Enhancing Post-Training Muscle Recovery and Strength in Paralympic Powerlifting Athletes with Cold-Water Immersion, a Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Blood Biochemical Markers (Cytokines)
2.4. Isometric Force Indicators
2.5. Load Determination
2.6. Warm-Up (Exercises Pre-Test)
2.7. Training Session
2.8. Recovery Intervention
2.9. Statistical Analysis
3. Results
4. Discussion
4.1. Effect on Maximal Isometric Strength
4.2. Biochemical Markers of Muscle Damage
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Para Powerlifting Rules and Regulations. Available online: https://www.paralympic.org/powerlifting/rules (accessed on 30 May 2024).
- Aidar, F.J.; Brito, C.J.; de Matos, D.G.; de Oliveira, L.A.S.; de Souza, R.F.; de Almeida-Neto, P.F.; de Araújo Tinoco Cabral, B.G.; Neiva, H.P.; Neto, F.R.; Reis, V.M.; et al. Force-Velocity Relationship in Paralympic Powerlifting: Two or Multiple-Point Methods to Determine a Maximum Repetition. BMC Sports Sci. Med. Rehabil. 2022, 14, 159. [Google Scholar] [CrossRef] [PubMed]
- Santos, W.Y.H.D.; Aidar, F.J.; Matos, D.G.d.; Van den Tillaar, R.; Marçal, A.C.; Lobo, L.F.; Marcucci-Barbosa, L.S.; Machado, S.d.C.; Almeida-Neto, P.F.d.; Garrido, N.D.; et al. Physiological and Biochemical Evaluation of Different Types of Recovery in National Level Paralympic Powerlifting. Int. J. Environ. Res. Public. Health 2021, 18, 5155. [Google Scholar] [CrossRef] [PubMed]
- Aidar, F.J.; Cataldi, S.; Badicu, G.; Silva, A.F.; Clemente, F.M.; Bonavolontà, V.; Greco, G.; Getirana-Mota, M.; Fischetti, F. Does the Level of Training Interfere with the Sustainability of Static and Dynamic Strength in Paralympic Powerlifting Athletes? Sustainability 2022, 14, 5049. [Google Scholar] [CrossRef]
- Bell, L. You Can’t Shoot Another Bullet until You’ve Reloaded the Gun: Coaches’ Perceptions, Practices and Experiences of Deloading in Strength and Physique Sports. Front. Sports Act. Living 2022, 4, 1073223. [Google Scholar] [CrossRef] [PubMed]
- Peake, J.M.; Neubauer, O.; Della Gatta, P.A.; Nosaka, K. Muscle Damage and Inflammation during Recovery from Exercise. J. Appl. Physiol. Bethesda Md 1985 2017, 122, 559–570. [Google Scholar] [CrossRef]
- Fraga, G.S.; Aidar, F.J.; Matos, D.G.; Marçal, A.C.; Santos, J.L.; Souza, R.F.; Carneiro, A.L.; Vasconcelos, A.B.; Da Silva-Grigoletto, M.E.; van den Tillaar, R.; et al. Effects of Ibuprofen Intake in Muscle Damage, Body Temperature and Muscle Power in Paralympic Powerlifting Athletes. Int. J. Environ. Res. Public Health 2020, 17, 5157. [Google Scholar] [CrossRef]
- Townsend, J.R.; Fragala, M.S.; Jajtner, A.R.; Gonzalez, A.M.; Wells, A.J.; Mangine, G.T.; Robinson, E.H.; McCormack, W.P.; Beyer, K.S.; Pruna, G.J.; et al. β-Hydroxy-β-Methylbutyrate (HMB)-Free Acid Attenuates Circulating TNF-α and TNFR1 Expression Postresistance Exercise. J. Appl. Physiol. Bethesda Md 1985 2013, 115, 1173–1182. [Google Scholar] [CrossRef]
