Examining the Environmental Ramifications of Asbestos Fiber Movement Through the Water–Soil Continuum: A Review
Abstract
:1. Introduction
2. Asbestos Cement Products and Their Environmental Risks
3. Soil Contamination by Asbestos Complexes and Its Risks
4. Water Contamination by Asbestos Complexes and Its Risks
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brostrøm, A.; Harboe, H.; Fonseca, A.S.; Frederiksen, M.; Kines, P.; Bührmann, W.; Bønløkke, J.H.; Jensen, K.A. Asbestos fiber levels from remediation work. J. Hazard. Mater. Adv. 2025, 17, 100552. [Google Scholar] [CrossRef]
- Abel, E.L.; DiGiovanni, J. Environmental Carcinogenesis. In The Molecular Basis of Cancer; Elsevier: Amsterdam, The Netherlands, 2008; pp. 91–113. [Google Scholar] [CrossRef]
- Siengchin, S. A review on lightweight materials for defence applications: Present and future developments. Def. Technol. 2023, 24, 1–17. [Google Scholar] [CrossRef]
- Yakubu, A.U.; Zhao, J.; Jiang, Q.; Ye, X.; Liu, J.; Yu, Q.; Xiong, S. A comprehensive review of primary cooling techniques and thermal management strategies for polymer electrolyte membrane fuel cells PEMFC. Heliyon 2024, 10, e38556. [Google Scholar] [CrossRef] [PubMed]
- Pira, E.; Donato, F.; Maida, L.; Discalzi, G. Exposure to asbestos: Past, present and future. J. Thorac. Dis. 2018, 10, S237–S245. [Google Scholar] [CrossRef] [PubMed]
- Frank, A.L.; van Zandwijk, N. Asbestos history and use. Lung Cancer 2024, 193, 107828. [Google Scholar] [CrossRef]
- Tóth, E.; Weiszburg, T. Környezeti Ásványtan; Typotex Kiadó: Budapest, Hungary, 2011. [Google Scholar]
- Peña-Castro, M.; Montero-Acosta, M.; Saba, M. A critical review of asbestos concentrations in water and air, according to exposure sources. Heliyon 2023, 9, e15730. [Google Scholar] [CrossRef]
- Ross, M.; Langer, A.M.; Nord, G.L.; Nolan, R.P.; Lee, R.J.; Van Orden, D.; Addison, J. The mineral nature of asbestos. Regul. Toxicol. Pharmacol. 2008, 52, S26–S30. [Google Scholar] [CrossRef]
- Strohmeier, B.R.; Huntington, J.C.; Bunker, K.L.; Sanchez, M.S.; Allison, K.; Lee, R.J. What is asbestos and why is it important? Challenges of defining and characterizing asbestos. Int. Geol. Rev. 2010, 52, 801–872. [Google Scholar] [CrossRef]
- Millet, P. Electrochemical membrane reactors. In Current Trends and Future Developments on (Bio)Membranes; Elsevier: Amsterdam, The Netherlands, 2023; pp. 285–313. [Google Scholar] [CrossRef]
- Seaman, D.M.; Meyer, C.A.; Kanne, J.P. Occupational and Environmental Lung Disease. Clin. Chest Med. 2015, 36, 249–268. [Google Scholar] [CrossRef]
- Mannan, S. Chapter 18—Toxic Release. In Lees’ Loss Prevention in the Process Industries, Sam Mannan; Elsevier: Amsterdam, The Netherlands; Butterworth-Heinemann: Oxford, UK, 2012; pp. 1679–1760. [Google Scholar] [CrossRef]
- Cossette, M. Defining Asbestos for Monitoring Purposes. In Definitions for Asbestos and other Health-Related Silicates (ASTM Special Technical Publication 834); Levadie, B., Ed.; American Society for Testing and Materials: Philadelphia, PA, USA, 1984; pp. 5–50. [Google Scholar]
- Fitzgerald, S.M. Resolving asbestos and ultrafine particulate definitions with carcinogenicity. Lung Cancer 2024, 189, 107478. [Google Scholar] [CrossRef]
- INSERM (Expertise Collective). Effets sur la Santé des Principaux Types D’exposition à L’amiante; INSERM: Paris, France, 1997. [Google Scholar]
- Peng, W.; Mi, J.; Jiang, Y. Asbestos exposure and laryngeal cancer mortality. Laryngoscope 2016, 126, 1169–1174. [Google Scholar] [CrossRef] [PubMed]
- Markowitz, S. Asbestos-Related Lung Cancer and Malignant Mesothelioma of the Pleura: Selected Current Issues. Semin. Respir. Crit. Care Med. 2015, 36, 334–346. [Google Scholar] [CrossRef] [PubMed]
- LaDou, J.; Castleman, B.; Frank, A.; Gochfeld, M.; Greenberg, M.; Huff, J.; Joshi, T.K.; Landrigan, P.J.; Lemen, R.; Myers, J.; et al. The Case for a Global Ban on Asbestos. Environ. Health Perspect. 2010, 118, 897–901. [Google Scholar] [CrossRef] [PubMed]
- Curado, A.; Nunes, L.J.R.; Carvalho, A.; Abrantes, J.; Lima, E.; Tomé, M. The Use of Asbestos and Its Consequences: An Assessment of Environmental Impacts and Public Health Risks. Fibers 2024, 12, 102. [Google Scholar] [CrossRef]
- Visonà, S.D.; Villani, S.; Manzoni, F.; Chen, Y.; Ardissino, G.; Russo, F.; Moretti, M.; Javan, G.T.; Osculati, A. Impact of Asbestos on Public Health: A Retrospective Study on a Series of Subjects with Occupational and Non-Occupational Exposure to Asbestos during the Activity of Fibronit Plant (Broni, Italy). J. Public Health Res. 2018, 7, 122–127. [Google Scholar] [CrossRef]
- Wagner, G.R.; Lemen, R. Asbestos. In International Encyclopedia of Public Health; Elsevier: Amsterdam, The Netherlands, 2008; pp. 238–245. [Google Scholar] [CrossRef]
- Kamp, D.W. Asbestos-induced lung diseases: An update. Transl. Res. 2009, 153, 143–152. [Google Scholar] [CrossRef]
- Wagner, G.R.; Lemen, R.A. Asbestos. In International Encyclopedia of Public Health; Elsevier: Amsterdam, The Netherlands, 2017; pp. 176–182. [Google Scholar] [CrossRef]
- Noonan, C.W. Environmental asbestos exposure and risk of mesothelioma. Ann. Transl. Med. 2017, 5, 234. [Google Scholar] [CrossRef]
- Aryal, A.; Morley, C. Mitigation of Contamination and Health Risk: Asbestos Management and Regulatory Practices. Sustainability 2024, 16, 9740. [Google Scholar] [CrossRef]
- Boffetta, P. Epidemiology of environmental and occupational cancer. Oncogene 2004, 23, 6392–6403. [Google Scholar] [CrossRef]
- Bloise, A.; Catalano, M.; Barrese, E.; Gualtieri, A.F.; Gandolfi, N.B.; Capella, S.; Belluso, E. TG/DSC study of the thermal behaviour of hazardous mineral fibres. J. Therm. Anal. Calorim. 2016, 123, 2225–2239. [Google Scholar] [CrossRef]
- Donaldson, K.; Poland, C.A.; Murphy, F.A.; MacFarlane, M.; Chernova, T.; Schinwald, A. Pulmonary toxicity of carbon nanotubes and asbestos—Similarities and differences. Adv. Drug Deliv. Rev. 2013, 65, 2078–2086. [Google Scholar] [CrossRef] [PubMed]
