Can 12-Week Resistance Training Improve Muscle Strength, Dynamic Balance and the Metabolic Profile in Older Adults with Type 2 Diabetes Mellitus?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design, Location and Ethics
2.2. Subjects
2.3. Procedures
2.4. Instruments
Muscle Strength Assessment
2.5. Dynamic Balance Assessment
2.6. Biochemical Profile
2.7. Exercise Protocol
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tavares, D.M.S.; Pelizaro, P.B.; Pegorari, M.S.; de Paiva, M.M.; Marchiori, G.F. Prevalence of self-reported morbidities and associated factors among community-dwelling elderly in Uberaba, Minas Gerais, Brazil. Cienc. Saude Coletiva 2019, 24, 3305–3313. [Google Scholar] [CrossRef] [PubMed]
- D’Silva, L.J.; Lin, J.; Staecker, H.; Whitney, S.L.; Kluding, P.M. Impact of Diabetic Complications on Balance and Falls: Contribution of the Vestibular System. Phys. Ther. 2016, 96, 400–409. [Google Scholar] [CrossRef] [PubMed]
- Argano, C.; Natoli, G.; Mularo, S.; Nobili, A.; Monaco, M.L.; Mannucci, P.M.; Perticone, F.; Pietrangelo, A.; Corrao, S. Impact of Diabetes Mellitus and Its Comorbidities on Elderly Patients Hospitalized in Internal Medicine Wards: Data from the RePoSi Registry. Healthcare 2022, 10, 86. [Google Scholar] [CrossRef] [PubMed]
- Beulens, J.W.J.; Pinho, M.G.M.; Abreu, T.C.; Braver, N.R.D.; Lam, T.M.; Huss, A.; Vlaanderen, J.; Sonnenschein, T.; Siddiqui, N.Z.; Yuan, Z.; et al. Environmental risk factors of type 2 diabetes—An exposome approach. Diabetologia 2022, 65, 263–274. [Google Scholar] [CrossRef]
- Mesinovic, J.; Zengin, A.; De Courten, B.; Ebeling, P.R.; Scott, D. Sarcopenia and type 2 diabetes mellitus: A bidirectional relationship. Diabetes Metab. Syndr. Obes. 2019, 12, 1057–1072. [Google Scholar] [CrossRef]
- Feldman, E.L.; Nave, K.-A.; Jensen, T.S.; Bennett, D.L.H. New Horizons in Diabetic Neuropathy: Mechanisms, Bioenergetics, and Pain. Neuron 2017, 93, 1296–1313. [Google Scholar] [CrossRef]
- Ernandes, R.C.; Brech, G.C.; Luna, N.M.S.; Bega, A.; Guimarães, D.S.; Bocalini, D.S.; Scherrer, G.; Greve, J.M.D.; Leme, L.E.G.; Alonso, A.C. Impact of diabetic neuropathy on quality of life and postural balance in brazilian older adults. Acta Ortop. Bras. 2020, 28, 275–279. [Google Scholar] [CrossRef]
- Mota, R.I.; Morgan, S.E.; Bahnson, E.M. Diabetic Vasculopathy: Macro and Microvascular Injury. Curr. Pathobiol. Rep. 2020, 8, 1–14. [Google Scholar] [CrossRef]
- Dal Canto, E.; Ceriello, A.; Rydén, L.; Ferrini, M.; Hansen, T.B.; Schnell, O.; Standl, E.; Beulens, J.W. Diabetes as a cardiovascular risk factor: An overview of global trends of macro and micro vascular complications. Eur. J. Prev. Cardiol. 2019, 26 (Suppl. S2), 25–32. [Google Scholar] [CrossRef]
- Argyropoulou, D.; Geladas, N.D.; Nomikos, T.; Paschalis, V. Exercise and Nutrition Strategies for Combating Sarcopenia and Type 2 Diabetes Mellitus in Older Adults. J. Funct. Morphol. Kinesiol. 2022, 7, 48. [Google Scholar] [CrossRef]
- Nebuloni, C.C.; Máximo, R.O.; de Oliveira, C.; Alexandre, T.d.S. Uncontrolled Diabetes as an Associated Factor with Dynapenia in Adults Aged 50 Years or Older: Sex Differences. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2020, 75, 1191–1197. [Google Scholar] [CrossRef] [PubMed]