- O’Brien, T.J.; Lunt, K.M.; Stephenson, B.T.; Goosey-Tolfrey, V.L. The Effect of Pre-Cooling or per-Cooling in Athletes with a Spinal Cord Injury: A Systematic Review and Meta-Analysis. J. Sci. Med. Sport 2022, 25, 606–614. [Google Scholar] [CrossRef]
- Griggs, K.E.; Price, M.J.; Goosey-Tolfrey, V.L. Cooling Athletes with a Spinal Cord Injury. Sports Med. 2015, 45, 9–21. [Google Scholar] [CrossRef]
- Li, Q.; Ji, Y.; Ye, Q. Effect of Cold Water Immersion Dose on the Recovery of Skeletal Muscle Fatigue Induced by Exercise: A Systematic Review and Meta-Analysis. Chin. J. Tissue Eng. Res. 2024, 28, 5732. [Google Scholar]
- Xiao, F.; Kabachkova, A.V.; Jiao, L.; Zhao, H.; Kapilevich, L.V. Effects of Cold Water Immersion after Exercise on Fatigue Recovery and Exercise Performance--Meta Analysis. Front. Physiol. 2023, 14, 1006512. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J. Effects of Post-Exercise Cold-Water Immersion on Resistance Training-Induced Gains in Muscular Strength: A Meta-Analysis. Eur. J. Sport Sci. 2023, 23, 372–380. [Google Scholar] [CrossRef]
- Malta, E.S.; Dutra, Y.M.; Broatch, J.R.; Bishop, D.J.; Zagatto, A.M. The Effects of Regular Cold-Water Immersion Use on Training-Induced Changes in Strength and Endurance Performance: A Systematic Review with Meta-Analysis. Sports Med. 2021, 51, 161–174. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, L.B.; Brito, C.J.; Silva, R.J.S.; Silva-Grigoletto, M.E.; da Silva, W.M.; Franchini, E. Use of Cold-Water Immersion to Reduce Muscle Damage and Delayed-Onset Muscle Soreness and Preserve Muscle Power in Jiu-Jitsu Athletes. J. Athl. Train. 2016, 51, 540–549. [Google Scholar] [CrossRef] [PubMed]
- Piñero, A.; Burke, R.; Augustin, F.; Mohan, A.E.; DeJesus, K.; Sapuppo, M.; Weisenthal, M.; Coleman, M.; Androulakis-Korakakis, P.; Grgic, J.; et al. Throwing Cold Water on Muscle Growth: A Systematic Review with Meta-Analysis of the Effects of Postexercise Cold Water Immersion on Resistance Training-Induced Hypertrophy. Eur. J. Sport Sci. 2024, 24, 177–189. [Google Scholar] [CrossRef]
- Siqueira, A.F.; Vieira, A.; Bottaro, M.; Ferreira-Júnior, J.B.; Nóbrega, O.d.T.; de Souza, V.C.; Marqueti, R.d.C.; Babault, N.; Durigan, J.L.Q. Multiple Cold-Water Immersions Attenuate Muscle Damage but Not Alter Systemic Inflammation and Muscle Function Recovery: A Parallel Randomized Controlled Trial. Sci. Rep. 2018, 8, 10961. [Google Scholar] [CrossRef]
- Bartolomei, S.; Totti, V.; Griggio, F.; Malerba, C.; Ciacci, S.; Semprini, G.; Di Michele, R. Upper-Body Resistance Exercise Reduces Time to Recover After a High-Volume Bench Press Protocol in Resistance-Trained Men. J. Strength Cond. Res. 2021, 35, S180–S187. [Google Scholar] [CrossRef]