- Stayner, L.; Welch, L.S.; Lemen, R. The Worldwide Pandemic of Asbestos-Related Diseases. Annu. Rev. Public Health 2013, 34, 205–216. [Google Scholar] [CrossRef] [PubMed]
- Bales, R.C.; Morgan, J.J. Dissolution kinetics of chrysotile at pH=7 to 10. Geochim. Cosmochim. Acta 1985, 49, 2281–2288. [Google Scholar]
- Iwaszko, J.; Zawada, A.; Przerada, I.; Lubas, M. Structural and microstructural aspects of asbestos-cement waste vitrification. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 195, 95–102. [Google Scholar] [CrossRef]
- Walter, M.; Geroldinger, G.; Gille, L.; Kraemer, S.M.; Schenkeveld, W.D. Soil-pH and cement influence the weathering kinetics of chrysotile asbestos in soils and its hydroxyl radical yield. J. Hazard. Mater. 2022, 431, 128068. [Google Scholar] [CrossRef]
- Gronow, J.R. The dissolution of asbestos fibres in water. Clay Miner. 1987, 22, 21–35. [Google Scholar] [CrossRef]
- Walter, M.; Schenkeveld, W.D.C.; Reissner, M.; Gille, L.; Kraemer, S.M. The Effect of pH and Biogenic Ligands on the Weathering of Chrysotile Asbestos: The Pivotal Role of Tetrahedral Fe in Dissolution Kinetics and Radical Formation. Chem. Eur. J. 2019, 25, 3286–3300. [Google Scholar] [CrossRef]
- Choi, I.; Smith, R.W. Kinetic study of dissolution of asbestos fibers in water. J. Colloid Interface Sci. 1972, 40, 253–262. [Google Scholar] [CrossRef]
- Rozalen, M.; Ramos, M.E.; Fiore, S.; Gervilla, F.; Huertas, F.J. Effect of oxalate and pH on chrysotile dissolution at 25 C: An experimental study. Am. Miner. 2014, 99, 589–600. [Google Scholar] [CrossRef]
- Bernstein, D.; Dunnigan, J.; Hesterberg, T.; Brown, R.; Velasco, J.A.L.; Barrera, R.; Hoskins, J.; Gibbs, A. Health risk of chrysotile revisited. Crit. Rev. Toxicol. 2013, 43, 154–183. [Google Scholar] [CrossRef]
- Pollastri, S.; Gualtieri, A.F.; Gualtieri, M.L.; Hanuskova, M.; Cavallo, A.; Gaudino, G. The zeta potential of mineral fibres. J. Hazard. Mater. 2014, 276, 469–479. [Google Scholar] [CrossRef] [PubMed]
- Engin, A.B.; Nikitovic, D.; Neagu, M.; Henrich-Noack, P.; Docea, A.O.; Shtilman, M.I.; Golokhvast, K.; Tsatsakis, A.M. Mechanistic understanding of nanoparticles’ interactions with extracellular matrix: The cell and immune system. Part. Fibre Toxicol. 2017, 14, 22. [Google Scholar] [CrossRef] [PubMed]
- Holmes, E.P.; Wilson, J.; Schreier, H.; Lavkulich, L.M. Processes affecting surface and chemical properties of chrysotile: Implications for reclamation of asbestos in the natural environment. Can. J. Soil Sci. 2012, 92, 229–242. [Google Scholar] [CrossRef]
- Martino, E.; Cerminara, S.T.; Prandi, L.; Fubini, B.; Perotto, S. Physical and biochemical interactions of soil fungi with asbestos fibers. Environ. Toxicol. Chem. 2004, 23, 938–944. [Google Scholar] [CrossRef]
- Baur, X.; Soskolne, C.L.; Lemen, R.A.; Schneider, J.; Woitowitz, H.-J.; Budnik, L.T. How conflicted authors undermine the World Health Organization (WHO) campaign to stop all use of asbestos: Spotlight on studies showing that chrysotile is carcinogenic and facilitates other non-cancer asbestos-related diseases. Int. J. Occup. Environ. Health 2015, 21, 176–179. [Google Scholar] [CrossRef]
- Kim, Y.-C.; Hong, W.-H.; Zhang, Y.-L. Development of a model to calculate asbestos fiber from damaged asbestos slates depending on the degree of damage. J. Clean. Prod. 2015, 86, 88–97. [Google Scholar] [CrossRef]
- Virta, R.L. Worldwide Asbestos Supply and Consumption Trends from 1900 Through 2003; U.S. Geological Survey: Reston, VA, USA, 2006. [Google Scholar]
- du Plessis, A.; Razavi, N.; Benedetti, M.; Murchio, S.; Leary, M.; Watson, M.; Bhate, D.; Berto, F. Properties and applications of additively manufactured metallic cellular materials: A review. Prog. Mater. Sci. 2022, 125, 100918. [Google Scholar] [CrossRef]
- Nazir, A.; Gokcekaya, O.; Billah, K.M.M.; Ertugrul, O.; Jiang, J.; Sun, J.; Hussain, S. Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Mater. Des. 2023, 226, 111661. [Google Scholar] [CrossRef]
- Driece, H.A.L.; Siesling, S.; Swuste, P.H.J.J.; Burdorf, A. Assessment of cancer risks due to environmental exposure to asbestos. J. Expo. Sci. Environ. Epidemiol. 2010, 20, 478–485. [Google Scholar] [CrossRef]
- Szeszenia-Dabrowska, N.; Wilczyńska, U.; Szymczak, W.; Laskowicz, K. Environmental exposure to asbestos in asbestos cement workers: A case of additional exposure from indiscriminate use of industrial wastes. Int. J. Occup. Med. Environ. Health 1998, 11, 171–177. [Google Scholar]
- Ferrante, D.; Mirabelli, D.; Tunesi, S.; Terracini, B.; Magnani, C. Pleural mesothelioma and occupational and non-occupational asbestos exposure: A case-control study with quantitative risk assessment. Occup. Environ. Med. 2016, 73, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Musti, M.; Pollice, A.; Cavone, D.; Dragonieri, S.; Bilancia, M. The relationship between malignant mesothelioma and an asbestos cement plant environmental risk: A spatial case–control study in the city of Bari (Italy). Int. Arch. Occup. Environ. Health 2009, 82, 489–497. [Google Scholar] [CrossRef] [PubMed]
- Doll, R. Mortality from lung cancer in asbestos workers. Occup. Environ. Med. 1955, 12, 81–86. [Google Scholar]
- Selikoff, I.J.; Churg, J.; Hammond, E.C. The occurrence of asbestosis among insulation workers in the United States. Ann. N. Y. Acad. Sci. 1965, 132, 139–155. [Google Scholar] [CrossRef]
- Wagner, J.C.; Sleggs, C.A.; Marchand, P. Diffuse Pleural Mesothelioma and Asbestos Exposure in the North Western Cape Province. Occup. Environ. Med. 1960, 17, 260–271. [Google Scholar] [CrossRef]
- IARC (International Agency for Research on Cancer). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Asbestos (Chrysotile, Amosite, Crocidolite, Tremolite, Actinolite, and Anthophyllite); IARC: Lyon, France, 2012; Volume 100C. [Google Scholar]
- INRS (Institut National de Recherche et de Sécurité). Dates Clefs dans la Connaissance et la préVention du Risque Amiante. Available online: https://www.inrs.fr/risques/amiante/historique-problematique-amiante.html (accessed on 25 March 2024).