- Riandini, T.; Khoo, E.Y.H.; Tai, B.C.; Tavintharan, S.; Phua, M.S.L.A.; Chandran, K.; Hwang, S.W.; Venkataraman, K. Fall Risk and Balance Confidence in Patients with Diabetic Peripheral Neuropathy: An Observational Study. Front. Endocrinol. 2020, 11, 573804. [Google Scholar] [CrossRef]
- Longo, M.; Bellastella, G.; Maiorino, M.I.; Meier, J.J.; Esposito, K.; Giugliano, D. Diabetes and aging: From treatment goals to pharmacologic therapy. Front. Endocrinol. 2019, 10, 45. [Google Scholar] [CrossRef]
- Hsieh, P.L.; Tseng, C.H.; Tseng, Y.J.; Yang, W.S. Resistance Training Improves Muscle Function and Cardiometabolic Risks but Not Quality of Life in Older People with Type 2 Diabetes Mellitus: A Randomized Controlled Trial. J. Geriatr. Phys. Ther. 2018, 41, 65–76. [Google Scholar] [CrossRef]
- Ibañez, J.; Izquierdo, M.; Argüelles, I.; Forga, L.; Larrión, J.L.; García-Unciti, M.; Idoate, F.; Gorostiaga, E.M. Twice-weekly progressive resistance training decreases abdominal fat and improves insulin sensitivity in older men with type 2 diabetes. Diabetes Care 2005, 28, 662–667. [Google Scholar] [CrossRef]
- Cadore, E.L.; Rodríguez-Mañas, L.; Sinclair, A.; Izquierdo, M. Effects of different exercise interventions on risk of falls, gait ability, and balance in physically frail older adults: A systematic review. Rejuvenation Res. 2013, 16, 105–114. [Google Scholar] [CrossRef]
- Bommer, C.; Sagalova, V.; Heesemann, E.; Manne-Goehler, J.; Atun, R.; Bärnighausen, T.; Davies, J.; Vollmer, S. Global economic burden of diabetes in adults: Projections from 2015 to 2030. Diabetes Care 2018, 41, 963–970. [Google Scholar] [CrossRef]
- Porter, C.; Reidy, P.T.; Bhattarai, N.; Sidossis, L.S.; Rasmussen, B.B. Resistance Exercise Training Alters Mitochondrial Function in Human Skeletal Muscle. Med. Sci. Sports Exerc. 2015, 47, 1922–1931. [Google Scholar] [CrossRef]
- Evangelista, R.A.G.T.; Evangelista, A.L.; Ernandes, R.C.; Brech, G.C.; Silva, R.N.D.; Lino, M.H.D.S.; Bocalini, D.S.; Graaf, M.; Mochizuki, L.; Soares-Junior, J.M.; et al. Importance of muscle strength to maintain mobility, but not to maintain postural balance in older women: Cross-sectional study. Clinics 2024, 79, 100504. [Google Scholar] [CrossRef]
- Azari, N.; Rahmati, M.; Fathi, M. The Effect of Resistance Exercise on Blood Glucose, Insulin and Insulin resistance in Iranian Patients with Type II Diabetes: A Systematic Review and Meta-Analysis. Iran. J. Diabetes Obes. 2018, 10, 50–60. [Google Scholar]
- Alonso, A.C.; Ribeiro, S.M.; Luna, N.M.S.; Peterson, M.D.; Bocalini, D.S.; Serra, M.M.; Brech, G.C.; Greve, J.M.D.; Garcez-Leme, L.E. Association between handgrip strength, balance, and knee flexion/extension strength in older adults. PLoS ONE 2018, 13, e0198185. [Google Scholar] [CrossRef] [PubMed]
- Brech, G.C.; Machado-Lima, A.; Bastos, M.F.; de Jesus Bonifácio, W.; Peterson, M.D.; Takayama, L.; Pereira, R.M.R.; Greve, J.M.D.; Alonso, A.C. Vitamin D supplementation associated with 12-weeks multimodal training in older women with low bone mineral density: A randomized double-blind placebo-controlled trial. Exp. Gerontol. 2021, 146, 111211. [Google Scholar] [CrossRef] [PubMed]
