of urban waters. Int. Microbiol. 2015, 18, 141–149. [Google Scholar] [PubMed]
- Kumwimba, M.N.; Huang, J.; Dzakpasu, M.; De Silva, K.; Ohore, O.E.; Ajibade, F.O.; Li, X.; Jingjun, S.; Muyembe, D.K.; Kaixuan, H. An updated review of the efficacy of buffer zones in warm/temperate and cold climates: Insights into processes and drivers of nutrient retention. J. Environ. Manag. 2023, 336, 117646. [Google Scholar] [CrossRef] [PubMed]
- Lake Burley Griffin Task Force. Lake Burley Griffin Action Plan: A Healthier, Better Functioning Lake by 2030; Lake Burley Griffin Task Force: Canberra, Australia, 2012. [Google Scholar]
- Alluvium. ACT Waterways Policy Review; ACT Government: Canberra, Australia, 2021.
- Cookey, P.E.; Darnsawasdi, R.; Ratanachai, C. A conceptual framework for assessment of governance performance of lake basins: Towards transformation to adaptive and integrative governance. Hydrology 2016, 3, 12. [Google Scholar] [CrossRef]
- ACT Government. ACT Aquatic and Riparian Conservation Strategy and Action Plans; ACT Government: Canberra, Australia, 2018.
- Australian Bureau of Meteorology. Monthly Rainfall: Canberra Airport. Available online: http://www.bom.gov.au/jsp/ncc/cdio/weatherData/av?p_nccObsCode=139&p_display_type=dataFile&p_stn_num=070351 (accessed on 4 September 2023).
- ACT Government. ACT Water Report 2010–2011; ACT Government: Canberra, Australia, 2011; p. 60.
- Adolf, J.E.; Weisburg, J.; Hanna, K.; Lohnes, V. Enterococcus exceedances related to environmental variability at New Jersey ocean beaches. Environ. Monit. Assess. 2022, 195, 250. [Google Scholar] [CrossRef] [PubMed]
- National Capital Authority. Lake Burley Griffin: Your Swim Guide for Summer. Available online: https://www.nca.gov.au/environment/lake-burley-griffin/water-quality/your-swim-guide-summer (accessed on 4 April 2024).
- Gao, M.; Tan, F.; Shen, Y.; Peng, Y. Rapid detection method of bacterial pathogens in surface waters and a new risk indicator for water pathogenic pollution. Sci. Rep. 2024, 14, 1614. [Google Scholar] [CrossRef] [PubMed]
- Oon, Y.L.; Oon, Y.S.; Ayaz, M.; Deng, M.; Li, L.; Song, K. Waterborne pathogens detection technologies: Advances, challenges, and future perspectives. Front. Microbiol. 2023, 14, 1286923. [Google Scholar] [CrossRef] [PubMed]
- US EPA. Models for Predicting Beach Water Quality. Available online: https://www.epa.gov/beaches/models-predicting-beach-water-quality (accessed on 30 March 2023).
- Soller, J.A.; Schoen, M.E.; Bartrand, T.; Ravenscroft, J.E.; Ashbolt, N.J. Estimated human health risks from exposure to recreational waters impacted by human and non-human sources of faecal contamination. Water Res. 2010, 44, 4674–4691. [Google Scholar] [CrossRef]
- Soller, J.A.; Schoen, M.E.; Varghese, A.; Ichida, A.M.; Boehm, A.B.; Eftim, S.; Ashbolt, N.J.; Ravenscroft, J.E. Human health risk implications of multiple sources of faecal indicator bacteria in a recreational waterbody. Water Res. 2014, 66, 254–264. [Google Scholar] [CrossRef] [PubMed]
- Rabinovici, S.J.M.; Bernknopf, R.L.; Wein, A.M.; Coursey, D.L.; Whitman, R.L. Economic and health risk trade-offs of swim closures at a Lake Michigan beach. Environ. Sci. Technol. 2004, 38, 2737–2745. [Google Scholar] [CrossRef] [PubMed]
- Pratap, P.L.; Redman, S.; Fagen, M.C.; Dorevitch, S. Improving water quality communications at beaches: Input from stakeholders. J. Water Health 2013, 11, 647–658. [Google Scholar] [CrossRef] [PubMed]
- Saleem, F.; Li, E.; Edge, T.A.; Tran, K.L.; Schellhorn, H.E. Identification of potential microbial risk factors associated with fecal indicator exceedances at recreational beaches. Environ. Microbiome 2024, 19, 4. [Google Scholar] [CrossRef] [PubMed]
- Searcy, R.T.; Boehm, A.B. Know before you go: Data-driven beach water quality forecasting. Environ. Sci. Technol. 2023, 57, 17930–17939. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, S.D.; Carvajal, G.; Campey, M.; Taylor, N.; Osmond, P.; Roser, D.J.; Khan, S.J. Predicting recreational water quality and public health safety in urban estuaries using Bayesian Networks. Water Res. 2024, 254, 121319. [Google Scholar] [CrossRef] [PubMed]
- Lofton, M.E.; Howard, D.W.; Thomas, R.Q.; Carey, C.C. Progress and opportunities in advancing near-term forecasting of freshwater quality. Glob. Chang. Biol. 2023, 29, 1691–1714. [Google Scholar] [CrossRef] [PubMed]
- Rume, T.; Islam, S.M.D. Environmental effects of COVID-19 pandemic and potential strategies of sustainability. Heliyon 2020, 6, e04965. [Google Scholar] [CrossRef] [PubMed]