- Ferreira, S.L.d.A.; Panissa, V.L.G.; Miarka, B.; Franchini, E. Postactivation Potentiation: Effect of Various Recovery Intervals on Bench Press Power Performance. J. Strength Cond. Res. 2012, 26, 739–744. [Google Scholar] [CrossRef]
- Santos, L.C.V.; Aidar, F.J.; Villar, R.; Greco, G.; de Santana, J.L.; Marçal, A.C.; de Almeida-Neto, P.F.; de Araújo Tinoco Cabral, B.G.; Badicu, G.; Nobari, H.; et al. Evaluation of the Training Session in Elite Paralympic Powerlifting Athletes Based on Biomechanical and Thermal Indicators. Sports 2023, 11, 151. [Google Scholar] [CrossRef]
- Ball, R.; Weidman, D. Analysis of USA Powerlifting Federation Data From January 1, 2012-June 11, 2016. J. Strength Cond. Res. 2018, 32, 1843–1851. [Google Scholar] [CrossRef]
- Aidar, F.J.; Fraga, G.S.; Getirana-Mota, M.; Marçal, A.C.; Santos, J.L.; de Souza, R.F.; Vieira-Souza, L.M.; Ferreira, A.R.P.; de Matos, D.G.; de Almeida-Neto, P.F.; et al. Evaluation of Ibuprofen Use on the Immune System Indicators and Force in Disabled Paralympic Powerlifters of Different Sport Levels. Healthcare 2022, 10, 1331. [Google Scholar] [CrossRef]
- Soares Freitas Sampaio, C.R.; Aidar, F.J.; Ferreira, A.R.P.; Santos, J.L.D.; Marçal, A.C.; Matos, D.G.d.; Souza, R.F.d.; Moreira, O.C.; Guerra, I.; Fernandes Filho, J.; et al. Can Creatine Supplementation Interfere with Muscle Strength and Fatigue in Brazilian National Level Paralympic Powerlifting? Nutrients 2020, 12, 2492. [Google Scholar] [CrossRef] [PubMed]
- Aidar, F.J.; Clemente, F.M.; de Lima, L.F.; de Matos, D.G.; Ferreira, A.R.P.; Marçal, A.C.; Moreira, O.C.; Bulhões-Correia, A.; de Almeida-Neto, P.F.; Díaz-de-Durana, A.L.; et al. Evaluation of Training with Elastic Bands on Strength and Fatigue Indicators in Paralympic Powerlifting. Sports 2021, 9, 142. [Google Scholar] [CrossRef] [PubMed]
- Aidar, F.J.; Fraga, G.S.; Getirana-Mota, M.; Marçal, A.C.; Santos, J.L.; de Souza, R.F.; Ferreira, A.R.P.; Neves, E.B.; Zanona, A.d.F.; Bulhões-Correia, A.; et al. Effects of Ibuprofen Use on Lymphocyte Count and Oxidative Stress in Elite Paralympic Powerlifting. Biology 2021, 10, 986. [Google Scholar] [CrossRef] [PubMed]
- Resende, M.d.A.; Vasconcelos Resende, R.B.; Reis, G.C.; Barros, L.d.O.; Bezerra, M.R.S.; Matos, D.G.d.; Marçal, A.C.; Almeida-Neto, P.F.d.; Cabral, B.G.d.A.T.; Neiva, H.P.; et al. The Influence of Warm-Up on Body Temperature and Strength Performance in Brazilian National-Level Paralympic Powerlifting Athletes. Medicina 2020, 56, 538. [Google Scholar] [CrossRef]
- Machado, A.F.; Ferreira, P.H.; Micheletti, J.K.; de Almeida, A.C.; Lemes, Í.R.; Vanderlei, F.M.; Netto Junior, J.; Pastre, C.M. Can Water Temperature and Immersion Time Influence the Effect of Cold Water Immersion on Muscle Soreness? A Systematic Review and Meta-Analysis. Sports Med. 2016, 46, 503–514. [Google Scholar] [CrossRef]
