The Effects of CrossFit® Practice on Physical Fitness and Overall Quality of Life
Abstract
:1. Introduction
2. Physiological Responses on CrossFit®
3. Psychological Effects of CrossFit®
4. Risks and Recovery Challenges
5. Future Directions
6. Practical Applications
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Meier, N.; Schlie, J.; Schmidt, A. CrossFit(®): ‘Unknowable’ or Predictable?—A Systematic Review on Predictors of CrossFit(®) Performance. Sports 2023, 11, 112. [Google Scholar] [CrossRef]
- Dominski, F.H.; Serafim, T.T.; Siqueira, T.C.; Andrade, A. Psychological variables of CrossFit participants: A systematic review. Sport Sci. Health 2021, 17, 21–41. [Google Scholar] [CrossRef]
- Claudino, J.G.; Gabbett, T.J.; Bourgeois, F.; Souza, H.S.; Miranda, R.C.; Mezêncio, B.; Soncin, R.; Cardoso Filho, C.A.; Bottaro, M.; Hernandez, A.J.; et al. CrossFit Overview: Systematic Review and Meta-analysis. Sports Med. Open 2018, 4, 11. [Google Scholar] [CrossRef]
- Brisebois, M.F.; Rigby, B.R.; Nichols, D.L. Physiological and Fitness Adaptations after Eight Weeks of High-Intensity Functional Training in Physically Inactive Adults. Sports 2018, 6, 146. [Google Scholar] [CrossRef]
- Cansler, R.; Heidrich, J.; Whiting, A.; Tran, D.; Hall, P.; Tyler, W.J. Influence of CrossFit and Deep End Fitness training on mental health and coping in athletes. Front. Sports Act. Living 2023, 5, 1061492. [Google Scholar] [CrossRef]
- Rios, M.; Cardoso, R.; Fonseca, P.; Vilas-Boas, J.P.; Reis, V.M.; Moreira-Gonçalves, D.; Fernandes, R.J. Biomechanical Characterization of the CrossFit® Isabel Workout: A Cross-Sectional Study. Appl. Sci. 2024, 14, 6895. [Google Scholar] [CrossRef]
- Rios, M.; Becker, K.M.; Monteiro, A.S.; Fonseca, P.; Pyne, D.B.; Reis, V.M.; Moreira-Gonçalves, D.; Fernandes, R.J. Effect of the Fran CrossFit Workout on Oxygen Uptake Kinetics, Energetics, and Postexercise Muscle Function in Trained CrossFitters. Int. J. Sports Physiol. Perform. 2024, 19, 299–306. [Google Scholar] [CrossRef]
- Martinho, D.V.; Rebelo, A.; Gouveia, É.R.; Field, A.; Costa, R.; Ribeiro, A.S.; Casonatto, J.; Amorim, C.; Sarmento, H. The physical demands and physiological responses to CrossFit®: A scoping review with evidence gap map and meta-correlation. BMJ Open Sports Exerc. Med. 2024, 16, 196. [Google Scholar] [CrossRef]
- Rios, M.; Becker, K.M.; Cardoso, F.; Pyne, D.B.; Reis, V.M.; Moreira-Gonçalves, D.; Fernandes, R.J. Assessment of Cardiorespiratory and Metabolic Contributions in an Extreme Intensity CrossFit(®) Benchmark Workout. Sensors 2024, 24, 513. [Google Scholar] [CrossRef] [PubMed]
- Rios, M.; Macan, T.; Stevanović-Silva, J.; Nhusawi, K.; Fernandes, R.J.; Beleza, J.; Ascensão, A.; Magalhães, J. Acute CrossFit® workout session impacts blood redox marker modulation. Physiologia 2021, 1, 13–21. [Google Scholar] [CrossRef]
- Schoenfeld, B.J.; Peterson, M.D.; Ogborn, D.; Contreras, B.; Sonmez, G.T. Effects of Low- vs. High-Load Resistance Training on Muscle Strength and Hypertrophy in Well-Trained Men. J. Strength Cond. Res. 2015, 29, 2954–2963. [Google Scholar] [CrossRef]
- Kapsis, D.P.; Tsoukos, A.; Psarraki, M.P.; Douda, H.T.; Smilios, I.; Bogdanis, G.C. Changes in Body Composition and Strength after 12 Weeks of High-Intensity Functional Training with Two Different Loads in Physically Active Men and Women: A Randomized Controlled Study. Sports 2022, 10, 7. [Google Scholar] [CrossRef]
