Impact of Nutrition Interventions on Vitamin and Mineral Intake among Native American Children and Parents: Insights from Food Resource Equity for Sustainable Health (FRESH) Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Intervention
2.2. Statistical Methods
3. Results
4. Discussion
Limitations and Strengths
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brown, B.; Noonan, C.; Nord, M. Prevalence of Food Insecurity and Health-Associated Outcomes and Food Characteristics of Northern Plains Indian Households. J. Hunger. Environ. Nutr. 2007, 1, 37–53. [Google Scholar] [CrossRef]
- Bell, R.A.; Mayer-Davis, E.J.; Jackson, Y.; Dresser, C. An epidemiologic review of dietary intake studies among American Indians and Alaska Natives: Implications for heart disease and cancer risk. Ann. Epidemiol. 1997, 7, 229–240. [Google Scholar] [CrossRef]
- Walch, A.K.; Ohle, K.A.; Koller, K.R.; Alexie, L.; Sapp, F.; Thomas, T.K.; Bersamin, A. Alaska Native Elders’ perspectives on dietary patterns in rural, remote communities. BMC Public Health 2021, 21, 1645. [Google Scholar] [CrossRef]
- Koller, K.R.; Flanagan, C.A.; Nu, J.; Lee, F.R.; Desnoyers, C.; Walch, A.; Alexie, L.; Bersamin, A.; Thomas, T.K. Storekeeper perspectives on improving dietary intake in 12 rural remote western Alaska communities: The “Got Neqpiaq?” project. Int. J. Circumpolar Health 2021, 80, 1961393. [Google Scholar] [CrossRef]
- Jernigan, V.B.B.; Huyser, K.R.; Valdes, J.; Simonds, V.W. Food Insecurity among American Indians and Alaska Na-tives: A National Profile using the Current Population Survey-Food Security Supplement. J. Hunger Environ. Nutr. 2017, 12, 1–10. [Google Scholar] [CrossRef]
- Kimani, M.E.; Sarr, M.; Cuffee, Y.; Liu, C.; Webster, N.S. Associations of Race/Ethnicity and Food Insecurity with COVID-19 Infection Rates across US Counties. JAMA Network Open 2021, 4, e2112852. [Google Scholar] [CrossRef]
- Marín, C.; Oliveros, H.; Villamor, E.; Mora, M. Food Insecurity and micronutrient status biomarkers in school-age Colombian children. Biomedica 2021, 41, 458–471. [Google Scholar] [CrossRef]
- Jun, S.; E Cowan, A.; Dodd, K.W.; Tooze, J.A.; Gahche, J.J.; Eicher-Miller, H.A.; Guenther, P.M.; Dwyer, J.T.; Potischman, N.; Bhadra, A.; et al. Association of food insecurity with dietary intakes and nutritional biomarkers among US children, National Health and Nutrition Examination Survey (NHANES) 2011–2016. Am. J. Clin. Nutr. 2021, 114, 1059–1069. [Google Scholar] [CrossRef]
- Rizvi, S.; Raza, S.T.; Ahmed, F.; Ahmad, A.; Abbas, S.; Mahdi, F. The role of vitamin e in human health and some diseases. Sultan Qaboos Univ. Med. J. 2014, 14, e157–e165. [Google Scholar]
- Halder, M.; Petsophonsakul, P.; Akbulut, A.C.; Pavlic, A.; Bohan, F.; Anderson, E.; Maresz, K.; Kramann, R.; Schurgers, L. Vitamin K: Double Bonds beyond Coagulation Insights into Differences between Vitamin K1 and K2 in Health and Disease. Int. J. Mol. Sci. 2019, 20, 896. [Google Scholar] [CrossRef]
- Neelemaat, F.; Lips, P.; Bosmans, J.E.; Thijs, A.; Seidell, J.C.; van Bokhorst-de van der Schueren, M.A. Short-term oral nutritional intervention with protein and vitamin D decreases falls in malnourished older adults. J. Am. Geriatr. Soc. 2012, 60, 691–699. [Google Scholar] [CrossRef]