- Soares, A.L.S.; Machado-Lima, A.; Brech, G.C.; Greve, J.M.D.; dos Santos, J.R.; Inojossa, T.R.; Rogero, M.M.; Salles, J.E.N.; Santarem-Sobrinho, J.M.; Davis, C.L.; et al. The Influence of Whey Protein on Muscle Strength, Glycemic Control and Functional Tasks in Older Adults with Type 2 Diabetes Mellitus in a Resistance Exercise Program: Randomized and Triple Blind Clinical Trial. Int. J. Environ. Res. Public Health 2023, 20, 5891. [Google Scholar] [CrossRef] [PubMed]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Gearhart, R.F., Jr.; Lagally, K.M.; Riechman, S.E.; Andrews, R.D.; Robertson, R.J. Strength tracking using the OMNI resistance exercise scale in older men and women. J. Strength Cond. Res. 2009, 23, 1011–1015. [Google Scholar] [CrossRef]
- Bellary, S.; Kyrou, I.; Brown, J.E.; Bailey, C.J. Type 2 diabetes mellitus in older adults: Clinical considerations and management. Nat. Rev. Endocrinol. 2021, 17, 534–548. [Google Scholar] [CrossRef]
- Chen, F.; Xu, S.; Wang, Y.; Chen, F.; Cao, L.; Liu, T.; Huang, T.; Wei, Q.; Ma, G.; Zhao, Y.; et al. Risk Factors for Sarcopenia in the Elderly with Type 2 Diabetes Mellitus and the Effect of Metformin. J. Diabetes Res. 2020, 2020, 3950404. [Google Scholar] [CrossRef]
- Shahrjerdi, S.; Bahrpeyma, F.; Savelberg, H.H.C.M.; Mohajeri-Tehrani, M.R. Effect of a 6-week strength-training program on neuromuscular efficiency in type 2 diabetes mellitus patients. Diabetol. Int. 2020, 11, 376–382. [Google Scholar] [CrossRef]
- Incel, N.A.; Ceceli, E.; Durukan, P.B.; Erdem, H.R.; Yorgancioglu, Z.R. Grip Strength: Effect of Hand Dominance. Singap. Med. J. 2002, 43, 234–237. [Google Scholar]
- Chmelo, E.A.; Crotts, C.I.; Newman, J.C.; Brinkley, T.E.; Lyles, M.F.; Leng, X.; Marsh, A.P.; Nicklas, B.J. Heterogeneity of physical function responses to exercise training in older adults. J. Am. Geriatr. Soc. 2015, 63, 462–469. [Google Scholar] [CrossRef]
- Ansai, J.H.; Aurichio, T.R.; Gonçalves, R.; Rebelatto, J.R. Effects of two physical exercise protocols on physical performance related to falls in the oldest old: A randomized controlled trial. Geriatr. Gerontol. Int. 2016, 16, 492–499. [Google Scholar] [CrossRef] [PubMed]
- Vongsirinavarat, M.; Mathiyakom, W.; Kraiwong, R.; Hiengkaew, V. Fear of Falling, Lower Extremity Strength, and Physical and Balance Performance in Older Adults with Diabetes Mellitus. J. Diabetes Res. 2020, 2020, 11–14. [Google Scholar] [CrossRef] [PubMed]
- Streckmann, F.; Balke, M.; Cavaletti, G.; Toscanelli, A.; Bloch, W.; Décard, B.F.; Lehmann, H.C.; Faude, O. Exercise intervention studies in patients with peripheral neuropathy: A systematic review. Sports Med. 2022, 52, 1043–1065. [Google Scholar] [CrossRef]
- Thomas, E.; Battaglia, G.; Patti, A.; Brusa, J.; Leonardi, V.; Palma, A.; Bellafiore, M. Multi-factorial and Physical Activity Programs for Fall Prevention Multi-factorial and Physical Activity Programs for Fall Prevention. Medicine 2019, 40, 2–9. [Google Scholar]
- Forte, R.; Boreham, C.A.G.; De Vito, G.; Ditroilo, M.; Pesce, C. Measures of static postural control moderate the association of strength and power with functional dynamic balance. Aging Clin. Exp. Res. 2014, 26, 645–653. [Google Scholar] [CrossRef]
- Muehlbauer, T.; Besemer, C.; Wehrle, A.; Gollhofer, A.; Granacher, U. Relationship between strength, power and balance performance in seniors. Gerontology 2012, 58, 504–512. [Google Scholar] [CrossRef]
- Sousa, N.; Mendes, R.; Silva, A.; Oliveira, J. Combined exercise is more effective than aerobic exercise in the improvement of fall risk factors: A randomized controlled trial in community-dwelling older men. Clin. Rehabil. 2017, 31, 478–486. [Google Scholar] [CrossRef]