- Tibana, R.A.; Dominski, F.H.; Andrade, A.; De Sousa, N.M.F.; Voltarelli, F.A.; Neto, I.V.S. Exploring the relationship between Total Athleticism score and CrossFit® Open Performance in amateur athletes: Single measure involving body fat percentage, aerobic capacity, muscle power and local muscle endurance. Eur. J. Transl. Myol. 2024, 34, 12309. [Google Scholar] [CrossRef] [PubMed]
- Rios, M.; Zacca, R.; Azevedo, R.; Fonseca, P.; Pyne, D.B.; Reis, V.M.; Moreira-Gonçalves, D.; Fernandes, R.J. Bioenergetic Analysis and Fatigue Assessment During the Fran Workout in Experienced Crossfitters. Int. J. Sports Physiol. Perform. 2023, 18, 786–792. [Google Scholar] [CrossRef] [PubMed]
- Rios, M.; Reis, V.M.; Soares, S.; Moreira-Gonçalves, D.; Fernandes, R.J. Pros and Cons of Two Methods of Anaerobic Alactic Energy Assessment in a High-Intensity CrossFit® Workout. Oxygen 2022, 2, 621–627. [Google Scholar] [CrossRef]
- Forte, L.D.M.; Freire, Y.G.C.; Júnior, J.; Melo, D.A.; Meireles, C.L.S. Physiological responses after two different CrossFit workouts. Biol. Sport 2022, 39, 231–236. [Google Scholar] [CrossRef]
- Leitão, L.; Dias, M.; Campos, Y.; Vieira, J.G.; Sant’Ana, L.; Telles, L.G.; Tavares, C.; Mazini, M.; Novaes, J.; Vianna, J. Physical and Physiological Predictors of FRAN CrossFit(®) WOD Athlete’s Performance. Int. J. Environ. Res. Public Health 2021, 18, 4070. [Google Scholar] [CrossRef]
- de Sousa Neto, I.V.; de Sousa, N.M.F.; Neto, F.R.; Falk Neto, J.H.; Tibana, R.A. Time Course of Recovery Following CrossFit(®) Karen Benchmark Workout in Trained Men. Front. Physiol. 2022, 13, 899652. [Google Scholar] [CrossRef]
- Tibana, R.A.; de Sousa, N.M.F. Are extreme conditioning programmes effective and safe? A narrative review of high-intensity functional training methods research paradigms and findings. BMJ Open Sport Exerc. Med. 2018, 4, e000435. [Google Scholar] [CrossRef]
- Poderoso, R.; Cirilo-Sousa, M.; Júnior, A.; Novaes, J.; Vianna, J.; Dias, M.; Leitão, L.; Reis, V.; Neto, N.; Vilaça-Alves, J. Gender Differences in Chronic Hormonal and Immunological Responses to CrossFit(®). Int. J. Environ. Res. Public Health 2019, 16, 2577. [Google Scholar] [CrossRef] [PubMed]
- Foster, C.; Rodriguez-Marroyo, J.A.; De Koning, J.J. Monitoring training loads: The past, the present, and the future. Int. J. Sports Physiol. Perform. 2017, 12, S2-2–S2-8. [Google Scholar] [CrossRef]
- Meier, N.; Rabel, S.; Schmidt, A. Determination of a CrossFit(®) Benchmark Performance Profile. Sports 2021, 9, 80. [Google Scholar] [CrossRef] [PubMed]
- Lopes, A.M.; Rios, M.; Beleza, J.; Carvalho, D.D.; Monteiro, S.; Montanha, T.; Martins, S.; Guimarães, J.T.; Fernandes, R.J.; Magalhães, J.; et al. Adding protein to a carbohydrate pre-exercise beverage does not influence running performance and metabolism. J. Sports Med. Phys. Fitness 2023, 63, 53–59. [Google Scholar] [CrossRef]
- Butcher, S.J.; Neyedly, T.J.; Horvey, K.J.; Benko, C.R. Do physiological measures predict selected CrossFit® benchmark performance? Open Access J. Sports Med. 2015, 6, 241–247. [Google Scholar] [CrossRef]
- Dexheimer, J.; Schroeder, E.; Sawyer, B.; Pettitt, R.; Aguinaldo, A.; Torrence, W. Physiological Performance Measures as Indicators of CrossFit® Performance. Sports 2019, 7, 93. [Google Scholar] [CrossRef] [PubMed]
- McDougle, J.M.; Mangine, G.T.; Townsend, J.R.; Jajtner, A.R.; Feito, Y. Acute physiological outcomes of high-intensity functional training: A scoping review. PeerJ 2023, 11, e14493. [Google Scholar] [CrossRef]
