Rapid-Acting Treatments for Perinatal Depression: Clinical Landscapes and Future Horizons
Abstract
:1. Introduction
2. Pharmacologic Approaches
2.1. Neurosteroids
2.2. Ketamine/Esketamine
3. Non-Pharmacologic Approaches
Transcranial Magnetic Stimulation
4. Revisiting Old Strategies
4.1. Electroconvulsive Therapy (ECT)
4.2. Selective Serotonin Reuptake Inhibitors (SSRIs)
5. Considerations for Treatment Selection
- Timing of symptom onset: For symptoms beginning in the third trimester or within 4 weeks postpartum, zuranolone presents a rapid-acting option with good efficacy.
- Severity of presentation: For severe, life-threatening depression, ECT remains the gold standard despite its stigma. Accelerated TMS protocols show promise as an alternative rapid-acting option without medication exposure.
- Breastfeeding priorities: SSRIs generally offer the best-established safety profile for lactating women. Neurosteroids currently require temporary cessation of breastfeeding, though this guidance may evolve as more data becomes available.
- Prior treatment response: For patients with histories of SSRI non-response, newer options like neurosteroids or neuromodulation may be particularly valuable.
- Treatment availability and cost: Many of the rapid-acting treatments (particularly brexanolone and accelerated TMS protocols) have limited availability and/or high costs, which must be factored into treatment planning.
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Van Niel, M.S.; Payne, J.L. Perinatal depression: A review. Clevel. Clin. J. Med. 2020, 87, 273–277. [Google Scholar] [CrossRef]
- Pregnancy-Related Deaths: Data from Maternal Mortality Review Committees in 38 U.S. States, 2020. Maternal Mortality Prevention, CDC. Available online: https://www.cdc.gov/maternal-mortality/php/data-research/?CDC_AAref_Val=https://www.cdc.gov/reproductivehealth/maternal-mortality/erase-mm/data-mmrc.html?source=email (accessed on 23 January 2025).
- Hillhouse, T.M.; Porter, J.H. A brief history of the development of antidepressant drugs: From monoamines to glutamate. Exp. Clin. Psychopharmacol. 2015, 23, 1–21. [Google Scholar] [CrossRef]
- Pearlstein, T. Perinatal depression: Treatment options and dilemmas. J. Psychiatry Neurosci. 2008, 33, 302–318. [Google Scholar] [PubMed]
- Kudlow, P.A.; McIntyre, R.S.; Lam, R.W. Early switching strategies in antidepressant non-responders: Current evidence and future research directions. CNS Drugs 2014, 28, 601–609. [Google Scholar] [CrossRef]
- Mullard, A. FDA approves first oral drug for postpartum depression, but rejects it for major depressive disorder. Nat. Rev. Drug Discov. 2023, 22, 774. [Google Scholar] [CrossRef]
- Sage, Biogen’s Zuranolone Looks Approvable, but Will It Sell? Pharmaphorum. Available online: https://pharmaphorum.com/news/sage-biogens-zuranolone-looks-approvable-but-will-it-sell (accessed on 23 January 2025).
- Official Sage Central Patient Support, Sage Therapeutics Inc. Available online: https://www.sagecentralsupport.com/ (accessed on 3 February 2025).
- Clayton, A.H.; Lasser, R.; Parikh, S.V.; Iosifescu, D.V.; Jung, J.; Kotecha, M.; Forrestal, F.; Jonas, J.; Kanes, S.J.; Doherty, J. Zuranolone for the Treatment of Adults with Major Depressive Disorder: A Randomized, Placebo-Controlled Phase 3 Trial. Am. J. Psychiatry 2023, 180, 676–684. [Google Scholar] [CrossRef] [PubMed]
- Koire, A.; Van Horne, B.S.; Nong, Y.H.; Cain, C.M.; Greeley, C.S.; Puryear, L. Patterns of peripartum depression screening and detection in a large, multi-site, integrated healthcare system. Arch. Womens Ment. Health 2022, 25, 603–610. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. Available online: https://clinicaltrials.gov/study/NCT03228394#study-record-dates (accessed on 23 January 2025).