- Thives, L.P.; Ghisi, E.; Júnior, J.J.T.; Vieira, A.S. Is asbestos still a problem in the world? A current review. J. Environ. Manag. 2022, 319, 115716. [Google Scholar] [CrossRef]
- Rosell-Murphy, M.-I.; Abós-Herràndiz, R.; Olivella, J.T.; Alberti-Casas, C.; Allas, I.G.; Artés, X.M.; Günther, I.K.; Malet, I.G.; Martínez, R.O.; Canela-Soler, J. Risk factors associated with asbestos-related diseases: A community-based case–control study. BMC Public Health 2013, 13, 723. [Google Scholar] [CrossRef]
- Henderson, D.; Leigh, J. The History of Asbestos Utilization and Recognition of Asbestos-Induced Diseases. In Asbestos; CRC Press: Boca Raton, FL, USA, 2011; pp. 1–22. [Google Scholar] [CrossRef]
- Swartjes, F.A.; Tromp, P.C.; Wezenbeek, J.M. Assessing Risks of Soil Contamination with Asbestos; RIVM Report 711701034; TNO Environment, Energy & Process Innovation (MEP); Grontmij: Bilthoven, The Netherlands, 2003; pp. 1–69. (In Dutch) [Google Scholar]
- Ramazzini, C. Asbestos Is Still With Us: Repeat Call for a Universal Ban. Arch. Environ. Occup. Health 2010, 65, 121–126. [Google Scholar] [CrossRef]
- Rice, J. The Global Reorganization and Revitalization of the Asbestos Industry, 1970–2007. Int. J. Health Serv. 2011, 41, 239–254. [Google Scholar] [CrossRef]
- Yvon, Y.; Sharrock, P. Characterization of Thermochemical Inactivation of Asbestos Containing Wastes and Recycling the Mineral Residues in Cement Products. Waste Biomass-Valorization 2011, 2, 169–181. [Google Scholar] [CrossRef]
- Wang, J.; Schlagenhauf, L.; Setyan, A. Transformation of the released asbestos, carbon fibers and carbon nanotubes from composite materials and the changes of their potential health impacts. J. Nanobiotechnol. 2017, 15, 15. [Google Scholar] [CrossRef]
- Hosseinpourpia, R.; Varshoee, A.; Soltani, M.; Hosseini, P.; Tabari, H.Z. Production of waste bio-fiber cement-based composites reinforced with nano-SiO2 particles as a substitute for asbestos cement composites. Constr. Build. Mater. 2012, 31, 105–111. [Google Scholar] [CrossRef]
- Vimalanathan, M. Study on Fiber Reinforced Concrete Using Asbestos. Int. J. Res. Appl. Sci. Eng. Technol. 2022, 10, 4531–4534. [Google Scholar] [CrossRef]
- Malinconico, S.; Paglietti, F.; Serranti, S.; Bonifazi, G.; Lonigro, I. Asbestos in soil and water: A review of analytical techniques and methods. J. Hazard. Mater. 2022, 436, 129083. [Google Scholar] [CrossRef] [PubMed]
- Spasiano, D.; Pirozzi, F. Treatments of asbestos containing wastes. J. Environ. Manag. 2017, 204, 82–91. [Google Scholar] [CrossRef]
- Burragato, F.; Gaglianone, G.; Gerbasi, G.; Mazziotti Tagliani, S.; Papacchini, L.; Rossini, F.; Sperduto, B. Fibrous mineral detection in natural soil and risk mitigation (1st paper). Period. Mineral. 2010, 79, 21–35. [Google Scholar]
- Bint, L.; Hunt, S.; Dangerfield, D.; Mechaelis, M. New Zeland Guidelines for Assessing and Managing Asbestos in Soil; Printlink: Wellington, New Zealand, 2017. [Google Scholar]
- Gualtieri, A.F. Recycling asbestos-containing material (ACM) from construction and demolition waste (CDW). In Handbook of Recycled Concrete and Demolition Waste; Elsevier: Amsterdam, The Netherlands, 2013; pp. 500–525. [Google Scholar] [CrossRef]
- Bódizs, D. The Hungarian situation of construction and demolition waste recovery/processing plants. In Az Építési és Bontási Hulladékot Hasznosító/Feldolgozó Művek Magyarországi Helyzetképe; Széchenyi István University: Győr, Hungarian, 2022. [Google Scholar]
- Leonelli, C.; Veronesi, P.; Boccaccini, D.N.; Rivasi, M.R.; Barbieri, L.; Andreola, F.; Lancellotti, I.; Rabitti, D.; Pellacani, G.C. Microwave thermal inertisation of asbestos containing waste and its recycling in traditional ceramics. J. Hazard. Mater. 2006, 135, 149–155. [Google Scholar] [CrossRef]
- Plescia, P.; Gizzi, D.; Benedetti, S.; Camilucci, L.; Fanizza, C.; De Simone, P.; Paglietti, F. Mechanochemical treatment to recycling asbestos-containing waste. Waste Manag. 2003, 23, 209–218. [Google Scholar] [CrossRef]
- Gualtieri, A.F.; Gualtieri, M.L.; Scognamiglio, V.; Di Giuseppe, D. Human Health Hazards Associated with Asbestos in Building Materials. In Ecological and Health Effects of Building Materials; Springer International Publishing: Cham, Switzerland, 2022; pp. 297–325. [Google Scholar] [CrossRef]
- Spurny, K. On the release of asbestos fibers from weathered and corroded asbestos cement products. Environ. Res. 1989, 48, 100–116. [Google Scholar] [CrossRef]
- Rodilla, J.M.R.; Cerrada, B.C.; Pujadas, C.S.; Delclos, G.L.; Benavides, F.G. Fiber burden and asbestos-related diseases: An umbrella review. Gac. Sanit. 2022, 36, 173–183. [Google Scholar] [CrossRef]
- Favero-Longo, S.E.; Matteucci, E.; Siniscalco, C. Plant Colonization Limits Dispersion in the Air of Asbestos Fibers in an Abandoned Asbestos Mine. Northeast. Nat. 2009, 16, 163–177. [Google Scholar] [CrossRef]
- Obmiński, A.; Janeczek, J. The effectiveness of asbestos stabilizers during abrasion of asbestos-cement sheets. Constr. Build. Mater. 2020, 249, 118767. [Google Scholar] [CrossRef]
- Bolan, S.; Kempton, L.; McCarthy, T.; Wijesekara, H.; Piyathilake, U.; Jasemizad, T.; Padhye, L.P.; Zhang, T.; Rinklebe, J.; Wang, H.; et al. Sustainable management of hazardous asbestos-containing materials: Containment, stabilization and inertization. Sci. Total Environ. 2023, 881, 163456. [Google Scholar] [CrossRef] [PubMed]
- Bornemann, P.; Hildebrandt, U. On the problem of environmental pollution by weathering products of asbestos cement. Staub. Reinhaltung Luft 1986, 11, 487–489. [Google Scholar]
- Li, X.; Chen, Y.; Li, X.; Wang, M.; Xie, W.; Ding, D.; Kong, L.; Jiang, D.; Long, T.; Deng, S. Asbestos-Environment Pollution Characteristics and Health-Risk Assessment in Typical Asbestos-Mining Area. Toxics 2023, 11, 494. [Google Scholar] [CrossRef]
- Avataneo, C.; Capella, S.; Luiso, M.; Marangoni, G.; Lasagna, M.; De Luca, D.A.; Bergamini, M.; Belluso, E.; Turci, F. Waterborne asbestos: Good practices for surface waters analyses. Front. Chem. 2023, 11, 1104569. [Google Scholar] [CrossRef]
- Labagnara, D.; Patrucco, M.; Sorlini, A. Occupational Safety and Health in Tunnelling in Rocks Formations Potentially Containing Asbestos: Good Practices for Risk Assessment and Management. Am. J. Appl. Sci. 2016, 13, 646–656. [Google Scholar] [CrossRef]