- Vieira, A.; Siqueira, A.F.; Ferreira-Junior, J.B.; do Carmo, J.; Durigan, J.L.Q.; Blazevich, A.; Bottaro, M. The Effect of Water Temperature during Cold-Water Immersion on Recovery from Exercise-Induced Muscle Damage. Int. J. Sports Med. 2016, 37, 937–943. [Google Scholar] [CrossRef]
- Gignac, G.E.; Szodorai, E.T. Effect Size Guidelines for Individual Differences Researchers. Personal. Individ. Differ. 2016, 102, 74–78. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: New York, NY, USA, 1988; ISBN 978-0-203-77158-7. [Google Scholar]
- Del Vecchio, A.; Negro, F.; Holobar, A.; Casolo, A.; Folland, J.P.; Felici, F.; Farina, D. You Are as Fast as Your Motor Neurons: Speed of Recruitment and Maximal Discharge of Motor Neurons Determine the Maximal Rate of Force Development in Humans. J. Physiol. 2019, 597, 2445–2456. [Google Scholar] [CrossRef]
- Maden-Wilkinson, T.M.; Balshaw, T.G.; Massey, G.J.; Folland, J.P. Muscle Architecture and Morphology as Determinants of Explosive Strength. Eur. J. Appl. Physiol. 2021, 121, 1099–1110. [Google Scholar] [CrossRef]
- Petersen, A.C.; Fyfe, J.J. Post-Exercise Cold Water Immersion Effects on Physiological Adaptations to Resistance Training and the Underlying Mechanisms in Skeletal Muscle: A Narrative Review. Front. Sports Act. Living 2021, 3, 660291. [Google Scholar] [CrossRef] [PubMed]
- Yamane, M.; Ohnishi, N.; Matsumoto, T. Does Regular Post-Exercise Cold Application Attenuate Trained Muscle Adaptation? Int. J. Sports Med. 2015, 36, 647–653. [Google Scholar] [CrossRef] [PubMed]
- Fröhlich, M.; Faude, O.; Klein, M.; Pieter, A.; Emrich, E.; Meyer, T. Strength Training Adaptations after Cold-Water Immersion. J. Strength Cond. Res. 2014, 28, 2628–2633. [Google Scholar] [CrossRef] [PubMed]
- Ingram, J.; Dawson, B.; Goodman, C.; Wallman, K.; Beilby, J. Effect of Water Immersion Methods on Post-Exercise Recovery from Simulated Team Sport Exercise. J. Sci. Med. Sport 2009, 12, 417–421. [Google Scholar] [CrossRef] [PubMed]
- Versey, N.G.; Halson, S.L.; Dawson, B.T. Water Immersion Recovery for Athletes: Effect on Exercise Performance and Practical Recommendations. Sports Med. 2013, 43, 1101–1130. [Google Scholar] [CrossRef]
- Pointon, M.; Duffield, R.; Cannon, J.; Marino, F.E. Cold Water Immersion Recovery Following Intermittent-Sprint Exercise in the Heat. Eur. J. Appl. Physiol. 2012, 112, 2483–2494. [Google Scholar] [CrossRef]
- Guilhem, G.; Hug, F.; Couturier, A.; Regnault, S.; Bournat, L.; Filliard, J.-R.; Dorel, S. Effects of Air-Pulsed Cryotherapy on Neuromuscular Recovery Subsequent to Exercise-Induced Muscle Damage. Am. J. Sports Med. 2013, 41, 1942–1951. [Google Scholar] [CrossRef]