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.M.; Nieman, D.C.; Swain, D.P. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sports Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef]
- Tibana, R.A.; De Sousa, N.M.F.; Prestes, J.; Voltarelli, F.A. Lactate, Heart Rate and Rating of Perceived Exertion Responses to Shorter and Longer Duration CrossFit(®) Training Sessions. J. Funct. Morphol. Kinesiol. 2018, 3, 60. [Google Scholar] [CrossRef]
- Timón, R.; Olcina, G.; Camacho-Cardeñosa, M.; Camacho-Cardenosa, A.; Martinez-Guardado, I.; Marcos-Serrano, M. 48-hour recovery of biochemical parameters and physical performance after two modalities of CrossFit workouts. Biol. Sport 2019, 36, 283–289. [Google Scholar] [CrossRef]
- Le Meur, Y.; Buchheit, M.; Aubry, A.; Coutts, A.J.; Hausswirth, C. Assessing overreaching with heart-rate recovery: What is the minimal exercise intensity required? Int. J. Sports Physiol. Perform. 2017, 12, 569–573. [Google Scholar] [CrossRef]
- Barreto, A.C.; Medeiros, A.P.; da Silva Araujo, G.; de Souza Vale, R.G.; Vianna, J.M.; Alkimin, R.; Serra, R.; Leitão, L.; Reis, V.M.M.; da Silva Novaes, J. Heart rate variability and blood pressure during and after three CrossFit® sessions. Retos 2023, 47, 311–316. [Google Scholar] [CrossRef]
- Tibana, R.A.; Almeida, L.M.; de Sousa Neto, I.V.; de Sousa, N.M.F.; de Almeida, J.A.; de Salles, B.F.; Bentes, C.M.; Prestes, J.; Collier, S.R.; Voltarelli, F.A. Extreme Conditioning Program Induced Acute Hypotensive Effects are Independent of the Exercise Session Intensity. Int. J. Exerc. Sci. 2017, 10, 1165–1173. [Google Scholar] [CrossRef] [PubMed]
- Prado Dantas, T.S.; Aidar, F.J.; de Souza, R.F.; de Matos Gama, D.; Pires Ferreira, A.R.; de Almeida Barros, N.; Matos dos Santos, M.D.; Oliveira Barros, G.; Rodrigues Santos, C.R.; da Silva Júnior, W.M. Evaluation of a CrossFit® Session on Post-Exercise Blood Pressure. J. Exerc. Physiol. Online 2018, 21, 44–51. [Google Scholar]
- Cardoso, R.; Rios, M.; Fonseca, P.; Leão, J.; Cardoso, F.; Abraldes, J.A.A.; Gomes, B.B.; Vilas-Boas, J.P.; Fernandes, R.J. Assessment of Angular and Straight Linear Rowing Ergometers at Different Intensities of Exercise. Sensors 2024, 24, 5686. [Google Scholar] [CrossRef]
- Schlegel, P. CrossFit® Training Strategies from the Perspective of Concurrent Training: A Systematic Review. J. Sports Sci. Med. 2020, 19, 670–680. [Google Scholar]
- Crawford, D.A.; Drake, N.B.; Carper, M.J.; DeBlauw, J.; Heinrich, K.M. Are Changes in Physical Work Capacity Induced by High-Intensity Functional Training Related to Changes in Associated Physiologic Measures? Sports 2018, 6, 26. [Google Scholar] [CrossRef]
- Feito, Y.; Hoffstetter, W.; Serafini, P.; Mangine, G. Changes in body composition, bone metabolism, strength, and skill-specific performance resulting from 16-weeks of HIFT. PLoS ONE 2018, 13, e0198324. [Google Scholar] [CrossRef]
- Cosgrove, S.J.; Crawford, D.A.; Heinrich, K.M. Multiple Fitness Improvements Found after 6-Months of High Intensity Functional Training. Sports 2019, 7, 203. [Google Scholar] [CrossRef] [PubMed]
- Falk Neto, J.H.; Kennedy, M.D. The Multimodal Nature of High-Intensity Functional Training: Potential Applications to Improve Sport Performance. Sports 2019, 7, 33. [Google Scholar] [CrossRef] [PubMed]
- Doma, K.; Deakin, G.B.; Bentley, D.J. Implications of impaired endurance performance following single bouts of resistance training: An alternate concurrent training perspective. Sports Med. 2017, 47, 2187–2200. [Google Scholar] [CrossRef] [PubMed]