- Sachanbiński, M. Results of research on asbestos pollution of the natural environment of Lower Silesia. In Risk Assessment of Buildings Contaminated with Asbestos Dust and Risk Control Methods; Seminar; Warsaw-ITB: Warsaw, Poland, 2009. [Google Scholar]
- Kurunthachalam, S.K. Asbestos and Its Toxicological Concern. Hydrol. Curr. Res. 2013, 4, 1–5. [Google Scholar] [CrossRef]
- Zhang, Y.-L.; Kim, Y.-C.; Hong, W.-H. Visualizing distribution of naturally discharged asbestos fibers in Korea through analysis of thickness changes in asbestos cement slates. J. Clean. Prod. 2016, 112, 607–619. [Google Scholar] [CrossRef]
- Bassani, C.; Cavalli, R.M.; Cavalcante, F.; Cuomo, V.; Palombo, A.; Pascucci, S.; Pignatti, S. Deterioration status of asbestos-cement roofing sheets assessed by analyzing hyperspectral data. Remote Sens. Environ. 2007, 109, 361–378. [Google Scholar] [CrossRef]
- Mohanty, S.K.; Salamatipour, A.; Willenbring, J.K. Mobility of asbestos fibers below ground is enhanced by dissolved organic matter from soil amendments. J. Hazard. Mater. Lett. 2021, 2, 100015. [Google Scholar] [CrossRef]
- Capacci, L.; Biondini, F.; Frangopol, D.M. Resilience of aging structures and infrastructure systems with emphasis on seismic resilience of bridges and road networks: Review. Resilient Cities Struct. 2022, 1, 23–41. [Google Scholar] [CrossRef]
- Cely-García, M.F.; Lysaniuk, B.; Pasetto, R.; Ramos-Bonilla, J.P. The challenges of applying an Activity-Based Sampling methodology to estimate the cancer risk associated with asbestos contaminated landfilled zones. Environ. Res. 2020, 181, 108893. [Google Scholar] [CrossRef]
- Gray, C.; Carey, R.N.; Reid, A. Current and future risks of asbestos exposure in the Australian community. Int. J. Occup. Environ. Health 2016, 22, 292–299. [Google Scholar] [CrossRef]
- Obmiński, A. The concentration of asbestos fibres during buildings exploitation analysis of concentration variability. Arch. Civ. Mech. Eng. 2021, 22, 6. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, W.; Mfarrej, M.F.B.; Saleem, M.H.; Khan, K.A.; Ma, J.; Raposo, A.; Han, H. Breathing in danger: Understanding the multifaceted impact of air pollution on health impacts. Ecotoxicol. Environ. Saf. 2024, 280, 116532. [Google Scholar] [CrossRef] [PubMed]
- Kottek, M.; Yuen, M.L. Public health risks from asbestos cement roofing. Am. J. Ind. Med. 2022, 65, 157–161. [Google Scholar] [CrossRef]
- Singh, R.; Frank, A.L. Does the Presence of Asbestos-Containing Materials in Buildings Post-construction and Before Demolition Have an Impact on the Exposure to Occupants in Non-occupational Settings? Cureus 2023, 15, 1–11. [Google Scholar] [CrossRef]
- Miserocchi, G.; Sancini, G.; Mantegazza, F.; Chiappino, G. Translocation pathways for inhaled asbestos fibers. Environ. Health 2008, 7, 4. [Google Scholar] [CrossRef]
- Huh, D.-A.; Chae, W.-R.; Choi, Y.-H.; Kang, M.-S.; Lee, Y.-J.; Moon, K.-W. Disease Latency according to Asbestos Exposure Characteristics among Malignant Mesothelioma and Asbestos-Related Lung Cancer Cases in South Korea. Int. J. Environ. Res. Public Health 2022, 19, 15934. [Google Scholar] [CrossRef]
- Zhang, Y.-L.; Byeon, H.-S.; Hong, W.-H.; Cha, G.-W.; Lee, Y.-H.; Kim, Y.-C. Risk assessment of asbestos containing materials in a deteriorated dwelling area using four different methods. J. Hazard. Mater. 2021, 410, 124645. [Google Scholar] [CrossRef]
- Durczak, K.; Pyzalski, M.; Brylewski, T.; Juszczyk, M.; Leśniak, A.; Libura, M.; Ustinovičius, L.; Vaišnoras, M. Modern Methods of Asbestos Waste Management as Innovative Solutions for Recycling and Sustainable Cement Production. Sustainability 2024, 16, 8798. [Google Scholar] [CrossRef]
- Tetik, Y.Ö.; Zümrüt, I.B.; Çamurcu, A.G.; Kale, Ö.A.; Baradan, S. Measurement and removal of asbestos in residential dwellings to be demolished—Urban transformation experience in Izmir, Turkey. Environ. Sci. Pollut. Res. 2024, 31, 9857–9866. [Google Scholar] [CrossRef] [PubMed]
- Gualtieri, A.F. Naturally Occurring Asbestos: A Global Health Concern? State of the Art and Open Issues. Environ. Eng. Geosci. 2020, 26, 3–8. [Google Scholar] [CrossRef]
- Bloise, A.; Ricchiuti, C.; Punturo, R.; Pereira, D. Potentially toxic elements (PTEs) associated with asbestos chrysotile, tremolite and actinolite in the Calabria region (Italy). Chem. Geol. 2020, 558, 119896. [Google Scholar] [CrossRef]
- Baumann, F.; Buck, B.J.; Metcalf, R.V.; McLaurin, B.T.; Merkler, D.J.; Carbone, M. The Presence of Asbestos in the Natural Environment is Likely Related to Mesothelioma in Young Individuals and Women from Southern Nevada. J. Thorac. Oncol. 2015, 10, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Buck, B.J.; Goossens, D.; Metcalf, R.V.; McLaurin, B.; Ren, M.; Freudenberger, F. Naturally Occurring Asbestos: Potential for Human Exposure, Southern Nevada, USA. Soil Sci. Soc. Am. J. 2013, 77, 2192–2204. [Google Scholar] [CrossRef]
- Obmiński, A. Asbestos cement products and their impact on soil contamination in relation to various sources of anthropogenic and natural asbestos pollution. Sci. Total Environ. 2022, 848, 157275. [Google Scholar] [CrossRef]
- Ricchiuti, C.; Pereira, D.; Punturo, R.; Giorno, E.; Miriello, D.; Bloise, A. Hazardous Elements in Asbestos Tremolite from the Basilicata Region, Southern Italy: A First Step. Fibers 2021, 9, 47. [Google Scholar] [CrossRef]
- Evans, B.W. The Serpentinite Multisystem Revisited: Chrysotile Is Metastable. Int. Geol. Rev. 2004, 46, 479–506. [Google Scholar] [CrossRef]
- Bowes, D.R.; Langer, A.M.; Rohl, A.N.; Zussman, J. Nature and Range of Mineral Dusts in the Environment. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1977, 286, 593–610. [Google Scholar]
- Lee, R.; Strohmeier, B.; Bunker, K.; Van Orden, D. Naturally occurring asbestos—A recurring public policy challenge. J. Hazard. Mater. 2008, 153, 1–21. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Reuse and Revitalization in Ambler, Pennsylvania. Available online: https://www.epa.gov/ambler/reuse-and-revitalization-ambler-pennsylvania (accessed on 28 June 2022).