- Qaseem, A.; Wilt, T.J.; Kansagara, D.; Horwitch, C.; Barry, M.J.; Forciea, M.A. Hemoglobin A1c targets for glycemic control with pharmacologic therapy for nonpregnant adults with type 2 diabetes mellitus: A guidance statement update from the American college of physicians. Ann. Intern. Med. 2018, 168, 569–576. [Google Scholar] [CrossRef]
- Liu, Y.; Ye, W.; Chen, Q.; Zhang, Y.; Kuo, C.H.; Korivi, M. Resistance exercise intensity is correlated with attenuation of HbA1c and insulin in patients with type 2 diabetes: A systematic review and meta-analysis. Int. J. Environ. Res. Public Health 2019, 16, 140. [Google Scholar] [CrossRef]
- Moura, F.; Salles, J.E.N.; Valente, F.; de Almeida-Pititto, B.; Fonseca, R.M.C.; Cavalcanti, S. Abordagem do paciente idoso com diabetes mellitus. In Diretriz Oficial da Sociedade Brasileira de Diabetes; Diretriz SBD: São Paulo, Brazil, 2023; ISBN 978-85-5722-906-8. [Google Scholar] [CrossRef]
- Rosenthal, R.L. Effectiveness of Altering Serum Cholesterol Levels Without Drugs. Bayl. Univ. Med. Cent. Proc. 2000, 13, 351–355. [Google Scholar] [CrossRef]
- Hirano, T. Pathophysiology of diabetic dyslipidemia. J. Atheroscler. Thromb. 2018, 25, 771–782. [Google Scholar] [CrossRef] [PubMed]
- Kränkel, N.; Bahls, M.; Van Craenenbroeck, E.M.; Adams, V.; Serratosa, L.; Solberg, E.E.; Hansen, D.; Dörr, M.; Kemps, H. Exercise training to reduce cardiovascular risk in patients with metabolic syndrome and type 2 diabetes mellitus: How does it work? Eur. J. Prev. Cardiol. 2019, 26, 701–708. [Google Scholar] [CrossRef] [PubMed]
- Pan, B.; Ge, L.; Xun, Y.-Q.; Chen, Y.-J.; Gao, C.-Y.; Han, X.; Zuo, L.-Q.; Shan, H.-Q.; Yang, K.-H.; Ding, G.-W.; et al. Exercise Training Modalities in Patients with Type 2 Diabetes Mellitus: A Systematic Review and Network Meta-Analysis. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 72. [Google Scholar] [CrossRef] [PubMed]
N (%) | |||
---|---|---|---|
Falls in the Last Year | |||
No | 48 (77) | ||
Yes | 14 (23) | ||
Smoking | |||
Ex-smokers | 25 (40) | ||
No | 33 (53) | ||
Yes | 4 (6.5) | ||
Alcohol Consumption | |||
Social Drinking | 31(50) | ||
No | 26 (42) | ||
Daily | 5 (8) | ||
Ethnicity | |||
Caucasian | 48 (77.5) | ||
Black and Brown-skinned | 8 (13) | ||
Asian | 6 (10) | ||
Education | |||
Elementary School | 3 (5) | ||
Middle School | 4 (6.5) | ||
High School | 14 (23) | ||
Higher Education | 41 (66) | ||
# Income Bracket | |||
1 to 2 × Minimum Wage | 10 (16) | ||
2 to 5 × Minimum Wage | 28 (45) | ||
6 to 9 × Minimum Wage | 10 (16) | ||
10 + Minimum Wage | 14 (23) | ||
Regular Physical Activity | |||
Yes | 34 (55) | ||
No | 28 (45) | ||
Anti-diabetic Medications | N | ||
Biguanides | 20 | ||
Sulfonylureas | 20 | ||
Dipeptidyl Peptidase 4 (DPP-4) Inhibitors | 9 | ||
Biguanides and Sulfonylureas in Association | 15 | ||
Other | 35 | ||
Cardiovascular Medications | N | ||
ACE Inhibitors and Calcium-channel Blockers | 7 | ||
Statins | 18 | ||
Beta-blockers | 13 | ||
ACE Inhibitors | 9 | ||
Diuretics | 11 | ||
Others | 12 | ||
Average (SD) | Minimum | Maximum | |
Age (years) | 69.8 (3.9) | 65 | 79 |
Time Since Diagnosis (years) | 15.1 (7.7) | 2 | 38 |
Medicines (n) | 3.6 (1.9) | 1 | 8 |
Other Diseases (n) | 1.4 (12) | 0 | 5 |
Test | Pre M (SD) | Post M (SD) | p-Value |
---|---|---|---|
Handgrip Test | |||
HGS (Dominant) (kg/f) | 37.6 (8.0) | 38.1 (7.3) | 0.381 |
HGS (Non-dominant) (kg/f) | 35.0 (8.1) | 36.1 (7.4) | 0.033 * |
Isokinetic Evaluation | |||
Quadriceps (Dominant) | |||