- ClinicalTrials.gov. Available online: https://clinicaltrials.gov/study/NCT03460756 (accessed on 23 January 2025).
- Bialer, M.; Johannessen, S.I.; Levy, R.H.; Perucca, E.; Tomson, T.; White, H.S. Progress report on new antiepileptic drugs: A summary of the Thirteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XIII). Epilepsia 2017, 58, 181–221. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. Available online: https://clinicaltrials.gov/study/NCT06285916?cond=Postpartum%20Depression&aggFilters=status:rec%20com,studyType:int&page=2&limit=100&rank=119 (accessed on 23 January 2025).
- ClinicalTrials.gov. Available online: https://clinicaltrials.gov/study/NCT06057012?cond=Postpartum%20Depression&aggFilters=status:rec%20com,studyType:int&page=2&limit=100&rank=135 (accessed on 23 January 2025).
- Xu, L.; Ma, J.; Shi, L.; Li, F. Design, synthesis and characterizations of prodrugs of brexanolone. Bioorganic Med. Chem. Lett. 2023, 90, 129344. [Google Scholar] [CrossRef]
- Zhao, T.; Li, Y.; Wei, W.; Savage, S.; Zhou, L.; Ma, D. Ketamine administered to pregnant rats in the second trimester causes long-lasting behavioral disorders in offspring. Neurobiol. Dis. 2014, 68, 145–155. [Google Scholar] [CrossRef]
- Pacilio, R.M.; Lopez, J.F.; Parikh, S.V.; Patel, P.D.; Geller, J.A. Safe ketamine use and pregnancy: A nationwide survey and retrospective review of informed consent, counseling, and testing practices. J. Clin. Psychiatry 2024, 85, 56610. [Google Scholar] [CrossRef]
- Majdinasab, E.; Datta, P.; Krutsch, K.; Baker, T.; Hale, T.W. Pharmacokinetics of ketamine transfer into human milk. J. Clin. Psychopharmacol. 2023, 43, 407–410. [Google Scholar] [CrossRef]
- Begg, E.J.; Atkinson, H.C.; Duffull, S.B. Prospective evaluation of a model for the prediction of milk:plasma drug concentrations from physicochemical characteristics. Br. J. Clin. Pharmacol. 1992, 33, 501–505. [Google Scholar] [CrossRef] [PubMed]
- Parsaei, M.; Hasehmi, S.M.; Seyedmirzaei, H.; Cattarinussi, G.; Sambataro, F.; Brambilla, P.; Barone, Y.; Delvecchio, G. Perioperative esketamine administration for prevention of postpartum depression after the cesarean section: A systematic review and meta-analysis. J. Affect. Disord. 2024, 361, 564–580. [Google Scholar] [CrossRef]
- Hu, L.-Q.; Flood, P.; Li, Y.; Tao, W.; Zhao, P.; Xia, Y.; Pian-Smith, M.C.; Stellaccio, F.S.; Ouanes, J.-P.P.; Hu, F.; et al. No pain labor & delivery: A global health initiative’s impact on clinical outcomes in china. Anesth. Analg. 2016, 122, 1931–1938. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, Y.; Wu, H.; Tang, Y.-J.; Sooranna, S.R.; Zhang, L.; Chen, T.; Xie, X.-Y.; Qiu, L.-C.; Wu, X.-D. Perioperative adjunctive esketamine for postpartum depression among women undergoing elective cesarean delivery: A randomized clinical trial. JAMA Netw. Open 2024, 7, e240953. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Deng, C.-M.; Zeng, Y.; Chen, X.-Z.; Li, A.-Y.; Feng, S.-W.; Xu, L.-L.; Chen, L.; Yuan, H.-M.; Hu, H.; et al. Efficacy of a single low dose of esketamine after childbirth for mothers with symptoms of prenatal depression: Randomised clinical trial. BMJ 2024, 385, e078218. [Google Scholar] [CrossRef]
- Vanderkruik, R.; Freeman, M.P.; Claypoole, L.D.; Arakelian, M.; Kaimal, A.J.; Nadel, H.; Cohen, L.S. Postpartum depression screening: Treatment engagement, barriers to care, and change in depressive symptoms. Ann. Clin. Psychiatry 2021, 33, 7–14. [Google Scholar] [CrossRef]