- Swartjes, F.A.; Tromp, P.C. A Tiered Approach for the Assessment of the Human Health Risks of Asbestos in Soils. Soil Sediment Contam. Int. J. 2008, 17, 137–149. [Google Scholar] [CrossRef]
- Turci, F.; Favero-Longo, S.E.; Gazzano, C.; Tomatis, M.; Gentile-Garofalo, L.; Bergamini, M. Assessment of asbestos exposure during a simulated agricultural activity in the proximity of the former asbestos mine of Balangero, Italy. J. Hazard. Mater. 2016, 308, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Zuo, J.; Rameezdeen, R.; Hagger, M.; Zhou, Z.; Ding, Z. Dust pollution control on construction sites: Awareness and self-responsibility of managers. J. Clean. Prod. 2017, 166, 312–320. [Google Scholar] [CrossRef]
- González-Zamora, Á.; Benito-Verdugo, P.; Martínez-Fernández, J. On the Variability in the Temporal Stability Pattern of Soil Moisture Under Mediterranean Conditions. Span. J. Soil Sci. 2024, 14, 12839. [Google Scholar] [CrossRef]
- Steffan, J.J.; Brevik, E.C.; Burgess, L.C.; Cerdà, A. The effect of soil on human health: An overview. Eur. J. Soil Sci. 2018, 69, 159–171. [Google Scholar] [CrossRef]
- David, S.R.; Fritsch, S.; Forster, A.; Ihiawakrim, D.; Geoffroy, V.A. Flocking asbestos waste, an iron and magnesium source for Pseudomonas. Sci. Total Environ. 2020, 709, 135936. [Google Scholar] [CrossRef]
- Holmes, E.P.; Lavkulich, L. The effects of naturally occurring acids on the surface properties of chrysotile asbestos. J. Environ. Sci. Health Part A 2014, 49, 1445–1452. [Google Scholar] [CrossRef]
- Berry, T.-A.; Wallis, S.; Doyle, E.; de Lange, P.; Steinhorn, G.; Vigliaturo, R.; Belluso, E.; Blanchon, D. A Preliminary Investigation into the Degradation of Asbestos Fibres in Soils, Rocks and Building Materials Associated with Naturally Occurring Biofilms. Minerals 2024, 14, 106. [Google Scholar] [CrossRef]
- Łuniewski, S.; Rogowska, W.; Łozowicka, B.; Iwaniuk, P. Plants, Microorganisms and Their Metabolites in Supporting Asbestos Detoxification—A Biological Perspective in Asbestos Treatment. Materials 2024, 17, 1644. [Google Scholar] [CrossRef]
- Wong, L.C.; Rodenburg, U.; Leite, R.R.; Korthals, G.W.; Pover, J.; Koerten, H.; Kuramae, E.E.; Bodelier, P.L. Exploring microbial diversity and interactions for asbestos modifying properties. Sci. Total Environ. 2024, 951, 175577. [Google Scholar] [CrossRef]
- David, S.R.; Geoffroy, V.A. A Review of Asbestos Bioweathering by Siderophore-Producing Pseudomonas: A Potential Strategy of Bioremediation. Microorganisms 2020, 8, 1870. [Google Scholar] [CrossRef]
- Ricchiuti, C.; Bloise, A.; Punturo, R. Occurrence of asbestos in soils: State of the art. Episodes 2020, 43, 881–891. [Google Scholar] [CrossRef]
- American Chemical Society. The Fate of Asbestos in Soil: Remediation Prospects and Paradigms. In Proceedings of the National Conference in Philadelphia, Philadelphia, PA, USA, 21–25 August 2016. Session TOXI 25. [Google Scholar]
- Addison, J.; Davies, L.S.T.; Robertson, A.; Willey, R.J. Release of Dispersed Asbestos Fibres from Soils; Technical Report; Institute of Occupational Medicine: Edinburgh, UK, 1988. [Google Scholar]
- Baker, K.; Sole, S.; Hay, S.; Mitcheson, B.; Thomas, L. Discussion Paper on Guidelines for Airborne Concentrations of Asbestos Fibres in Ambient Air: Implications for Quantitative Risk Assessment; Society for Brownfield Risk Assessors; SoBRA: Edinburgh, Scotland, 2018. [Google Scholar]
- Hellawell, E.E.; Hughes, S.J. Asbestos contamination on brownfield development sites in the UK. Environ. Res. 2021, 198, 110480. [Google Scholar] [CrossRef] [PubMed]
- Ryan, J.N.; Elimelech, M. Colloid mobilization and transport in groundwater. Colloids Surfaces A Physicochem. Eng. Asp. 1996, 107, 1–56. [Google Scholar] [CrossRef]
- Skinner, H.C.W.; Ross, M.; Frondel, C. Asbestos and Other Fibrous Materials: Mineralogy, Crystal Chemistry, and Health Effects; Oxford University Press: Oxford, UK, 1988. [Google Scholar]
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Asbestos; U.S. Department of Health and Human Services, Public Health Service: Atlanta, GA, USA, 2002. [Google Scholar]
- Pelley, A.J.; Tufenkji, N. Effect of particle size and natural organic matter on the migration of nano- and microscale latex particles in saturated porous media. J. Colloid Interface Sci. 2008, 321, 74–83. [Google Scholar] [CrossRef]
- Seymour, M.B.; Chen, G.; Su, C.; Li, Y. Transport and retention of colloids in porous media: Does shape really matter? Environ. Sci. Technol. 2013, 47, 8391–8398. [Google Scholar]
- Bradford, S.A.; Yates, S.R.; Bettahar, M.; Simunek, J. Physical factors affecting the transport and fate of colloids in saturated porous media. Water Resour. Res. 2002, 38, 63-1–63-12. [Google Scholar] [CrossRef]
- Bergendahl, J.; Grasso, D. Prediction of colloid detachment in a model porous media: Thermodynamics. AIChE J. 1999, 45, 475–484. [Google Scholar] [CrossRef]
- Tufenkji, N.; Elimelech, M. Breakdown of Colloid Filtration Theory: Role of the Secondary Energy Minimum and Surface Charge Heterogeneities. Langmuir 2005, 21, 841–852. [Google Scholar] [CrossRef]
- Hofmann, A.; Liang, L. Mobilization of colloidal ferrihydrite particles in porous media—An inner-sphere complexation approach. Geochim. Cosmochim. Acta 2007, 71, 5847–5861. [Google Scholar] [CrossRef]
- Pignatello, J.J.; Kwon, S.; Lu, Y. Effect of Natural Organic Substances on the Surface and Adsorptive Properties of Environmental Black Carbon (Char): Attenuation of Surface Activity by Humic and Fulvic Acids. Environ. Sci. Technol. 2006, 40, 7757–7763. [Google Scholar] [CrossRef] [PubMed]
- Inam, M.A.; Khan, R.; Akram, M.; Khan, S.; Park, D.R.; Yeom, I.T. Interaction of Arsenic Species with Organic Ligands: Competitive Removal from Water by Coagulation-Flocculation-Sedimentation (C/F/S). Molecules 2019, 24, 1619. [Google Scholar] [CrossRef]
- Elimelech, M. Effect of Particle Size on the Kinetics of Particle Deposition under Attractive Double Layer Interactions. J. Colloid Interface Sci. 1994, 164, 190–199. [Google Scholar] [CrossRef]
- Petriglieri, J.R.; Laporte-Magoni, C.; Salvioli-Mariani, E.; Ferrando, S.; Tomatis, M.; Fubini, B.; Turci, F. Morphological and chemical properties of fibrous antigorite from lateritic deposit of New Caledonia in view of hazard assessment. Sci. Total Environ. 2021, 777, 146185. [Google Scholar] [CrossRef]
