Artificial Intelligence-Driven Translation Tools in Intensive Care Units for Enhancing Communication and Research
Abstract
:1. Background
2. Rationale
3. Methods
4. Results
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zigmond, A.S.; Snaith, R.P. The hospital anxiety and depression scale. Acta Psychiatr. Scand. 1983, 67, 361–370. [Google Scholar] [CrossRef] [PubMed]
- De Moissac, D.; Bowen, S. Impact of language barriers on quality of care and patient safety for official language minority Francophones in Canada. J. Patient Exp. 2019, 6, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Bowen, S. The Impact of Language Barriers on Patient Safety and Quality of Care; Société Santé en français: Ottawa, ON, Canada, 2015; pp. 603–623. [Google Scholar]
- Duronjic, A.; Ku, D.; Chavan, S.; Bucci, T.; Taylor, S.; Pilcher, D. The impact of language barriers & interpreters on critical care patient outcomes. J. Crit. Care 2023, 73, 154182. [Google Scholar] [PubMed]
- Hamilton, R.; Kleinpell, R.; Lipman, J.; Davidson, J.E. International facilitators and barriers to family engagement in the ICU: Results of a qualitative analysis. J. Crit. Care 2020, 58, 72–77. [Google Scholar] [CrossRef]
- Cooper, L.A.; Roter, D.L.; Johnson, R.L.; Ford, D.E.; Steinwachs, D.M.; Powe, N.R. Patient-centered communication, ratings of care, and concordance of patient and physician race. Ann. Intern. Med. 2003, 139, 907–915. [Google Scholar] [CrossRef]
- LaVeist, T.A.; Nuru-Jeter, A. Is doctor-patient race concordance associated with greater satisfaction with care? J. Health Soc. Behav. 2002, 43, 296–306. [Google Scholar] [CrossRef]
- Walker, K.O.; Moreno, G.; Grumbach, K. The association among specialty, race, ethnicity, and practice location among California physicians in diverse specialties. J. Natl. Med. Assoc. 2012, 104, 46–52. [Google Scholar] [CrossRef]
- Valantine, H.A.; Collins, F.S. National Institutes of Health addresses the science of diversity. Proc. Natl. Acad. Sci. USA 2015, 112, 12240–12242. [Google Scholar] [CrossRef]
- Noack, E.M.; Schulze, J.; Müller, F. Designing an app to overcome language barriers in the delivery of emergency medical services: Participatory development process. JMIR mHealth uHealth 2021, 9, e21586. [Google Scholar] [CrossRef]
- Panayiotou, A.; Gardner, A.; Williams, S.; Zucchi, E.; Mascitti-Meuter, M.; Goh, A.M.; You, E.; Chong, T.W.; Logiudice, D.; Lin, X.; et al. Language translation apps in health care settings: Expert opinion. JMIR mHealth uHealth 2019, 7, e11316. [Google Scholar] [CrossRef]
- Nguyen-Lu, N.; Reide, P.; Yentis, S.M. ‘Do you have a stick in your mouth?’–use of Google Translate as an aid to anaesthetic pre-assessment. Anaesthesia 2010, 65, 96–97. [Google Scholar] [CrossRef]
- Taira, B.R.; Kreger, V.; Orue, A.; Diamond, L.C. A pragmatic assessment of Google Translate for emergency department instructions. J. Gen. Intern. Med. 2021, 36, 3361–3365. [Google Scholar] [CrossRef] [PubMed]
- Moberly, T. Doctors are cautioned against using Google Translate in consultations. BMJ 2018, 363, k4546. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Dada, A.; Puladi, B.; Kleesiek, J.; Egger, J. ChatGPT in healthcare: A taxonomy and systematic review. Comput. Methods Programs Biomed. 2024, 245, 108013. [Google Scholar] [CrossRef]
- Bouchard, L. Minorités de Langue Officielle du Canada: Égales Devant la Santé? PUQ: Quebec, QC, Canada, 2011; Volume 50. [Google Scholar]
- Ngwakongnwi, E.; Hemmelgarn, B.R.; Musto, R.; Quan, H.; King-Shier, K.M. Experiences of French speaking immigrants and non-immigrants accessing health care services in a large Canadian city. Int. J. Environ. Res. Public Health 2012, 9, 3755–3768. [Google Scholar] [CrossRef]
- Falconer, J.; Quesnel-Vallée, A. Les disparités d’accès aux soins de santé parmi la minorité de langue officielle au Québec. Rech. Sociographiques 2014, 55, 511–529. [Google Scholar] [CrossRef]
- Khurana, D.; Koli, A.; Khatter, K.; Singh, S. Natural language processing: State of the art, current trends and challenges. Multimed. Tools Appl. 2023, 82, 3713–3744. [Google Scholar] [CrossRef]
- Ayanouz, S.; Abdelhakim, B.A.; Benhmed, M. A smart chatbot architecture based NLP and machine learning for health care assistance. In Proceedings of the 3rd International Conference on Networking, Information Systems & Security, Marrakech Morocco, 31 March–2 April 2020; pp. 1–6. [Google Scholar]