- Fox, M.D.; Buckner, R.L.; White, M.P.; Greicius, M.D.; Pascual-Leone, A. Efficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulate. Biol. Psychiatry 2012, 72, 595–603. [Google Scholar] [CrossRef]
- Hadas, I.; Sun, Y.; Lioumis, P.; Zomorrodi, R.; Jones, B.; Voineskos, D.; Downar, J.; Fitzgerald, P.B.; Blumberger, D.M.; Daskalakis, Z.J. Association of repetitive transcranial magnetic stimulation treatment with subgenual cingulate hyperactivity in patients with major depressive disorder: A secondary analysis of a randomized clinical trial. JAMA Netw. Open 2019, 2, e195578. [Google Scholar] [CrossRef]
- Miuli, A.; Pettorruso, M.; Stefanelli, G.; Giovannetti, G.; Cavallotto, C.; Susini, O.; Pasino, A.; Bubbico, G.; De Risio, L.; Di Petta, G.; et al. Beyond the efficacy of transcranial magnetic stimulation in peripartum depression: A systematic review exploring perinatal safety for newborns. Psychiatry Res. 2023, 326, 115251. [Google Scholar] [CrossRef] [PubMed]
- Eryılmaz, G.; Sayar, G.H.; Özten, E.; Gül, I.G.; Yorbik, Ö.; Işiten, N.; Bağcı, E. Follow-up study of children whose mothers were treated with transcranial magnetic stimulation during pregnancy: Preliminary results. Neuromodulation 2015, 18, 255–260. [Google Scholar] [CrossRef]
- Ganho-Ávila, A.; Sobral, M.; den Berg, M.L. Transcranial magnetic stimulation and transcranial direct current stimulation in reducing depressive symptoms during the peripartum period. Curr. Opin. Psychiatry 2024, 37, 337–349. [Google Scholar] [CrossRef]
- Kim, D.R.; Wang, E.; McGeehan, B.; Snell, J.; Ewing, G.; Iannelli, C.; O’Reardon, J.P.; Sammel, M.D.; Epperson, C.N. Randomized controlled trial of transcranial magnetic stimulation in pregnant women with major depressive disorder. Brain Stimul. 2019, 12, 96–102. [Google Scholar] [CrossRef]
- Garcia, K.S.; Flynn, P.; Pierce, K.J.; Caudle, M. Repetitive transcranial magnetic stimulation treats postpartum depression. Brain Stimul. 2010, 3, 36–41. [Google Scholar] [CrossRef]
- Senda, M.; Johnson, K.; Taylor, I.; Jensen, M.; Flynn, H.; Kozel, F.A. Accelerated transcranial magnetic stimulation provided rapid improvement in depressive, anxiety, trauma, and pain symptoms in a woman experiencing postpartum depression. J. ECT 2023, 39, e14–e15. [Google Scholar] [CrossRef] [PubMed]
- Ogden, M.; Lyndon, W.; Pridmore, S. Repetitive transcranial magnetic stimulation (rTMS) in major depressive episode with postpartum onset—A case study. Ger. J. Psychiatry 1999, 2, 43–45. [Google Scholar]
- Cox, E.; Killenberg, S.; Frische, R.; McClure, R.; Hill, M.; Jenson, J.; Pearson, B.; Meltzer-Brody, S. Repetitive transcranial magnetic stimulation for the treatment of postpartum depression. J. Affect. Disord. 2020, 264, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Brock, D.G.; Demitrack, M.A.; Groom, P.; Holbert, R.; Rado, J.T.; Gross, P.K.; Goethe, J.W.; Schrodt, G.R.; Weeks, H.R. Effectiveness of NeuroStar transcranial magnetic stimulation (TMS) in patients with major depressive disorder with postpartum onset. Brain Stimul. 2016, 9, e7. [Google Scholar] [CrossRef]
- Myczkowski, M.L.; Dias, Á.M.; Luvisotto, T.; Arnaut, D.; Bellini, B.B.; Marcolin, M.A.; Mansur, C.G.; Rennó, J.; de Souza, G.T.; Ribeiro, P.L. Effects of repetitive transcranial magnetic stimulation on clinical, social, and cognitive performance in postpartum depression. Neuropsychiatr. Dis. Treat. 2012, 8, 491–500. [Google Scholar] [CrossRef]