- Baumann, F.; Maurizot, P.; Mangeas, M.; Ambrosi, J.-P.; Douwes, J.; Robineau, B. Pleural Mesothelioma in New Caledonia: Associations with Environmental Risk Factors. Environ. Health Perspect. 2011, 119, 695–700. [Google Scholar] [CrossRef]
- Ma, H.; Bolster, C.; Johnson, W.P.; Li, K.; Pazmino, E.; Camacho, K.M.; Anselmo, A.C.; Mitragotri, S. Coupled influences of particle shape, surface property and flow hydrodynamics on rod-shaped colloid transport in porous media. J. Colloid Interface Sci. 2020, 577, 471–480. [Google Scholar] [CrossRef]
- Quilliam, R.S.; Pow, C.J.; Mwesiga, J.J.; Shilla, D.A.; Woodford, L. Microplastics in agriculture—A potential novel mechanism for the delivery of human pathogens onto crops. Front. Plant Sci. 2023, 14, 1152419. [Google Scholar] [CrossRef]
- Tripathi, S.; Srivastava, P.; Devi, R.S.; Bhadouria, R. Influence of synthetic fertilizers and pesticides on soil health and soil microbiology. In Agrochemicals Detection, Treatment and Remediation; Elsevier: Amsterdam, The Netherlands, 2020; pp. 25–54. [Google Scholar] [CrossRef]
- Sánchez-Castro, I.; Molina, L.; Prieto-Fernández, M.; Segura, A. Past, present and future trends in the remediation of heavy-metal contaminated soil—Remediation techniques applied in real soil-contamination events. Heliyon 2023, 9, e16692. [Google Scholar] [CrossRef]
- Fortunato, L.; Rushton, L. Stomach cancer and occupational exposure to asbestos: A meta-analysis of occupational cohort studies. Br. J. Cancer 2015, 112, 1805–1815. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Elimination of Asbestos-Related Diseases (No. WHO/SDE/OEH/06.03); World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Gamble, J. Risk of gastrointestinal cancers from inhalation and ingestion of asbestos. Regul. Toxicol. Pharmacol. 2008, 52, S124–S153. [Google Scholar] [CrossRef]
- Totaro, M.; Giorgi, S.; Filippetti, E.; Gallo, A.; Frendo, L.; Privitera, G.; Baggiani, A. Asbestos in drinking water and the dangers to human health: A narrative synthesis. Ig Sanita Pubbl. 2019, 75, 303–312. [Google Scholar]
- Cheng, T.J.; More, S.L.; Maddaloni, M.A.; Fung, E.S. Evaluation of potential gastrointestinal carcinogenicity associated with the ingestion of asbestos. Rev. Environ. Health 2021, 36, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Avataneo, C.; Petriglieri, J.R.; Capella, S.; Tomatis, M.; Luiso, M.; Marangoni, G.; Lazzari, E.; Tinazzi, S.; Lasagna, M.; De Luca, D.A.; et al. Chrysotile asbestos migration in air from contaminated water: An experimental simulation. J. Hazard. Mater. 2022, 424, 127528. [Google Scholar] [CrossRef]
- Lin, R.-T.; Soeberg, M.J.; Chien, L.-C.; Fisher, S.; Takala, J.; Lemen, R.; Driscoll, T.; Takahashi, K. Bibliometric analysis of gaps in research on asbestos-related diseases: Declining emphasis on public health over 26 years. BMJ Open 2018, 8, e022806. [Google Scholar] [CrossRef]
- Fuller, W.H. Movement of Selected Metals, Asbestos, and Cyanide in Soil: Applications to Waste Disposal Problems; Municipal Environmental Research Laboratory, Office of Research and Development, US Environmental Protection Agency: Washington, DC, USA, 1977. [Google Scholar]
- Buzio, S.; Pesando, G.; Zuppi, G.M. Hydrogeological study on the presence of asbestos fibres in water of northern Italy. Water Res. 2000, 34, 1817–1822. [Google Scholar] [CrossRef]
- Koumantakis, E.; Kalliopi, A.; Dimitrios, K.; Gidarakos, E. Asbestos pollution in an inactive mine: Determination of asbestos fibers in the deposit tailings and water. J. Hazard. Mater. 2009, 167, 1080–1088. [Google Scholar] [CrossRef] [PubMed]
- Klebe, S.; Leigh, J.; Henderson, D.W.; Nurminen, M. Asbestos, Smoking and Lung Cancer: An Update. Int. J. Environ. Res. Public Health 2019, 17, 258. [Google Scholar] [CrossRef]
- Avataneo, C.; Belluso, E.; Bergamini, M.; Capella, S.; De Luca, D.A.; Lasagna, M.; Turci, F. Waterborne Naturally Occurring Asbestos: A case study from Piedmont (NW Italy). In Proceedings of the 22nd EGU General Assembly, online, 4–8 May 2020; p. 19615. [Google Scholar]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Asbestos (chrysotile, amosite, crocidolite, tremolite, actinolite and anthophyllite). In Arsenic, Metals, Fibres and Dusts; International Agency for Research on Cancer: Lyon, France, 2012. [Google Scholar]
- Li, X.; Ding, D.; Xie, W.; Zhang, Y.; Kong, L.; Li, M.; Li, M.; Deng, S. Risk assessment and source analysis of heavy metals in soil around an asbestos mine in an arid plateau region, China. Sci. Rep. 2024, 14, 7552. [Google Scholar] [CrossRef]
- Gwinn, M.R.; DeVoney, D.; Jarabek, A.M.; Sonawane, B.; Wheeler, J.; Weissman, D.N.; Masten, S.; Thompson, C. Meeting Report: Mode(s) of Action of Asbestos and Related Mineral Fibers. Environ. Health Perspect. 2011, 119, 1806–1810. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Cullimore, R.; Hu, Y.; Chowdhury, R. Biodeterioration of asbestos cement (AC) pipe in drinking water distribution systems. Int. Biodeterior. Biodegrad. 2011, 65, 810–817. [Google Scholar] [CrossRef]
- Baumann, F.; Ambrosi, J.-P.; Carbone, M. Asbestos is not just asbestos: An unrecognised health hazard. Lancet Oncol. 2013, 14, 576–578. [Google Scholar] [CrossRef]
- Jacques, O.; Pienitz, R. Assessment of asbestos fiber contamination in lake sediment cores of the Thetford Mines region, southern Quebec (Canada). Environ. Adv. 2022, 8, 100232. [Google Scholar] [CrossRef]
- Caramuscio, P.; Annoni, P.; Maran, S.; Zuppi, G.M.; Pesando, G. Simulation of Nickel Transport in the Shallow Aquifer of Stura Valley (Northern Italy); Brookfield: Rotterdam, The Netherlands, 1992. [Google Scholar]
- Monaro, S.; Landsberger, S.; Lecomte, R.; Paradis, P.; Desaulniers, G.; P’An, A. Asbestos pollution levels in river water measured by proton-induced X-ray emission (PIXE) techniques. Environ. Pollut. Ser. B Chem. Phys. 1983, 5, 83–90. [Google Scholar] [CrossRef]
- Meck, M.; Love, D.; Mapani, B. Zimbabwean mine dumps and their impacts on river water quality—A reconnaissance study. Phys. Chem. Earth Parts A B C 2006, 31, 797–803. [Google Scholar] [CrossRef]
- Kusiorowski, R.; Lipowska, B.; Kujawa, M.; Gerle, A. Problem of asbestos-containing wastes in Poland. Clean. Waste Syst. 2023, 4, 100085. [Google Scholar] [CrossRef]
- McGuire, M.J.; Bowers, A.E.; Bowers, D.A. Asbestos analysis case history: Surface water supplies in Southern California. J. AWWA 1982, 74, 470–478. [Google Scholar] [CrossRef]