- Bauer, J.M.; Verlaan, S.; Bautmans, I.; Brandt, K.; Donini, L.M.; Maggio, M.; McMurdo, M.E.; Mets, T.; Seal, C.; Wijers, S.L.; et al. Effects of a vitamin D and leucine-enriched whey protein nutritional supplement on measures of sarcopenia in older adults, the PROVIDE study: A randomized, double-blind, placebo-controlled trial. J. Am. Med. Dir. Assoc. 2015, 16, 740–747. [Google Scholar] [CrossRef]
- Hubbard, G.P.; Elia, M.; Holdoway, A.; Stratton, R.J. A systematic review of compliance to oral nutritional supplements. Clin. Nutr. 2012, 31, 293–312. [Google Scholar] [CrossRef]
- Tardy, A.L.; Pouteau, E.; Marquez, D.; Yilmaz, C.; Scholey, A. Vitamins and Minerals for Energy, Fatigue and Cognition: A Narrative Review of the Biochemical and Clinical Evidence. Nutrients 2020, 12, 228. [Google Scholar] [CrossRef]
- Ofoedu, C.E.; Iwouno, J.O.; Ofoedu, E.O.; Ogueke, C.C.; Igwe, V.S.; Agunwah, I.M.; Ofoedum, A.F.; Chacha, J.S.; Muobike, O.P.; Agunbiade, A.O.; et al. Revisiting food-sourced vitamins for consumer diet and health needs: A perspective review, from vitamin classification, metabolic functions, absorption, utilization, to balancing nutritional requirements. PeerJ 2021, 9, e11940. [Google Scholar] [CrossRef]
- Wetherill, M.S.; Williams, M.B.; Reese, J.; Taniguchi, T.; Sisson, S.B.; Malek-Lasater, A.D.; Love, C.V.; Jernigan, V.B.B. Methods for Assessing Willingness to Try and Vegetable Consumption among Children in Indigenous Early Childcare Settings: The FRESH Study. Nutrients 2021, 14, 58. [Google Scholar] [CrossRef]
- Wetherill, M.S.; Bourque, E.E.; Taniguchi, T.; Love, C.V.; Sisk, M.; Jernigan, V.B.B. Development of a Tribally-led Gar-dening Curriculum for Indigenous Preschool Children: The FRESH Study. J. Nutr. Educ. Behav. 2021, 53, 991–995. [Google Scholar] [CrossRef]
- Haslam, A.; Love, C.; Taniguchi, T.; Williams, M.B.; Wetherill, M.S.; Sisson, S.; Weedn, A.E.; Jacob, T.; Jernigan, V.B.B. Development and Implementation of a Hybrid Online and In-Person Food Sovereignty and Nutrition Education Curriculum for Native American Parents: The FRESH Study. Health Educ. Behav. 2022, 50, 430–440. [Google Scholar] [CrossRef]
- Jernigan, V.B.B.; Taniguchi, T.; Haslam, A.; Williams, M.B.; Maudrie, T.L.; Nikolaus, C.J.; Wetherill, M.S.; Jacob, T.; Love, C.V.; Sisson, S. Design and Methods of a Participatory Healthy Eating Intervention for Indigenous Children: The FRESH Study. Front. Public Health 2022, 10, 790008. [Google Scholar] [CrossRef]
- National Cancer Institute. Automated Self-Administered 24-h (ASA24) Dietary Assessment Tool. Available online: https://epi.grants.cancer.gov/asa24/ (accessed on 8 December 2022).
- Dietary Guidelines Advisory Committee. Scientific Report of the 2015 Dietary Guidelines Advisory Committee; Dietary Guidelines Advisory Committee: Rockville, MD, USA, 2015. [Google Scholar]
- Hunt, J.R. Bioavailability of iron, zinc, and other trace minerals from vegetarian diets. Am. J. Clin. Nutr. 2003, 78 (Suppl. S3), 633s–639s. [Google Scholar] [CrossRef]
- Vudhivai, N.; Ali, A.; Pongpaew, P.; Changbumrung, S.; Vorasanta, S.; Kwanbujan, K.; Charoenlarp, P.; Migasena, P.; Schelp, F.P. Vitamin B1, B2 and B6 status of vegetarians. J. Med. Assoc. Thai 1991, 74, 465–470. [Google Scholar] [PubMed]
- Gahche, J.J.; Bailey, R.L.; Potischman, N.; Ershow, A.G.; A Herrick, K.; Ahluwalia, N.; Dwyer, J.T. Federal Monitoring of Dietary Supplement Use in the Resident, Civilian, Noninstitutionalized US Population, National Health and Nutrition Examination Survey. J. Nutr. 2018, 148 (Suppl. S2), 1436s–1444s. [Google Scholar] [CrossRef] [PubMed]