- Blumberger, D.M.; Vila-Rodriguez, F.; E Thorpe, K.; Feffer, K.; Noda, Y.; Giacobbe, P.; Knyahnytska, Y.; Kennedy, S.H.; Lam, R.W.; Daskalakis, Z.J.; et al. Effectiveness of theta burst versus high-frequency repetitive transcranial magnetic stimulation in patients with depression (THREE-D): A randomised non-inferiority trial. Lancet 2018, 391, 1683–1692. [Google Scholar] [CrossRef] [PubMed]
- Jawish, R.; Smid, M.; Gordon, A.; Shangraw, K.; Mickey, B.J. Prolonged transcranial magnetic stimulation in a pregnant patient with treatment-resistant depression: A case report. J. Med. Case Rep. 2024, 18, 512. [Google Scholar] [CrossRef]
- Cole, E.J.; Phillips, A.L.; Bentzley, B.S.; Stimpson, K.H.; Nejad, R.; Barmak, F.; Veerapal, C.; Khan, N.; Cherian, K.; Felber, E.; et al. Stanford Neuromodulation Therapy (SNT): A Double-Blind Randomized Controlled Trial. Am. J. Psychiatry 2022, 179, 132–141. [Google Scholar] [CrossRef]
- Zhang, Y.; Mu, Y.; Li, X.; Sun, C.; Ma, X.; Li, S.; Li, L.; Zhang, Z.; Qi, S. Improved Interhemispheric Functional Connectivity in Postpartum Depression Disorder: Associations with Individual Target-Transcranial Magnetic Stimulation Treatment Effects. Front. Psychiatry 2022, 13, 859453. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. Available online: https://clinicaltrials.gov/study/NCT03417960?term=postpartum%20tms&rank=3 (accessed on 1 February 2025).
- Yonkers, K.A.; Wisner, K.L.; Stewart, D.E.; Oberlander, T.F.; Dell, D.L.; Stotland, N.; Ramin, S.; Chaudron, L.; Lockwood, C. The management of depression during pregnancy: A report from the American Psychiatric Association and the American College of Obstetricians and Gynecologists. Gen. Hosp. Psychiatry 2009, 31, 403–413. [Google Scholar] [CrossRef]
- Cipolla, S.; Catapano, P.; Messina, M.; Pezzella, P.; Giordano, G.M. Safety of electroconvulsive therapy (ECT) in pregnancy: A systematic review of case reports and case series. Arch. Womens Ment. Health 2024, 27, 157–178. [Google Scholar] [CrossRef] [PubMed]
- Ward, H.B.; Fromson, J.A.; Cooper, J.J.; De Oliveira, G.; Almeida, M. Recommendations for the use of ECT in pregnancy: Literature review and proposed clinical protocol. Arch. Womens Ment. Health 2018, 21, 715–722. [Google Scholar] [CrossRef]
- Rose, S.; Dotters-Katz, S.K.; Kuller, J.A. Electroconvulsive therapy in pregnancy: Safety, best practices, and barriers to care. Obs. Gynecol. Surv. 2020, 75, 199–203. [Google Scholar] [CrossRef]
- Lin, C.-H.; Chen, M.-C.; Yang, W.-C.; Lane, H.-Y. Early improvement predicts outcome of major depressive patients treated with electroconvulsive therapy. Eur. Neuropsychopharmacol. 2016, 26, 225–233. [Google Scholar] [CrossRef]
- Espinoza, R.T.; Kellner, C.H. Electroconvulsive Therapy. N. Engl. J. Med. 2022, 386, 667–672. [Google Scholar] [CrossRef]
- McIntyre, R.S.; Alsuwaidan, M.; Baune, B.T.; Berk, M.; Demyttenaere, K.; Goldberg, J.F.; Gorwood, P.; Ho, R.; Kasper, S.; Kennedy, S.H.; et al. Treatment-resistant depression: Definition, prevalence, detection, management, and investigational interventions. World Psychiatry 2023, 22, 394–412. [Google Scholar] [CrossRef] [PubMed]
- Gelenberg, A.J.; Chesen, C.L. How fast are antidepressants? J. Clin. Psychiatry 2000, 61, 712–721. [Google Scholar] [CrossRef]
- Nierenberg, A.A.; Farabaugh, A.H.; Alpert, J.E.; Gordon, J.; Worthington, J.J.; Rosenbaum, J.F.; Fava, M. Timing of onset of antidepressant response with fluoxetine treatment. Am. J. Psychiatry 2000, 157, 1423–1428. [Google Scholar] [CrossRef] [PubMed]