- Thoma, A.; Lightfoot, A.P. NF-kB and Inflammatory Cytokine Signalling: Role in Skeletal Muscle Atrophy. Adv. Exp. Med. Biol. 2018, 1088, 267–279. [Google Scholar] [CrossRef]
- Chadda, K.R.; Puthucheary, Z. Persistent Inflammation, Immunosuppression, and Catabolism Syndrome (PICS): A Review of Definitions, Potential Therapies, and Research Priorities. Br. J. Anaesth. 2024, 132, 507–518. [Google Scholar] [CrossRef]
- Akkaya, E.C.; Koc, B.; Dalkiran, B.; Calis, G.; Dayi, A.; Kayatekin, B.M. High-Intensity Interval Training Ameliorates Spatial and Recognition Memory Impairments, Reduces Hippocampal TNF-Alpha Levels, and Amyloid-Beta Peptide Load in Male Hypothyroid Rats. Behav. Brain Res. 2024, 458, 114752. [Google Scholar] [CrossRef]
- Guo, Y.; Qian, H.; Xin, X.; Liu, Q. Effects of Different Exercise Modalities on Inflammatory Markers in the Obese and Overweight Populations: Unraveling the Mystery of Exercise and Inflammation. Front. Physiol. 2024, 15, 1405094. [Google Scholar] [CrossRef]
- Ringleb, M.; Javelle, F.; Haunhorst, S.; Bloch, W.; Fennen, L.; Baumgart, S.; Drube, S.; Reuken, P.A.; Pletz, M.W.; Wagner, H.; et al. Beyond Muscles: Investigating Immunoregulatory Myokines in Acute Resistance Exercise—A Systematic Review and Meta-Analysis. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2024, 38, e23596. [Google Scholar] [CrossRef] [PubMed]
- Tseng, C.-Y.; Lee, J.-P.; Tsai, Y.-S.; Lee, S.-D.; Kao, C.-L.; Liu, T.-C.; Lai, C.-H.; Harris, M.B.; Kuo, C.-H. Topical Cooling (Icing) Delays Recovery from Eccentric Exercise-Induced Muscle Damage. J. Strength Cond. Res. 2013, 27, 1354–1361. [Google Scholar] [CrossRef] [PubMed]
- Peake, J.M.; Roberts, L.A.; Figueiredo, V.C.; Egner, I.; Krog, S.; Aas, S.N.; Suzuki, K.; Markworth, J.F.; Coombes, J.S.; Cameron-Smith, D.; et al. The Effects of Cold Water Immersion and Active Recovery on Inflammation and Cell Stress Responses in Human Skeletal Muscle after Resistance Exercise. J. Physiol. 2017, 595, 695–711. [Google Scholar] [CrossRef] [PubMed]
- Ihsan, M.; Watson, G.; Abbiss, C.R. What Are the Physiological Mechanisms for Post-Exercise Cold Water Immersion in the Recovery from Prolonged Endurance and Intermittent Exercise? Sports Med. 2016, 46, 1095–1109. [Google Scholar] [CrossRef]
- Heinrich, P.C.; Behrmann, I.; Müller-Newen, G.; Schaper, F.; Graeve, L. Interleukin-6-Type Cytokine Signalling through the Gp130/Jak/STAT Pathway. Biochem. J. 1998, 334 Pt 2, 297–314. [Google Scholar] [CrossRef]
- Forcina, L.; Franceschi, C.; Musarò, A. The Hormetic and Hermetic Role of IL-6. Ageing Res. Rev. 2022, 80, 101697. [Google Scholar] [CrossRef]
- Karstoft, K.; Pedersen, B.K. Skeletal Muscle as a Gene Regulatory Endocrine Organ. Curr. Opin. Clin. Nutr. Metab. Care 2016, 19, 270–275. [Google Scholar] [CrossRef]
