Associations Between the Built Environment in GPS-Derived Activity Spaces and Sedentary Behavior, Light Physical Activity, and Moderate-to-Vigorous Physical Activity
Abstract
:1. Introduction
2. Methods
2.1. Design Overview
2.2. Participants and Recruitment
2.3. Data Collection
2.4. Daily Activity Spaces
2.5. Built Environment Variables
2.6. Physical Activity Outcomes
2.7. Covariates
2.8. Statistical Analyses
3. Results
3.1. Participant Characteristics
3.2. Participants’ Physical Activity
3.3. Unadjusted Associations Between the Built Environment and Physical Activity
3.4. Adjusted Associations Between the Built Environment and Physical Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- U.S. Department of Health and Human Services. 2018 Physical Activity Guidelines Advisory Committee. 2018 Physical Activity Guidelines Advisory Committee Scientific Report; U.S. Department of Health and Human Services: Washington, DC, USA, 2018. [CrossRef]
- U.S. Department of Health and Human Services. Physical Activity and Health: A Report of the Surgeon General; U.S. Department of Health and Human Services: Washington, DC, USA, 1996. Available online: https://profiles.nlm.nih.gov/spotlight/nn/catalog/nlm:nlmuid-101584932X106-doc (accessed on 25 March 2025).
- U.S. Department of Health and Human Services. Physical Activity Guidelines Advisory Committee. Physical Activity Guidelines Advisory Committee Report; U.S. Department of Health and Human Services: Washington, DC, USA, 2008.
- Lee, I.M.; Shiroma, E.J.; Lobelo, F.; Puska, P.; Blair, S.N.; Katzmarzyk, P.T.; Lancet Physical Activity Series Working Group. Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. Lancet 2012, 380, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Whitfield, G.P.; Hyde, E.T.; Carlson, S.A. Participation in leisure-time aerobic physical activity among adults, National Health Interview Survey, 1998–2018. J. Phys. Act. Health 2021, 18, S25–S36. [Google Scholar] [CrossRef] [PubMed]
- Guthold, R.; Stevens, G.A.; Riley, L.M.; Bull, F.C. Worldwide trends in insufficient physical activity from 2001 to 2016: A pooled analysis of 358 population-based surveys with 1.9 million participants. Lancet Glob. Health 2018, 6, e1077–e1086. [Google Scholar] [CrossRef] [PubMed]
- McLeroy, K.R.; Bibeau, D.; Steckler, A.; Glanz, K. An ecological perspective on health promotion programs. Health Educ. Q. 1988, 15, 351–377. [Google Scholar] [CrossRef]
- Sallis, J.F.; Cervero, R.B.; Ascher, W.; Henderson, K.A.; Kraft, M.K.; Kerr, J. An ecological approach to creating active living communities. Annu. Rev. Public Health 2006, 27, 297–322. [Google Scholar] [CrossRef]
- Sallis, J.F.; Cerin, E.; Kerr, J.; Adams, M.A.; Sugiyama, T.; Christiansen, L.B.; Schipperijn, J.; Davey, R.; Salvo, D.; Frank, L.D.; et al. Built environment, physical activity, and obesity: Findings from the International Physical Activity and Environment Network (IPEN) Adult Study. Annu. Rev. Public Health 2019, 41, 119–139. [Google Scholar] [CrossRef]
- Cerin, E.; Nathan, A.; van Cauwenberg, J.; Barnett, D.W.; Barnett, A.; Council on Environment and Physical Activity (CEPA)—Older Adults Working Group. The neighbourhood physical environment and active travel in older adults: A systematic review and meta-analysis. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 15. [Google Scholar] [CrossRef]
- Kahn, E.B.; Ramsey, L.T.; Brownson, R.C.; Heath, G.W.; Howze, E.H.; Powell, K.E.; Stone, E.J.; Rajab, M.W.; Corso, P. The effectiveness of interventions to increase physical activity. A systematic review. Am. J. Prev. Med. 2002, 22, 73–107. [Google Scholar]
- Heath, G.W.; Brownson, R.C.; Kruger, J.; Miles, R.; Powell, K.E.; Ramsey, L.T. The effectiveness of environmental and policy interventions to increase physical activity: A systematic review. J. Phys. Act. Health 2006, 3 (Suppl. S1), S55–S76. [Google Scholar]