- Posternak, M.A.; Zimmerman, M. Is there a delay in the antidepressant effect? A meta-analysis. J. Clin. Psychiatry 2005, 66, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, S.; Suzuki, T.; Watanabe, K.; Kashima, H.; Uchida, H. Accelerating response to antidepressant treatment in depression: A review and clinical suggestions. Prog. Neuropsychopharmacol. Biol. Psychiatry 2010, 34, 259–264. [Google Scholar] [CrossRef]
- Lam, R.W. Onset, time course and trajectories of improvement with antidepressants. Eur. Neuropsychopharmacol. 2012, 22 (Suppl. 3), S492–S498. [Google Scholar] [CrossRef]
- Baum, M.L.; Widge, A.S.; Carpenter, L.L.; McDonald, W.M.; Cohen, B.M.; Nemeroff, C.B. Pharmacogenomic clinical support tools for the treatment of depression. Am. J. Psychiatry 2024, 181, 591–607. [Google Scholar] [CrossRef]
- Bousman, C.A.; Bengesser, S.A.; Aitchison, K.J.; Amare, A.T.; Aschauer, H.; Baune, B.T.; Asl, B.B.; Bishop, J.R.; Burmeister, M.; Chaumette, B.; et al. Review and consensus on pharmacogenomic testing in psychiatry. Pharmacopsychiatry 2021, 54, 5–17. [Google Scholar] [CrossRef]
- Koire, A.; Suleiman, M.; Teslyar, P.; Liu, C.H. Prevalence of community perinatal psychiatrists in the US. JAMA Netw. Open 2024, 7, e2426465. [Google Scholar] [CrossRef]
Treatment | Mechanism of Action | Pharmacology | Onset of Action | Treatment Duration | Response Rate | Remission Rate | Pregnancy Safety | Lactation Compatibility | Special Considerations |
---|---|---|---|---|---|---|---|---|---|
Zuranolone | Allopregnanolone analog; GABA-A positive allosteric modulator | Oral; 14-day course | Within days | 14 days | 25% response by day 3; 50% by day 8, ~60% by end of treatment | ~40% at 45-day follow-up | Limited data; | Recommended to pause breastfeeding; limited data | Only for symptoms emerging in 3rd trimester—within 4 weeks postpartum; must be used within 1 year postpartum |
Brexanolone | Allopregnanolone; GABA-A positive allosteric modulator | IV infusion over 60 h | Within days | 60 h infusion; 72 h monitoring | Superior to placebo in clinical trials | Superior to placebo in clinical trials | Limited data | Limited data | Discontinued as of Jan 2025; required inpatient administration |
SSRIs | Serotonin reuptake inhibition | Oral; daily dosing | Response at 2–4 weeks, full trial of 6–8 weeks | Months to years | Variable | 30–50% typically | Generally safe; not associated with increased risk of major congenital malformations | Variable transmission in breast milk; generally safe | Extensive long-term safety data available |
ECT | Induces generalized seizure; affects multiple neurotransmitter systems | Procedure performed 2–3 times weekly | 6–12 sessions (2–4 weeks) | 4+ weeks | ~70% for severe MDD | ~50–60% for severe MDD | Safe in all trimesters | Safe | Temporary memory impairment |
Repetitive TMS & iTBS | Modulates neural activity via magnetic pulses | 3–40 min sessions, 5 days/week | Weeks | 6–8 weeks | Limited data; promising in small studies | Limited peripartum data | Likely safe; minor risks (e.g., headache, low seizure risk) | Likely safe | No medication exposure; requires significant time commitment |
Accelerated iTBS | Modulates neural activity via magnetic pulses | 3–10 min sessions, multiple times daily | Days to weeks | 5 days (intensive) | Limited data; promising in small studies | Limited peripartum data | Likely safe based on standard TMS data | Likely safe | Limited availability; emerging but promising option |