- Stamler, J.; Caggiula, A.W.; Grandits, G.A. Relation of body mass and alcohol, nutrient, fiber, and caffeine intakes to blood pressure in the special intervention and usual care groups in the Multiple Risk Factor Intervention Trial. Am. J. Clin. Nutr. 1997, 65 (Suppl. S1), 338s–365s. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, M.; Ghosh, I.; Jana, A.; Ghosh, M.; Mukherjee, A. Genotoxicity of antiobesity drug orlistat and effect of caffeine intervention: An in vitro study. Drug Chem. Toxicol. 2017, 40, 339–343. [Google Scholar] [CrossRef] [PubMed]
- Crown, P.L.; Emerson, T.E.; Gu, J.; Hurst, W.J.; Pauketat, T.R.; Ward, T. Ritual Black Drink consumption at Cahokia. Proc. Natl. Acad. Sci. USA 2012, 109, 13944–13949. [Google Scholar] [CrossRef] [PubMed]
- Morris, M.C.; Wang, Y.; Barnes, L.L.; Bennett, D.A.; Dawson-Hughes, B.; Booth, S.L. Nutrients and bioactives in green leafy vegetables and cognitive decline: Prospective study. Neurology 2018, 90, e214–e222. [Google Scholar] [CrossRef] [PubMed]
- Knapen, M.H.J.; Jardon, K.M.; Vermeer, C. Vitamin K-induced effects on body fat and weight: Results from a 3-year vitamin K2 intervention study. Eur. J. Clin. Nutr. 2018, 72, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Martínez, S.; Zegers, Y.; Stockins, B.; Bustos, L.; Sanhueza, A.; Rivera, A.; Soto, L.; Mackay, A.; Vega, D.; Rapimán, P.; et al. Evaluation of a nutritional intervention to reduce cholesterol levels in patients with coronary artery disease. Rev. Med. Chile 2004, 132, 1457–1465. [Google Scholar] [CrossRef] [PubMed]
- Li, M.Y.; Chen, J.H.; Chen, C.; Kang, Y.N. Association between Egg Consumption and Cholesterol Concentration: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Nutrients 2020, 12, 1995. [Google Scholar] [CrossRef]
- Berger, S.; Raman, G.; Vishwanathan, R.; Jacques, P.F.; Johnson, E.J. Dietary cholesterol and cardiovascular disease: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2015, 102, 276–294. [Google Scholar] [CrossRef]
Baseline (n = 170) | Post-Intervention (n = 151) | |||
---|---|---|---|---|
Intervention (n = 93) | Control (n = 77) | Intervention (n = 85) | Control (n = 66) | |
Minerals | ||||
Calcium (mg) | 826 ± 556 | 853 ± 533 | 781 ± 461 | 874 ± 482 |
Iron (mg) | 11 ± 7 | 11 ± 5 | 10 ± 6 | 12 ± 7 |
Magnesium (mg) | 216 ± 99 | 224 ± 93 | 205 ± 111 | 240 ± 107 |
Phosphorus (mg) | 1103 ± 514 | 1177 ± 601 | 1079 ± 559 | 1201 ± 580 |
Potassium (mg) | 1987 ± 947 | 1981 ± 843 | 1756 ± 881 | 2026 ± 910 |
Sodium (mg) | 3081 ± 1379 | 3111 ± 1340 | 2816 ± 1442 | 3084 ± 1488 |
Zinc (mg) | 9 ± 5 | 9 ± 5 | 8 ± 5 § | 10 ± 6 |
Copper (mg) | 1 ± 1 | 1 ± 0 | 1 ± 1 | 1 ± 1 |
Selenium (mcg) | 92 ± 46 | 90 ± 49 | 86 ± 49 | 101 ± 54 |
Baseline (n = 170) | Post-Intervention (n = 151) | |||
---|---|---|---|---|
Intervention (n = 93) | Control (n = 77) | Intervention (n = 85) | Control (n = 66) | |
Vitamins | ||||
Vitamin C (mg) | 55 ± 93 | 45 ± 52 | 41 ± 43 | 52 ± 51 |
Thiamine (mg) | 1 ± 1 | 1 ± 1 | 1 ± 1 § | 1 ± 1 |
Riboflavin (mg) | 2 ± 1 | 2 ± 1 | 1 ± 1 | 2 ± 1 |
Niacin (mg) | 20 ± 10 | 19 ± 10 | 18 ± 11 | 21 ± 13 |
Vitamin B6 (mg) | 2 ± 2 | 2 ± 1 | 2 ± 1 | 2 ± 2 |
Folate (mcg) | 290 ± 191 | 287 ± 148 | 283 ± 213 | 316 ± 227 |