- Jacob, N.; Novaes, J.S.; Behm, D.G.; Vieira, J.G.; Dias, M.R.; Vianna, J.M. Characterization of Hormonal, Metabolic, and Inflammatory Responses in CrossFit® Training: A Systematic Review. Front. Physiol. 2020, 11, 1001. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, M.S.; Copeland, J.L.; Van Helder, W. Effect of training status and exercise mode on endogenous steroid hormones in men. J. Appl. Physiol. 2004, 96, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Mangine, G.T.; Van Dusseldorp, T.A.; Feito, Y.; Holmes, A.J.; Serafini, P.R.; Box, A.G.; Gonzalez, A.M. Testosterone and Cortisol Responses to Five High-Intensity Functional Training Competition Workouts in Recreationally Active Adults. Sports 2018, 6, 62. [Google Scholar] [CrossRef] [PubMed]
- Tibana, R.A.; Prestes, J.; de Sousa, N.M.F.; de Souza, V.C.; de Tolêdo Nobrega, O.; Baffi, M.; Ferreira, C.E.S.; Cunha, G.V.; Navalta, J.W.; Trombeta, J.; et al. Time-Course of Changes in Physiological, Psychological, and Performance Markers following a Functional-Fitness Competition. Int. J. Exerc. Sci. 2019, 12, 904–918. [Google Scholar] [CrossRef] [PubMed]
- Mangine, G.T.; Kliszczewicz, B.M.; Boone, J.B.; Williamson-Reisdorph, C.M.; Bechke, E.E. Pre-Anticipatory Anxiety and Autonomic Nervous System Response to Two Unique Fitness Competition Workouts. Sports 2019, 7, 199. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, W.J.; Ratamess, N.A. Hormonal responses and adaptations to resistance exercise and training. Sports Med. 2005, 35, 339–361. [Google Scholar] [CrossRef] [PubMed]
- Spindler, D.J.; Allen, M.S.; Vella, S.A.; Swann, C. The psychology of elite cycling: A systematic review. J. Sports Sci. 2018, 36, 1943–1954. [Google Scholar] [CrossRef]
- Dominski, F.H.; Matias, T.S.; Serafim, T.T.; Feito, Y. Motivation to CrossFit training: A narrative review. Sport Sci. Health 2020, 16, 195–206. [Google Scholar] [CrossRef]
- Ben-Zeev, T.; Okun, E. High-Intensity Functional Training: Molecular Mechanisms and Benefits. Neuromol. Med. 2021, 23, 335–338. [Google Scholar] [CrossRef]
- Davies, M.J.; Coleman, L.; Babkes Stellino, M. The relationship between basic psychological need satisfaction, behavioral regulation, and participation in CrossFit. J. Sport Behav. 2016, 39, 239. [Google Scholar]
- Whiteman-Sandland, J.; Hawkins, J.; Clayton, D. The role of social capital and community belongingness for exercise adherence: An exploratory study of the CrossFit gym model. J. Health Psychol. 2018, 23, 1545–1556. [Google Scholar] [CrossRef]
- Coyne, P.; Woodruff, S.J. Examining the influence of CrossFit participation on body image, self-esteem, and eating behaviours among women. J. Phys. Educ. Sport Manag. 2020, 20, 1314–1325. [Google Scholar]
- Swami, V. Is CrossFit associated with more positive body image? A prospective investigation in novice CrossFitters. 2019, 50, 370–381. [Google Scholar]
- Zhang, Z.; Yang, R.; Sun, G.; Wang, Y. Impact of CrossFit Training Programs on the Physical Health and Sociogenic Somatic Anxiety of Adolescents. Iran. J. Public Health 2024, 53, 1588–1597. [Google Scholar] [CrossRef] [PubMed]
- Ben-Zeev, T.; Hirsh, T.; Weiss, I.; Gornstein, M.; Okun, E. The effects of high-intensity functional training (HIFT) on spatial learning, visual pattern separation and attention span in adolescents. Front. Behav. Neurosci. 2020, 14, 577390. [Google Scholar] [CrossRef]