- Leal, L.G.; Lopes, M.A.; Batista, M.L. Physical Exercise-Induced Myokines and Muscle-Adipose Tissue Crosstalk: A Review of Current Knowledge and the Implications for Health and Metabolic Diseases. Front. Physiol. 2018, 9, 1307. [Google Scholar] [CrossRef]
- Steensberg, A.; Fischer, C.P.; Keller, C.; Møller, K.; Pedersen, B.K. IL-6 Enhances Plasma IL-1ra, IL-10, and Cortisol in Humans. Am. J. Physiol. Endocrinol. Metab. 2003, 285, E433–E437. [Google Scholar] [CrossRef]
- Ellingsgaard, H.; Hojman, P.; Pedersen, B.K. Exercise and Health—Emerging Roles of IL-6. Curr. Opin. Physiol. 2019, 10, 49–54. [Google Scholar] [CrossRef]
- Alizadeh, A.M.; Isanejad, A.; Sadighi, S.; Mardani, M.; Kalaghchi, B.; Hassan, Z.M. High-Intensity Interval Training Can Modulate the Systemic Inflammation and HSP70 in the Breast Cancer: A Randomized Control Trial. J. Cancer Res. Clin. Oncol. 2019, 145, 2583–2593. [Google Scholar] [CrossRef] [PubMed]
- Azzolini, F.; Dolcetti, E.; Bruno, A.; Rovella, V.; Centonze, D.; Buttari, F. Physical Exercise and Synaptic Protection in Human and Pre-Clinical Models of Multiple Sclerosis. Neural Regen. Res. 2024, 19, 1768–1771. [Google Scholar] [CrossRef] [PubMed]
- Sabzevari Rad, R.; Panahzadeh, F. Muscle-to-Organ Cross-Talk Mediated by Interleukin 6 during Exercise: A Review. Sport Sci. Health 2024, 20, 1–13. [Google Scholar] [CrossRef]
- Silva-Cavalcante, M.D.; Couto, P.G.; Azevedo, R.d.A.; Gáspari, A.F.; Coelho, D.B.; Lima-Silva, A.E.; Bertuzzi, R. Stretch-Shortening Cycle Exercise Produces Acute and Prolonged Impairments on Endurance Performance: Is the Peripheral Fatigue a Single Answer? Eur. J. Appl. Physiol. 2019, 119, 1479–1489. [Google Scholar] [CrossRef]
- Millet, G.Y.; Martin, V.; Temesi, J. The Role of the Nervous System in Neuromuscular Fatigue Induced by Ultra-Endurance Exercise. Appl. Physiol. Nutr. Metab. 2018, 43, 1151–1157. [Google Scholar] [CrossRef]
- Nielsen, A.R.; Pedersen, B.K. The Biological Roles of Exercise-Induced Cytokines: IL-6, IL-8, and IL-15. Appl. Physiol. Nutr. Metab. 2007, 32, 833–839. [Google Scholar] [CrossRef]
- Chen, R.; Ma, X.; Ma, X.; Cui, C. The Effects of Hydrotherapy and Cryotherapy on Recovery from Acute Post-Exercise Induced Muscle Damage-a Network Meta-Analysis. BMC Musculoskelet. Disord. 2024, 25, 749. [Google Scholar] [CrossRef]
Variables | Values |
---|---|
Age (years) | 27.08 ± 4.66 |
Body Weight (kg) | 84.58 ± 18.48 |
Experience (years) | 3.21 ± 0.53 |
1RM Bench Press Test (kg) | 150.17 ± 27.46 * |
1RM/Body Weight | 1.80 ± 0.23 ** |
MIF | Time to MIF | RFD | |
---|---|---|---|
PR Before (a) X ± SD (IC95%) | 877.06 ± 292.32 c (680.68–1073.45) | 1.90 ± 1.03 e (1.21–2.59) | 2431.64 ± 779.30 e (1908.10–2955.18) |
CWI Before (b) X ± SD (IC95%) | 846.70 ± 241.62 (684.38–1009.02) | 1.90 ± 0.73 (1.41–2.39) | 2349.66 ± 649.15 (1913.56–2785.77) |