- McMillan, L.M.; Stout, R.G.; Willey, B.F. Asbestos in raw and treated water: An electron microscopy study. Environ. Sci. Technol. 1977, 11, 390–394. [Google Scholar] [CrossRef]
- Wei, B.; Ye, B.; Yu, J.; Jia, X.; Zhang, B.; Zhang, X.; Lu, R.; Dong, T.; Yang, L. Concentrations of asbestos fibers and metals in drinking water caused by natural crocidolite asbestos in the soil from a rural area. Environ. Monit. Assess. 2012, 185, 3013–3022. [Google Scholar] [CrossRef]
- Anastasiadou, K.; Gidarakos, E. Toxicity evaluation for the broad area of the asbestos mine of northern Greece. J. Hazard. Mater. 2007, 139, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Kashansky, S.V.; Slyshkina, T.V. Asbestos in water sources of the Bazhenovskoye chrysotile asbestos deposit. Int. J. Occup. Med. Environ. Health 2002, 15, 65–68. [Google Scholar]
- Schreier, H.; Omueti, J.A.; Lavkulich, L.M. Weathering processes of asbestos-rich serpentinitic sediments. Soil Sci. Soc. Am. J. 1987, 51, 993–999. [Google Scholar]
- Avataneo, C.; Belluso, E.; Capella, S.; Cocca, D.; Lasagna, M.; Pigozzi, G.; De Luca, D.A. Groundwater asbestos pollution from Naturally Occurring Asbestos (NOA): A preliminary study on the Lanzo Valleys and Balangero Plain area, NW Italy. Ital. J. Eng. Geol. Environ. 2021, 1, 5–19. [Google Scholar]
- Malinconico, S.; Cappa, F.; Zamengo, L. International and Italian regulations concerning asbestos limits in liquids. In Proceedings of the International Conference on Asbestos Monitoring and Analytical Methods (AMAM), Venezia, Italy, 5–7 December 2005. [Google Scholar]
- European Parliament and Council. Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the Quality of Water Intended for Human Consumption (Recast) (Text with EEA Relevance). Official Journal of the European Union, L 435, 23 December 2020, pp. 1–62. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32020L2184 (accessed on 21 March 2024).
- Lisco, S.; Lapietra, I.; Laviano, R.; Mastronuzzi, G.; Fracchiolla, T.; Moretti, M. Sedimentological features of asbestos cement fragments in coastal environments (Taranto, southern Italy). Mar. Pollut. Bull. 2023, 187, 114469. [Google Scholar] [CrossRef]
- Vincenten, J.; George, F.; Martuzzi, M.; Schröder-Bäck, P.; Paunovic, E. Barriers and Facilitators to the Elimination of Asbestos Related Diseases—Stakeholders’ Perspectives. Int. J. Environ. Res. Public Health 2017, 14, 1269. [Google Scholar] [CrossRef] [PubMed]
- Pirani, G. Amianto nelle acque: Inquadramento normativo e proposte operative. In Rischio Amianto in Italia: Da Minerale Pregiato a Minaccia per la Salute e per L’ambiente (Geologia dell’Ambiente, Addendum to No.4/2017); Baldi, D., Ed.; SIGEA: Castelfidardo, Italy, 2017; pp. 53–62. [Google Scholar]
- Go, J.; Farhat, N.; Leingartner, K.; Insel, E.I.; Momoli, F.; Carrier, R.; Krewski, D. Review of epidemiological and toxicological studies on health effects from ingestion of asbestos in drinking water. Crit. Rev. Toxicol. 2024, 54, 856–894. [Google Scholar] [CrossRef]
- WHO. International Programme on Chemical Safety—Asbestos. Available online: https://www.who.int/health-topics/chemical-safety#tab=tab_1/ (accessed on 11 November 2020).
- U.S. Environmental Protection Agency (EPA). Safe Drinking Water Act; EPA 816-F-04-030; U.S. EPA: Washington, DC, USA, 2004. Available online: https://www.epa.gov/sdwa (accessed on 20 March 2024).
- EPA/600/R-94/134; Method 100.2 Determination of Asbestos Structures over 10 µm in Length in Drinking Water. U.S. EPA-Environmental Protection Agency: Washington, DC, USA, 1994.
- Millette, J.R.; Clark, P.J.; Pansing, M.F.; Twyman, J.D. Concentration and size of asbestos in water supplies. Environ. Health Perspect. 1980, 34, 13–25. [Google Scholar] [CrossRef]
- Millette, J.R.; Clark, P.J.; Stober, J.; Rosenthal, M. Asbestos in water supplies of the United States. Environ. Health Perspect. 1983, 53, 45–48. [Google Scholar] [CrossRef]
- Webber, J.S.; Syrotynski, S.; King, M.V. Asbestos-contaminated drinking water: Its impact on household air. Environ. Res. 1988, 46, 153–167. [Google Scholar] [CrossRef]
- Chatfield, E.J.; Dillon, M.J. A National Survey for Asbestos Fibres in Canadian Drinking Water Supplies (79EHD-34); Department of National Health and Welfare: Ottawa, ON, Canada, 1979. [Google Scholar]
- Capuano, F.; Fava, A.; Bacci, T.; Sala, O.; Paoli, F.; Biancolini, V.; Motta, E. La ricerca di amianto nelle acque potabile. In Arpa Agenzia Regionale Prevenzione e Ambiente dell’Emilia-Romagna, Ecoscienza n. 3 /2014; Acque potabili un sistema di controllo integrato all’altezza delle sfide; Arpae Emilia-Romagna (Agenzia Prevenzione Ambiente Energia dell’Emilia-Romagna): Bologna, Italy, 2014. [Google Scholar]
- Hernández, M.; Pereira, D.; Bloise, A. Asbestos: Communicating the Health Issues Derived from Fibrous Minerals to Society. Appl. Sci. 2024, 14, 8980. [Google Scholar] [CrossRef]
- Roccaro, P.; Vagliasindi, F.G. Indoor release of asbestiform fibers from naturally contaminated water and related health risk. Chemosphere 2018, 202, 76–84. [Google Scholar] [CrossRef]
- Al-Hashimi, O.; Hashim, K.; Loffill, E.; Čebašek, T.M.; Nakouti, I.; Faisal, A.A.H.; Al-Ansari, N. A Comprehensive Review for Groundwater Contamination and Remediation: Occurrence, Migration and Adsorption Modelling. Molecules 2021, 26, 5913. [Google Scholar] [CrossRef]
- Mahjoub, O.; Mauffret, A.; Michel, C.; Chmingui, W. Use of groundwater and reclaimed water for agricultural irrigation: Farmers’ practices and attitudes and related environmental and health risks. Chemosphere 2022, 295, 133945. [Google Scholar] [CrossRef] [PubMed]
- Berry, T.-A.; Belluso, E.; Vigliaturo, R.; Gieré, R.; Emmett, E.A.; Testa, J.R.; Steinhorn, G.; Wallis, S.L. Asbestos and Other Hazardous Fibrous Minerals: Potential Exposure Pathways and Associated Health Risks. Int. J. Environ. Res. Public Health 2022, 19, 4031. [Google Scholar] [CrossRef]
- Ranaweera, K.H.; Grainger, M.N.C.; French, A.D.; Mucalo, M.R. Construction and demolition waste repurposed for heavy metal ion removal from wastewater: A review of current approaches. Int. J. Environ. Sci. Technol. 2023, 20, 9393–9422. [Google Scholar] [CrossRef]