- Wilke, J. Functional high-intensity exercise is more effective in acutely increasing working memory than aerobic walking: An exploratory randomized, controlled trial. Sci. Rep. 2020, 10, 12335. [Google Scholar] [CrossRef] [PubMed]
- Basso, J.C.; Suzuki, W.A. The Effects of Acute Exercise on Mood, Cognition, Neurophysiology, and Neurochemical Pathways: A Review. Brain Plast. 2017, 2, 127–152. [Google Scholar] [CrossRef]
- Drum, S.N.; Bellovary, B.N.; Jensen, R.L.; Moore, M.T.; Donath, L. Perceived demands and postexercise physical dysfunction in CrossFit® compared to an ACSM based training session. J. Sports Med. Phys. Fit. 2017, 57, 604–609. [Google Scholar] [CrossRef] [PubMed]
- Tibana, R.A.; Sousa, N.M.F.; Cunha, G.V.; Prestes, J.; Navalta, J.W.; Voltarelli, F.A. Exertional Rhabdomyolysis after an Extreme Conditioning Competition: A Case Report. Sports 2018, 6, 40. [Google Scholar] [CrossRef] [PubMed]
- Baird, M.F.; Graham, S.M.; Baker, J.S.; Bickerstaff, G.F. Creatine-kinase- and exercise-related muscle damage implications for muscle performance and recovery. J. Nutr. Metab. 2012, 2012, 960363. [Google Scholar] [CrossRef] [PubMed]
CrossFit® Benchmark Workouts Known as the Girls | |||
---|---|---|---|
Exclusively bodyweight movements | Cindy As many rounds and repetitions as possible (for 20 min) Five pull-ups 10 push-ups 15 air squats | Chelsea One full round every min (for 30 min) Five pull-ups 10 push-ups 15 air squats | Barbara 5 rounds (for time) 20 pull-ups 30 push-ups 40 sit-ups 50 air squats |
Incorporating bodyweight movements plus wall balls and/or kettlebell | Kelly Five rounds (for time) 400-m run 30 box jumps (24/20) 30 wall ball shots (20/14 lb) | Helen Three rounds (for Time) 400-m run 21 kettlebell swings 12 pull-ups | Eva Five rounds (for time) 800-m run 30 kettlebell swings 30 pull-ups |
Incorporating a combination of barbell plus calisthenics movements | Fran 21-15-9 (repetitions for time) Thrusters (95/65 lb) Pull-ups | Jackie (for time) 1000-m row 50 thrusters (45/35 lb) 30 pull-ups | Amanda 9-7-5 (repetitions for time) Muscle-ups Squat snatches (135/95 lb) |
Intensive barbell workouts with heavy weights | Isabel (for time) 30 snatches (135/95 lb) | Grace (for time) 30 clean and jerks (135/95 lb) | Linda 10-9-8-7-6-5-4-3-2-1 (repetitions for time) Deadlift (1½ bodyweight) Bench press (bodyweight) Clean (¾ bodyweight) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rios, M.; Pyne, D.B.; Fernandes, R.J. The Effects of CrossFit® Practice on Physical Fitness and Overall Quality of Life. Int. J. Environ. Res. Public Health 2025, 22, 19. https://doi.org/10.3390/ijerph22010019
Rios M, Pyne DB, Fernandes RJ. The Effects of CrossFit® Practice on Physical Fitness and Overall Quality of Life. International Journal of Environmental Research and Public Health. 2025; 22(1):19. https://doi.org/10.3390/ijerph22010019
Chicago/Turabian StyleRios, Manoel, David B. Pyne, and Ricardo J. Fernandes. 2025. "The Effects of CrossFit® Practice on Physical Fitness and Overall Quality of Life" International Journal of Environmental Research and Public Health 22, no. 1: 19. https://doi.org/10.3390/ijerph22010019
APA StyleRios, M., Pyne, D. B., & Fernandes, R. J. (2025). The Effects of CrossFit® Practice on Physical Fitness and Overall Quality of Life. International Journal of Environmental Research and Public Health, 22(1), 19. https://doi.org/10.3390/ijerph22010019