- Frank, L.D.; Schmid, T.L.; Sallis, J.F.; Chapman, J.; Saelens, B.E. Linking objectively measured physical activity with objectively measured urban form: Findings from SMARTRAQ. Am. J. Prev. Med. 2005, 28, 117–125. [Google Scholar] [CrossRef]
- Hurvitz, P.M.; Moudon, A.V. Home versus nonhome neighborhood. Am. J. Prev. Med. 2012, 42, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Evenson, K.R.; Wen, F.; Hillier, A.; Cohen, D.A. Assessing the Contribution of Parks to Physical Activity Using Global Positioning System and Accelerometry. Med. Sci. Sports Exerc. 2013, 45, 1981–1987. [Google Scholar] [CrossRef] [PubMed]
- Vich, G.; Marquet, O.; Miralles-Guasch, C. Green streetscape and walking: Exploring active mobility patterns in dense and compact cities. J. Transp. Health 2019, 12, 50–59. [Google Scholar] [CrossRef]
- Badland, H.M.; Duncan, M.J.; Oliver, M.; Duncan, J.S.; Mavoa, S. Examining commute routes: Applications of GIS and GPS technology. Environ. Health Prev. Med. 2010, 15, 327–330. [Google Scholar] [CrossRef]
- Kwan, M.-P. How GIS can help address the uncertain geographic context problem in social science research. Ann. GIS 2012, 18, 245–255. [Google Scholar] [CrossRef]
- Kwan, M.-P.; Schwanen, T. Context and uncertainty in geography and GIScience: Advances in theory, method, and practice. Ann. Assoc. Am. Geogr. 2018, 108, 1473–1475. [Google Scholar] [CrossRef]
- Duncan, D.T.; Méline, J.; Kestens, Y.; Day, K.; Elbel, B.; Trasande, L.; Chaix, B. Walk score, transportation mode choice, and walking among French adults: A GPS, accelerometer, and mobility survey study. Int. J. Environ. Res. Public Health 2016, 13, 611. [Google Scholar] [CrossRef]
- Van Heeswijck, T.; Paquet, C.; Kestens, Y.; Thierry, B.; Morency, C.; Daniel, M. Differences in associations between active transportation and built environmental exposures when expressed using different components of individual activity spaces. Health Place 2015, 33, 195–202. [Google Scholar] [CrossRef]
- Zenk, S.N.; Schulz, A.J.; Matthews, S.A.; Odoms-Young, A.; Wilbur, J.; Wegrzyn, L.; Gibbs, K.; Braunschweig, C.; Stokes, C. Activity space environment and dietary and physical activity behaviors: A pilot study. Health Place 2011, 17, 1150–1161. [Google Scholar] [CrossRef]
- Hirsch, J.A.; Winters, M.; Ashe, M.C.; Clarke, P.J.; McKay, H.A. Destinations that older adults experience within their GPS activity spaces. Environ. Behav. 2016, 48, 55–77. [Google Scholar] [CrossRef]
- Lee, N.C.; Voss, C.; Frazer, A.D.; Hirsch, J.A.; McKay, H.A.; Winters, M. Does activity space size influence physical activity levels of adolescents? A GPS study of an urban environment. Prev. Med. Rep. 2016, 3, 75–78. [Google Scholar] [CrossRef]
- Rundle, A.G.; Sheehan, D.M.; Quinn, J.W.; Bartley, K.; Eisenhower, D.; Bader, M.M.; Lovasi, G.S.; Neckerman, K.M. Using GPS data to study neighborhood walkability and physical activity. Am. J. Prev. Med. 2016, 50, e65–e72. [Google Scholar] [CrossRef] [PubMed]
- Marquet, O.; Hirsch, J.A.; Kerr, J.; Jankowska, M.M.; Mitchell, J.; Hart, J.E.; Laden, F.; Hipp, J.A.; James, P. GPS-based activity space exposure to greenness and walkability is associated with increased accelerometer-based physical activity. Environ. Int. 2022, 165, 107317. [Google Scholar] [CrossRef] [PubMed]
- Frank, L.D.; Sallis, J.F.; Conway, T.L.; Chapman, J.E.; Saelens, B.E.; Bachman, W. Many pathways from land use to health: Associations between neighborhood walkability and active transportation, body mass index, and air quality. J. Am. Plan. Assoc. 2006, 72, 75–87. [Google Scholar] [CrossRef]
- Hibbing, P.R.; van Hees, V.T.; LaMunion, S.R.; Judge, D.M.J. AGread: Read Data Files from ActiGraph Monitors. Available online: https://cran.r-project.org/web/packages/AGread/index.html (accessed on 9 June 2020).