PT/BW (%) | 153.1 (32.2) | 164.8 (32.0) | p < 0.001 * |
TW(J) | 515.0 (125.5) | 534.2 (121.5) | 0.003 * |
Quadriceps (Non-dominant) | |||
PT/BW (%) | 151.8 (31.0) | 157.6 (37.0) | p < 0.001 * |
TW(J) | 509.8 (122.3) | 538.0 (123.3) | 0.007 * |
Hamstrings (Dominant) | |||
PT/BW (%) | 75.9 (19.9) | 88.5 (20.4) | p < 0.001 * |
TW(J) | 285.6 (83.0) | 316.4 (77.0) | p < 0.001 * |
Hamstrings (Non-dominant) | |||
PT/BW (%) | 71.2 (18.5) | 82.9 (18.7) | p < 0.001 * |
TW(J) | 269.5 (78.5) | 296.2 (75.6) | p < 0.001 * |
Test | Pre M (SD) | Post M (SD) | p-Value |
---|---|---|---|
Step/Quick Turn | |||
Turn Time (Non-dominant) (s) | 2.4 (0.8) | 2.1 (0.5) | 0.111 |
Turn Time (Dominant) (s) | 2.2 (0.8) | 2.2 (0.6) | 0.851 |
Turn Sway (Non-dominant) (°/s) | 46.9 (13.2) | 41.3 (14.8) | 0.183 |
Turn Sway (Dominant) (°/s) | 45.1 (14.8) | 42.9 (14.7) | 0.578 |
Step Up/Over | |||
Lift Up (Non-dominant) (%) | 40.4 (17.0) | 38.0 (10.1) | 0.487 |
Lift Up (Dominant) (%) | 34.9 (8.3) | 38.9 (10.2) | 0.051 |
Movement Time (Non-dominant) (s) | 1.71 (0.3) | 1.7 (0.3) | 0.846 |
Movement Time (Dominant) (s) | 1.78 (0.3) | 1.71 (0.3) | 0.558 |
Impact (Non-dominant) (%) | 44.0 (12.6) | 41.2 (12.4) | 0.317 |
Impact (Dominant) (%) | 43.6 (14.8) | 39.6 (18.6) | 0.339 |
Sit to Stand | |||
Weight Transfer (%) | 0.52 (0.2) | 0.50 (0.2) | 0.802 |
COG Sway (º/s) | 3.9 (1.2) | 3.9 (1.5) | 0.810 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Seixas Soares, A.L.; Brech, G.C.; Machado-Lima, A.; dos Santos, J.R.; D’ Andréa Greve, J.M.; Grecco, M.V.; Afonso, M.; Sousa, J.C.; Rodrigues, A.T.; dos Santos Lino, M.H.; et al. Can 12-Week Resistance Training Improve Muscle Strength, Dynamic Balance and the Metabolic Profile in Older Adults with Type 2 Diabetes Mellitus? Int. J. Environ. Res. Public Health 2025, 22, 184. https://doi.org/10.3390/ijerph22020184
de Seixas Soares AL, Brech GC, Machado-Lima A, dos Santos JR, D’ Andréa Greve JM, Grecco MV, Afonso M, Sousa JC, Rodrigues AT, dos Santos Lino MH, et al. Can 12-Week Resistance Training Improve Muscle Strength, Dynamic Balance and the Metabolic Profile in Older Adults with Type 2 Diabetes Mellitus? International Journal of Environmental Research and Public Health. 2025; 22(2):184. https://doi.org/10.3390/ijerph22020184
Chicago/Turabian Stylede Seixas Soares, André Luiz, Guilherme Carlos Brech, Adriana Machado-Lima, Joselma Rodrigues dos Santos, Júlia Maria D’ Andréa Greve, Marcus Vinicius Grecco, Mara Afonso, Juliana Cristina Sousa, Ariana Tito Rodrigues, Matheus Henrique dos Santos Lino, and et al. 2025. "Can 12-Week Resistance Training Improve Muscle Strength, Dynamic Balance and the Metabolic Profile in Older Adults with Type 2 Diabetes Mellitus?" International Journal of Environmental Research and Public Health 22, no. 2: 184. https://doi.org/10.3390/ijerph22020184
APA Stylede Seixas Soares, A. L., Brech, G. C., Machado-Lima, A., dos Santos, J. R., D’ Andréa Greve, J. M., Grecco, M. V., Afonso, M., Sousa, J. C., Rodrigues, A. T., dos Santos Lino, M. H., Silva, V. C. d., de Souza Carneiro, P. N. F., Evangelista, A. L., Davis, C. L., & Castilho Alonso, A. (2025). Can 12-Week Resistance Training Improve Muscle Strength, Dynamic Balance and the Metabolic Profile in Older Adults with Type 2 Diabetes Mellitus? International Journal of Environmental Research and Public Health, 22(2), 184. https://doi.org/10.3390/ijerph22020184