- Manoiu, V.M.; Kubiak-Wójcicka, K.; Craciun, A.; Akman, Ç.; Akman, E. Water quality and water pollution in time of COVID-19: Positive and negative repercussions. Water 2022, 14, 1124. [Google Scholar] [CrossRef]
- Grudzinski, B.; Fritz, K.; Dodds, W. Does riparian fencing protect stream water quality in cattle-grazed lands? Environ. Manag. 2020, 66, 121–135. [Google Scholar] [CrossRef] [PubMed]
- Bragina, L.; Sherlock, O.; van Rossum, A.J.; Jennings, E. Cattle exclusion using fencing reduces Escherichia coli (E. coli) level in stream sediment reservoirs in northeast Ireland. Agric. Ecosyst. Environ. 2017, 239, 349–358. [Google Scholar] [CrossRef]
- McDowell, R.W. The longevity of fencing out livestock as a method of decreasing contaminant concentrations in a headwater stream. J. Environ. Qual. 2023, 52, 173–179. [Google Scholar] [CrossRef] [PubMed]
- McMinn, B.R.; Klemm, S.; Korajkic, A.; Wyatt, K.M.; Herrmann, M.P.; Haugland, R.A.; Lu, J.; Villegas, E.N.; Frye, C. A constructed wetland for treatment of an impacted waterway and the influence of native waterfowl on its perceived effectiveness. Ecol. Eng. 2019, 128, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Lind, L.; Hasselquist, E.M.; Laudon, H. Towards ecologically functional riparian zones: A meta-analysis to develop guidelines for protecting ecosystem functions and biodiversity in agricultural landscapes. J. Environ. Manag. 2019, 249, 109391. [Google Scholar] [CrossRef] [PubMed]
Site Code | Site Name | LBG Area | Key Features | No. of Years | No. of Samples |
---|---|---|---|---|---|
LBG510 | Lotus Bay | West Lake | Kayak and stand-up paddle board terminal | 16 | 419 |
LBG511 | Ferry Terminal | West Basin | Paddle steamer docking | 16 | 418 |
LBG512 | East Basin | East Basin | Rowing, windsurfing, dragon boating, stand-up paddle boarding | 16 | 420 |
LBG514 | Yarralumla Beach | West Lake | Designated swimming beach, kayak and stand-up paddle board terminal, rowing club | 16 | 416 |
LBG515 | Black Mountain Beach | Tarcoola Reach | Designated swimming beach, rowing, paddle crafting | 16 | 417 |
LBG516 | Weston Park East | Tarcoola Reach | Designated swimming beach, rowing, paddle crafting | 16 | 416 |
LBG517 | Weston Park West | Yarramundi Reach | Designated rowing lanes | 16 | 418 |
Independent Variables | Level (s) | Logit Model | p-Value | ||
---|---|---|---|---|---|
OR | 95% CI | ||||
Lower Limit | Higher Limit | ||||
Time-periods | 0.98 | 0.96 | 1.01 | 0.13 | |
Months | October | 1.00 | |||
November | 2.38 | 1.54 | 3.77 | <0.001 | |
December | 1.61 | 1.02 | 2.58 | 0.045 | |
January | 1.55 | 0.98 | 2.49 | 0.065 | |
February | 1.76 | 1.11 | 2.84 | 0.018 | |
March | 0.97 | 0.59 | 1.62 | 0.911 | |
April | 0.79 | 0.42 | 1.45 | 0.454 | |
Sites | East Basin | 1.00 | |||
Lotus Bay | 0.92 | 0.61 | 1.39 | 0.688 | |
Ferry Terminal | 0.39 | 0.23 | 0.64 | <0.001 | |
Yarralumla Beach | 1.01 | 0.67 | 1.52 | 0.961 | |
Black Mountain Beach | 0.73 | 0.47 | 1.13 | 0.161 | |
Weston Park East | 1.52 | 1.04 | 2.24 | 0.031 | |
Weston Park West | 0.46 | 0.28 | 0.74 | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adhikary, R.K.; Starrs, D.; Wright, D.; Croke, B.; Glass, K.; Lal, A. Spatio-Temporal Variation in the Exceedance of Enterococci in Lake Burley Griffin: An Analysis of 16 Years’ Recreational Water Quality Monitoring Data. Int. J. Environ. Res. Public Health 2024, 21, 579. https://doi.org/10.3390/ijerph21050579
Adhikary RK, Starrs D, Wright D, Croke B, Glass K, Lal A. Spatio-Temporal Variation in the Exceedance of Enterococci in Lake Burley Griffin: An Analysis of 16 Years’ Recreational Water Quality Monitoring Data. International Journal of Environmental Research and Public Health. 2024; 21(5):579. https://doi.org/10.3390/ijerph21050579
Chicago/Turabian StyleAdhikary, Ripon Kumar, Danswell Starrs, David Wright, Barry Croke, Kathryn Glass, and Aparna Lal. 2024. "Spatio-Temporal Variation in the Exceedance of Enterococci in Lake Burley Griffin: An Analysis of 16 Years’ Recreational Water Quality Monitoring Data" International Journal of Environmental Research and Public Health 21, no. 5: 579. https://doi.org/10.3390/ijerph21050579
APA StyleAdhikary, R. K., Starrs, D., Wright, D., Croke, B., Glass, K., & Lal, A. (2024). Spatio-Temporal Variation in the Exceedance of Enterococci in Lake Burley Griffin: An Analysis of 16 Years’ Recreational Water Quality Monitoring Data. International Journal of Environmental Research and Public Health, 21(5), 579. https://doi.org/10.3390/ijerph21050579