- Choi, L.; Zhouwen, L.; Matthews, C.E.; Buchowski, M.S. Physical Activity R Package. Available online: https://cran.r-project.org/web/packages/PhysicalActivity/index.html (accessed on 9 June 2020).
- Choi, L.; Liu, Z.; Matthews, C.E.; Buchowski, M.S. Validation of accelerometer wear and nonwear time classification algorithm. Med. Sci. Sports Exerc. 2011, 43, 357–364. [Google Scholar] [CrossRef]
- Hibbing, P.R.; van Hees, V. TwoRegression: Process Data from Wearable Research Devices Using Two-Regression Algorithms.tle. Available online: https://cran.r-project.org/web/packages/TwoRegression/index.html (accessed on 9 June 2020).
- Crouter, S.E.; Kuffel, E.; Haas, J.D.; Frongillo, E.A.; Bassett, D.R. Refined two-regression model for the ActiGraph accelerometer. Med. Sci. Sports Exerc. 2010, 42, 1029–1037. [Google Scholar] [CrossRef]
- NOAA NCEI. Local Climatological Data (LCD)—Data Tools—Climate Data Online (CDO)—National Climatic Data Center NCDC. Available online: https://www.ncdc.noaa.gov/cdo-web/datatools/lcd (accessed on 1 May 2020).
- Dewulf, B.; Neutens, T.; Van Dyck, D.; De Bourdeaudhuij, I.; Broekx, S.; Beckx, C.; Van de Weghe, N. Associations between time spent in green areas and physical activity among late middle-aged adults. Geospat. Health 2016, 11, 411. [Google Scholar] [CrossRef]
- Hwang, L.-D.; Hurvitz, P.M.; Duncan, G.E. Cross sectional association between spatially measured walking bouts and neighborhood walkability. Int. J. Environ. Res. Public Health 2016, 13, 412. [Google Scholar] [CrossRef]
- James, P.; Hart, J.E.; Hipp, J.A.; Mitchell, J.A.; Kerr, J.; Hurvitz, P.M.; Glanz, K.; Laden, F. GPS-based exposure to greenness and walkability and accelerometry-based physical activity. Cancer Epidemiol. Biomark. Prev. 2017, 26, 525–532. [Google Scholar] [CrossRef]
- Jansen, M.; Ettema, D.; Pierik, F.; Dijst, M. Sports facilities, shopping centers or homes: What locations are important for adults’ physical activity? A cross-sectional study. Int. J. Environ. Res. Public Health 2016, 13, 287. [Google Scholar] [CrossRef]
- Miller, H.J.; Tribby, C.P.; Brown, B.B.; Smith, K.R.; Werner, C.M.; Wolf, J.; Wilson, L.; Oliveira, M.G.S. Public transit generates new physical activity: Evidence from individual GPS and accelerometer data before and after light rail construction in a neighborhood of Salt Lake City, Utah, USA. Health Place 2015, 36, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Boakye, K.A.; Amram, O.; Schuna, J.M.; Duncan, G.E.; Hystad, P. GPS-based built environment measures associated with adult physical activity. Health Place 2021, 70, 102602. [Google Scholar] [CrossRef] [PubMed]
- Yi, L.; Habre, R.; Mason, T.B.; Xu, Y.; Cabison, J.; Rosales, M.; Chu, D.; Chavez, T.A.; Johnson, M.; Eckel, S.P.; et al. Smartphone GPS-Based exposure to greenspace and walkability and accelerometer-assessed physical activity during pregnancy and early postpartum—Evidence from the MADRES cohort. J. Urban Health 2024, 101, 1128–1142. [Google Scholar] [CrossRef] [PubMed]