PR 15 min (c) X ± SD (IC95%) | 664.79 ± 169.58 g (550.87–778.71) | 3.94 ± 1.44 a,d (2.98–4.90) | 1851.78 ± 521.89 a (1501.18–2202.39) |
CWI 15 min (d) X ± SD (IC95%) | 671.57 ± 111.02 (596.99–746.16) | 3.40 ± 1.73 (2.24–4.56) | 1865.60 ± 385.52 (1606.60–2124.60) |
PR 24 h (e) X ± SD (IC95%) | 655.78 ± 151.47 a (554.02–757.54) | 2.96 ± 0.55 f (2.59–3.33) | 1891.06 ± 453.32 f (1586.51–2195.60) |
CWI 24 h (f) X ± SD (IC95%) | 799.88 ± 132.43 e (710.92–888.85) | 2.61 ± 0.61 (2.20–3.03) | 2229.24 ± 370.29 (1980.48–2478.01) |
PR 48 h (g) X ± SD (IC95%) | 792.33 ± 215.00 c (647.89–936.77) | 2.19 ± 1.54 c (1.16–3.23) | 2203.62 ± 594.03 (1804.55–2602.70) |
CWI 48 h (h) (X ± SD) (IC95%) | 907,81 ± 255,55 (736.12–1079.49) | 1.74 ± 1.37 d (0.81–2.66) | 2500.08 ± 681.56 (2042.20–2957.95) |
p | a = 0.046 * c = 0.011 * e = 0.011 # g = 0.048 * | a = 0.021 * c = 0.012 * d = 0.007 # e = 0.012 * f < 0.001 # g = 0.037 # | a = 0.040 * e = 0.031 * f = 0.024 # |
F | * = 5.364 # = 3.906 | * = 9.914 # = 8.578 | * = 5.334 # = 3.205 |
η2p | 0.349 * 0.281 # | 0.498 * 0.462 # | 0.348 * 0.243 # |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aidar, F.J.; Santos, W.Y.H.d.; Machado, S.d.C.; Nunes-Silva, A.; Vieira, É.L.M.; Valenzuela Pérez, D.I.; Aedo-Muñoz, E.; Brito, C.J.; Nikolaidis, P.T. Enhancing Post-Training Muscle Recovery and Strength in Paralympic Powerlifting Athletes with Cold-Water Immersion, a Cross-Sectional Study. Int. J. Environ. Res. Public Health 2025, 22, 122. https://doi.org/10.3390/ijerph22010122
Aidar FJ, Santos WYHd, Machado SdC, Nunes-Silva A, Vieira ÉLM, Valenzuela Pérez DI, Aedo-Muñoz E, Brito CJ, Nikolaidis PT. Enhancing Post-Training Muscle Recovery and Strength in Paralympic Powerlifting Athletes with Cold-Water Immersion, a Cross-Sectional Study. International Journal of Environmental Research and Public Health. 2025; 22(1):122. https://doi.org/10.3390/ijerph22010122
Chicago/Turabian StyleAidar, Felipe J., Wélia Yasmin Horacio dos Santos, Saulo da Cunha Machado, Albená Nunes-Silva, Érica Leandro Marciano Vieira, Diego Ignácio Valenzuela Pérez, Esteban Aedo-Muñoz, Ciro José Brito, and Pantelis T. Nikolaidis. 2025. "Enhancing Post-Training Muscle Recovery and Strength in Paralympic Powerlifting Athletes with Cold-Water Immersion, a Cross-Sectional Study" International Journal of Environmental Research and Public Health 22, no. 1: 122. https://doi.org/10.3390/ijerph22010122
APA StyleAidar, F. J., Santos, W. Y. H. d., Machado, S. d. C., Nunes-Silva, A., Vieira, É. L. M., Valenzuela Pérez, D. I., Aedo-Muñoz, E., Brito, C. J., & Nikolaidis, P. T. (2025). Enhancing Post-Training Muscle Recovery and Strength in Paralympic Powerlifting Athletes with Cold-Water Immersion, a Cross-Sectional Study. International Journal of Environmental Research and Public Health, 22(1), 122. https://doi.org/10.3390/ijerph22010122