Folic Acid (mcg) | 144 ± 170 | 125 ± 85 | 134 ± 170 | 150 ± 193 |
Folate, food (mcg) | 146 ± 82 | 162 ± 107 | 150 ± 122 | 166 ± 96 |
Foldate, DFE (mcg_DFE) | 391 ± 303 | 375 ± 194 | 377 ± 318 | 421 ± 354 |
Vitamin B-12 (mcg) | 3 ± 3 | 4 ± 5 | 4 ± 5 | 4 ± 3 |
Vitamin A, RAE (mcg_RAE) | 440 ± 357 | 474 ± 373 | 390 ± 330 | 490 ± 367 |
Retinol (mcg) | 301 ± 283 | 357 ± 315 | 258 ± 210 | 324 ± 289 |
Carotene, beta (mcg) | 1453 ± 2671 | 1243 ± 1734 | 1480 ± 2232 | 1784 ± 2746 |
Carotene, alpha (mcg) | 364 ± 860 | 266 ± 562 | 180 ± 562 | 362 ± 980 |
Cryptoxanthin, beta (mcg) | 59 ± 118 | 52 ± 101 | 49 ± 98 | 53 ± 101 |
Lycopene (mcg) | 4881 ± 7223 | 4652 ± 6382 | 3993 ± 7198 | 3474 ± 4593 |
Lutein + zeaxanthin (mcg) | 861 ± 975 | 1081 ± 1767 | 1728 ± 2926 * | 1206 ± 1718 |
Vitamin E, alpha-tocopherol (mg) | 6 ± 4 | 6 ± 4 | 6 ± 5 | 7 ± 5 |
Vitamin K, phylloquinone (mcg) | 75 ± 69 | 87 ± 106 | 105 ± 120 * | 91 ± 116 |
Cholesterol (mg) | 264 ± 194 | 274 ± 257 | 210 ± 176 * | 247 ± 215 |
Fatty acids, total saturated (g) | 23 ± 14 | 24 ± 15 | 21 ± 14 | 22 ± 13 |
Baseline (n = 170) | Post-Intervention (n = 151) | |||
---|---|---|---|---|
Intervention (n = 93) | Control (n = 77) | Intervention (n = 85) | Control (n = 66) | |
Macronutrients | ||||
Protein (g) | 68 ± 29 | 66 ± 34 | 66 ± 37 | 75 ± 38 |
Total fat (g) | 69 ± 35 | 69 ± 38 | 61 ± 37 | 65 ± 32 |
Carbohydrate (g) | 204 ± 112 § | 244 ± 116 | 166 ± 95 * § | 198 ± 106 * |
Water (g) | 2650 ± 1311 | 3079 ± 1823 | 2271 ± 1503 | 2652 ± 1287 |
Alcohol (g) | 2 ± 11 | 2 ± 7 | 3 ± 16 | 1 ± 4 |
Caffeine (mg) | 145 ± 148 | 167 ± 162 | 98 ± 119 * | 105 ± 147 * |
Theobromine (mg) | 34 ± 67 | 42 ± 49 | 22 ± 48 | 23 ± 50 * |
Sugars (g) | 99 ± 77 § | 131 ± 88 | 75 ± 60 * | 92 ± 70 * |
Fiber, total dietary (g) | 12 ± 7 | 12 ± 7 | 11 ± 8 | 13 ± 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, W.; Taniguchi, T.; Clyma, K.R.; Jacob, T.S.; Jernigan, V.B.B. Impact of Nutrition Interventions on Vitamin and Mineral Intake among Native American Children and Parents: Insights from Food Resource Equity for Sustainable Health (FRESH) Study. Int. J. Environ. Res. Public Health 2024, 21, 1014. https://doi.org/10.3390/ijerph21081014
Sun W, Taniguchi T, Clyma KR, Jacob TS, Jernigan VBB. Impact of Nutrition Interventions on Vitamin and Mineral Intake among Native American Children and Parents: Insights from Food Resource Equity for Sustainable Health (FRESH) Study. International Journal of Environmental Research and Public Health. 2024; 21(8):1014. https://doi.org/10.3390/ijerph21081014
Chicago/Turabian StyleSun, Wenjie, Tori Taniguchi, Kaylee R. Clyma, Tvli S. Jacob, and Valarie Blue Bird Jernigan. 2024. "Impact of Nutrition Interventions on Vitamin and Mineral Intake among Native American Children and Parents: Insights from Food Resource Equity for Sustainable Health (FRESH) Study" International Journal of Environmental Research and Public Health 21, no. 8: 1014. https://doi.org/10.3390/ijerph21081014
APA StyleSun, W., Taniguchi, T., Clyma, K. R., Jacob, T. S., & Jernigan, V. B. B. (2024). Impact of Nutrition Interventions on Vitamin and Mineral Intake among Native American Children and Parents: Insights from Food Resource Equity for Sustainable Health (FRESH) Study. International Journal of Environmental Research and Public Health, 21(8), 1014. https://doi.org/10.3390/ijerph21081014