- Siddique, S.; Chow, J.C.L. Machine learning in healthcare communication. Encyclopedia 2021, 1, 220–239. [Google Scholar] [CrossRef]
- Bhirud, N.; Tataale, S.; Randive, S.; Nahar, S. A literature review on chatbots in healthcare domain. Int. J. Sci. Technol. Res. 2019, 8, 225–231. [Google Scholar]
- Kalyanathaya, K.P.; Akila, D.; Rajesh, P. Advances in natural language processing–a survey of current research trends, development tools and industry applications. Int. J. Recent Technol. Eng. 2019, 7, 199–202. [Google Scholar]
- Zhou, B.; Yang, G.; Shi, Z.; Ma, S. Natural language processing for smart healthcare. IEEE Rev. Biomed. Eng. 2022, 17, 4–18. [Google Scholar] [CrossRef] [PubMed]
- Iroju, O.G.; Olaleke, J.O. A systematic review of natural language processing in healthcare. Int. J. Inf. Technol. Comput. Sci. 2015, 8, 44–50. [Google Scholar] [CrossRef]
- Rao, P.; McGee, L.M.; Seideman, C.A. A Comparative assessment of ChatGPT vs. Google Translate for the translation of patient instructions. J. Med. Artif. Intell. 2024, 7, 11. [Google Scholar] [CrossRef]
- Zeng-Treitler, Q.; Kim, H.; Rosemblat, G.; Keselman, A. Can multilingual machine translation help make medical record content more comprehensible to patients? In MEDINFO 2010; IOS Press: Amsterdam, The Netherlands, 2010; pp. 73–77. [Google Scholar]
- Cascella, M.; Montomoli, J.; Bellini, V.; Bignami, E. Evaluating the feasibility of ChatGPT in healthcare: An analysis of multiple clinical and research scenarios. J. Med. Syst. 2023, 47, 33. [Google Scholar] [CrossRef] [PubMed]
- Lundmark, A.; Boglind, F. Evaluating ChatGPT for Machine Translation of Medical Terms. Bachelor’s Thesis, Stockholm University, Stockholm, Sweden, 2024. [Google Scholar]
- Sarella, P.N.K.; Mangam, V.T. AI-driven natural language processing in healthcare: Transforming patient-provider communication. Indian J. Pharm. Pract. 2024, 17, 21–26. [Google Scholar] [CrossRef]
- Névéol, A.; Dalianis, H.; Velupillai, S.; Savova, G.; Zweigenbaum, P. Clinical natural language processing in languages other than English: Opportunities and challenges. J. Biomed. Semant. 2018, 9, 12. [Google Scholar] [CrossRef]
- Soto, X.; Perez-de-Viñaspre, O.; Oronoz, M.; Labaka, G. Development of a machine translation system for promoting the use of a low resource language in the clinical domain: The case of basque. In Natural Language Processing In Healthcare; CRC Press: Boca Raton, FL, USA, 2022; pp. 139–158. [Google Scholar]
- Corbeil, J.-P.; Chavez, B.; Pereira, D. Portrait of Official-Language Minorities in Canada—Anglophones in Quebec; Statistics Canada: Ottawa, ON, Canada, 2010. [Google Scholar]
- Rubulotta, F.M.; Bahrami, S.; Marshall, D.C.M.; Komorowski, M. Machine Learning Tools for Acute Respiratory Distress Syndrome Detection and Prediction. Crit. Care Med. 2024, 52, 1768–1780. [Google Scholar] [CrossRef]
- Vukovic, J.; Ivankovic, D.; Habl, C.; Dimnjakovic, J. Enablers and barriers to the secondary use of health data in Europe: General data protection regulation perspective. Arch. Public Health 2022, 80, 115. [Google Scholar] [CrossRef]
- Naik, N.; Hameed, B.Z.; Shetty, D.K.; Swain, D.; Shah, M.; Paul, R.; Aggarwal, K.; Ibrahim, S.; Patil, V.; Smriti, K.; et al. Legal and ethical consideration in artificial intelligence in healthcare: Who takes responsibility? Front. Surg. 2022, 9, 862322. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bahrami, S.; Rubulotta, F. Artificial Intelligence-Driven Translation Tools in Intensive Care Units for Enhancing Communication and Research. Int. J. Environ. Res. Public Health 2025, 22, 95. https://doi.org/10.3390/ijerph22010095
Bahrami S, Rubulotta F. Artificial Intelligence-Driven Translation Tools in Intensive Care Units for Enhancing Communication and Research. International Journal of Environmental Research and Public Health. 2025; 22(1):95. https://doi.org/10.3390/ijerph22010095
Chicago/Turabian StyleBahrami, Sahar, and Francesca Rubulotta. 2025. "Artificial Intelligence-Driven Translation Tools in Intensive Care Units for Enhancing Communication and Research" International Journal of Environmental Research and Public Health 22, no. 1: 95. https://doi.org/10.3390/ijerph22010095
APA StyleBahrami, S., & Rubulotta, F. (2025). Artificial Intelligence-Driven Translation Tools in Intensive Care Units for Enhancing Communication and Research. International Journal of Environmental Research and Public Health, 22(1), 95. https://doi.org/10.3390/ijerph22010095