- Della Ventura, G.; Rabiee, A.; Marcelli, A.; Macis, S.; D’arco, A.; Iezzi, G.; Radica, F.; Lucci, F. A new approach to deposit homogeneous samples of asbestos fibres for toxicological tests in vitro. Front. Chem. 2023, 11, 1116463. [Google Scholar] [CrossRef]
- Trivedi, A.K.; Ahmad, I. Effects of Chrysotile Asbestos Contaminated Soil on Crop Plants. Soil Sediment Contam. Int. J. 2011, 20, 767–776. [Google Scholar] [CrossRef]
- Lee, E.-S.; Kim, Y.-K. Asbestos Exposure Level and the Carcinogenic Risk Due to Corrugated Asbestos-Cement Slate Roofs in Korea. Int. J. Environ. Res. Public Health 2021, 18, 6925. [Google Scholar] [CrossRef]
- Saleem, K.; Asghar, M.A.; Saleem, M.H.; Raza, A.; Kocsy, G.; Iqbal, N.; Ali, B.; Albeshr, M.F.; Bhat, E.A. Chrysotile-Asbestos-Induced Damage in Panicum virgatum and Phleum pretense Species and Its Alleviation by Organic-Soil Amendment. Sustainability 2022, 14, 10824. [Google Scholar] [CrossRef]
- Schreier, H. (Ed.) Chapter 3 Asbestos in the Aquatic Environment. In Asbestos in the Natural Environment; Elsevier: Amsterdam, The Netherlands, 1989; Volume 37, pp. 45–67. [Google Scholar] [CrossRef]
- Maulida, P.T.; Kim, J.W.; Jung, M.C. Environmental Assessment of Friable Asbestos from Soil to Air Using the Releasable Asbestos Sampler (RAS). Toxics 2022, 10, 748. [Google Scholar] [CrossRef] [PubMed]
- Iwaszko, J. Making asbestos-cement products safe using heat treatment. Case Stud. Constr. Mater. 2019, 10, e00221. [Google Scholar] [CrossRef]
- Kusiorowski, R.; Zaremba, T.; Piotrowski, J.; Adamek, J. Thermal decomposition of different types of asbestos. J. Therm. Anal. Calorim. 2012, 109, 693–704. [Google Scholar] [CrossRef]
Aspect | Effects on Water | Effects on Soil | Gaps and Research Needs |
---|---|---|---|
Physical characteristics | Asbestos fibers can remain suspended in water and settle slowly [8]. | Persist in soil for extended periods without natural degradation [82]. | Lack of precise data on sedimentation and transport dynamics. |
Chemical stability | Type-dependent, but generally does not degrade in water [83]. | Stable structure, slow weathering [193]. | Limited data on long-term transformations and interactions. |
Contaminant adsorption | Can adsorb heavy metals and organic pollutants [194]. | May bind toxic substances, making them bioavailable to plants [195]. | Unclear which contaminants can accumulate. |
Biological effects | Not a food source but can enter the food chain [86]. | Potentially toxic to microorganisms and plants [196]. | Insufficient research on ecosystem-level impacts. |
Drinking water contamination | Asbestos fibers can be present in drinking water [8]. | Can leach from soil into groundwater [8]. | Unclear relationship between exposure and health risks. |
Toxicity | Potentially carcinogenic if inhaled [197]. | Long-term presence may pose risks to living organisms [198]. | Further studies needed on effects on soil-dwelling organisms. |
Degradation and removal | Does not degrade naturally, only removable through physical filtration [199]. | Remains in soil unless mechanically disturbed [119]. | Development of effective removal techniques required. |
Entry into surface waters | Introduced via rainfall and industrial discharge [67]. | Transported by wind erosion and precipitation [200]. | Transport mechanisms are not fully understood. |
Ecological impact | May clog filter-feeding aquatic organisms [199]. | Can alter soil microbial activity and reduce biodiversity [113]. | Limited experimental data on ecological damage. |
Sedimentation rate | Slow sedimentation, but turbulence can enhance dispersion [151]. | Movement varies across different soil types [200]. | Poorly understood mobility in various soil compositions. |
Water treatment challenges | Difficult to remove with standard filtration methods [201]. | Soil remediation is complex and costly [119]. | Need for innovative methods for effective removal. |
Groundwater contamination | Can infiltrate deeper layers via precipitation [151]. | Mobility depends on soil pH and organic matter content [67]. | Limited data on movement and concentrations in groundwater. |
Temperature effects | Temperature variations may influence sedimentation [201]. | Freeze-thaw cycles could alter distribution [202]. | Insufficient knowledge of the impact of extreme climate conditions. |
Impact on plants | Can be absorbed by plants through water uptake [198]. | Toxic effects on root systems and plant growth [198]. | Limited research on cellular effects in plants. |
Interactions with sediments | May accumulate in sediments [67]. | Functions as a temporary reservoir, releasing fibers back into the environment over time [20]. | Further research needed to understand storage and mobilization in sediments. |
Hydrodynamic influence | Flow conditions affect distribution [199]. | Behavior varies in soils with different porosity levels [67]. | Limited modeling data on flow velocity impacts. |
Human exposure | Inhalation or ingestion possible through drinking and bathing [8]. | Can be inhaled or ingested as soil dust [113]. | Need for epidemiological studies to assess exposure risks. |
Long-term environmental impact | May persist in aquatic environments for decades [199]. | Can remain unchanged in soil for centuries [67]. | Lack of long-term data on degradation or transformation potential. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macher, G.Z.; Torma, A.; Beke, D. Examining the Environmental Ramifications of Asbestos Fiber Movement Through the Water–Soil Continuum: A Review. Int. J. Environ. Res. Public Health 2025, 22, 505. https://doi.org/10.3390/ijerph22040505
Macher GZ, Torma A, Beke D. Examining the Environmental Ramifications of Asbestos Fiber Movement Through the Water–Soil Continuum: A Review. International Journal of Environmental Research and Public Health. 2025; 22(4):505. https://doi.org/10.3390/ijerph22040505
Chicago/Turabian StyleMacher, Gergely Zoltán, András Torma, and Dóra Beke. 2025. "Examining the Environmental Ramifications of Asbestos Fiber Movement Through the Water–Soil Continuum: A Review" International Journal of Environmental Research and Public Health 22, no. 4: 505. https://doi.org/10.3390/ijerph22040505
APA StyleMacher, G. Z., Torma, A., & Beke, D. (2025). Examining the Environmental Ramifications of Asbestos Fiber Movement Through the Water–Soil Continuum: A Review. International Journal of Environmental Research and Public Health, 22(4), 505. https://doi.org/10.3390/ijerph22040505