Ketamine/Esketamine | NMDA receptor antagonist | IV or intranasal administration | Hours to days | Single dose to repeated administration | Limited data; 75% reduction in MDD episodes | Limited peripartum data | Not recommended on animal studies | <1% relative infant dose in breast milk (limited data) | Concerns about offspring neurodevelopment; data emerging |
Ganaxolone (investigational) | Allopregnanolone analog; GABA-A modulator | Oral or IV administration; longer half-life | Unknown | Unknown | Phase II trials underway | Phase II trials underway | Unknown | Unknown | Lower progesterone receptor affinity; may allow longer-term use |
NORA-520 (investigational) | Allopregnanolone prodrug | Oral administration | Unknown | Unknown | Phase II trials underway | Phase II trials underway | Unknown | Unknown | Limited data available |
BRII-296 (investigational) | Allopregnanolone prodrug | Long-acting injectable; sustained levels for 3–4 weeks | Unknown | Single injection lasts 3–4 weeks | Phase II trials underway | Phase II trials underway | Unknown | Unknown | May improve medication adherence due to injectable formulation |
Treatment | Key Advantages | Key Disadvantages | Best Suited For |
---|---|---|---|
Zuranolone | Rapid onset; oral administration; outpatient treatment | Narrow eligibility window; recommendation to pause breastfeeding; high cost | Patients with symptom onset in 3rd trimester or within 4 weeks postpartum requiring rapid response |
SSRIs | Extensive safety data; compatible with breastfeeding; affordable | Slower onset of action; daily administration required | First-line for mild to moderate perinatal depression when rapid response not critical |
ECT | High efficacy; safe throughout pregnancy; rapid for severe cases | Requires medical facility; stigma; temporary cognitive effects | Severe, life-threatening, or treatment-resistant depression |
TMS (Standard) | No medication exposure; safe in pregnancy and lactation | Time-intensive; limited availability; slower response | Patients unwilling/unable to take medication with moderate symptoms |
iTBS (Accelerated) | Rapid response; no medication exposure; brief sessions | Very limited availability; emerging evidence | Moderate to severe symptoms requiring rapid response without medication |
Ketamine/Esketamine | Potentially rapid response | Safety concerns during pregnancy; limited peripartum data | Not currently recommended for routine use in perinatal depression |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beydler, E.M.; Koire, A.; Steuber, E.; Taylor, J.J.; Mergler, R.J. Rapid-Acting Treatments for Perinatal Depression: Clinical Landscapes and Future Horizons. Int. J. Environ. Res. Public Health 2025, 22, 546. https://doi.org/10.3390/ijerph22040546
Beydler EM, Koire A, Steuber E, Taylor JJ, Mergler RJ. Rapid-Acting Treatments for Perinatal Depression: Clinical Landscapes and Future Horizons. International Journal of Environmental Research and Public Health. 2025; 22(4):546. https://doi.org/10.3390/ijerph22040546
Chicago/Turabian StyleBeydler, Emily M., Amanda Koire, Elizabeth Steuber, Joseph J. Taylor, and Reid J. Mergler. 2025. "Rapid-Acting Treatments for Perinatal Depression: Clinical Landscapes and Future Horizons" International Journal of Environmental Research and Public Health 22, no. 4: 546. https://doi.org/10.3390/ijerph22040546
APA StyleBeydler, E. M., Koire, A., Steuber, E., Taylor, J. J., & Mergler, R. J. (2025). Rapid-Acting Treatments for Perinatal Depression: Clinical Landscapes and Future Horizons. International Journal of Environmental Research and Public Health, 22(4), 546. https://doi.org/10.3390/ijerph22040546