- Perchoux, C.; Brondeel, R.; Klein, S.; Klein, O.; Thierry, B.; Kestens, Y.; Chaix, B.; Gerber, P. Does the built environment influence location- and trip-based sedentary behaviors? Evidence from a GPS-based activity space approach of neighborhood effects on older adults. Environ. Int. 2023, 180, 108184. [Google Scholar] [CrossRef]
- Troped, P.J.; Wilson, J.S.; Matthews, C.E.; Cromley, E.K.; Melly, S.J. The built environment and location-based physical activity. Am. J. Prev. Med. 2010, 38, 429–438. [Google Scholar] [CrossRef]
- Troped, P.J.; Brenner, P.S.; Wilson, J.S. Associations between the built and social environment and bike share, physical activity, and overall cycling among adults from Boston neighborhoods. J. Transp. Health 2023, 31, 101629. [Google Scholar] [CrossRef]
- Wang, R.; Lu, Y.; Wu, X.; Liu, Y.; Yao, Y. Relationship between eye-level greenness and cycling frequency around metro stations in Shenzhen, China: A big data approach. Sustain. Cities Soc. 2020, 59, 102201. [Google Scholar] [CrossRef]
- Lu, Y.; Yang, Y.; Sun, G.; Gou, Z. Associations between overhead-view and eye-level urban greenness and cycling behaviors. Cities 2019, 88, 10–18. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Y.; Tu, W.; Zeng, X. Is eye-level greening associated with the use of dockless shared bicycles? Urban For. Urban Green. 2020, 51, 126690. [Google Scholar] [CrossRef]
- Sila-Nowicka, K.; Fotheringham, A.S.; Demšar, U. Activity triangles: A new approach to measure activity spaces. J. Geogr. Syst. 2023, 25, 489–517. [Google Scholar] [CrossRef]
- Rosenberger, M.E.; Fulton, J.E.; Buman, M.P.; Troiano, R.P.; Grandner, M.A.; Buchner, D.M.; Haskell, W.L. The 24-hour activity cycle: A new paradigm for physical activity. Med. Sci. Sports Exerc. 2019, 51, 454–464. [Google Scholar] [CrossRef]
Total (n = 141 Person-Days) | Weekday (n = 113 Person-Days) | Weekend (n = 28 Person-Days) | |
---|---|---|---|
Wear time minutes | 847.1 ± 100.3 | 855.1 ± 100.0 | 814.9 ± 96.5 |
Proportion of sedentary (%) | 63.6 ± 11.6 | 64.4 ± 11.1 | 60.3 ± 13.2 |
Proportion of light intensity (%) | 19.2 ± 6.9 | 18.2 ± 6.4 | 23.3 ± 7.5 |
Proportion of moderate-to-vigorous (%) | 17.2 ± 7.3 | 17.4 ± 7.2 | 16.5 ± 7.9 |
Sedentary minutes (MET ≤ 1.5) | 538.7 ± 117.0 | 551.3 ± 115.6 | 488.0 ± 110.4 |
Light minutes (MET = 1.6–2.9) | 163.3 ± 62.9 | 156.4 ± 59.1 | 191.2 ± 71.1 |
Moderate-to-vigorous minutes | 145.1 ± 63.1 | 147.4 ± 61.1 | 135.7 ± 71.1 |
Built Environment Variable | Line Buffer | Minimum Convex Hull | Standard Deviational Ellipse | |||
---|---|---|---|---|---|---|
Estimate (SE) | p Value | Estimate (SE) | p Value | Estimate (SE) | p Value | |
Land use mix | ||||||
% sedentary | −13.08 (11.65) | 0.26 | −22.33 (10.22) | 0.03 | 2.56 (9.22) | 0.78 |
% light | 1.52 (6.96) | 0.83 | 10.38 (5.74) | 0.07 | −3.50 (5.41) | 0.52 |
% MVPA | 10.54 (5.95) | 0.08 | 10.28 (5.79) | 0.08 | 0.05 (4.74) | 0.99 |
Intersection density | ||||||
% sedentary | −0.01 (0.02) | 0.55 | 0.01 (0.03) | 0.88 | −0.01 (0.02) | 0.59 |
% light | 0.01 (0.01) | 0.58 | −0.02 (0.02) | 0.30 | −0.01 (0.01) | 0.61 |
% MVPA | 0.01 (0.01) | 0.50 | 0.01 (0.02) | 0.42 | 0.01 (0.01) | 0.29 |
Greenness | ||||||
% sedentary | −3.20 (17.42) | 0.85 | −12.01 (12.48) | 0.34 | 0.61 (10.75) | 0.95 |
% light | 8.12 (10.56) | 0.42 | 16.48 (5.27) | 0.01 | 4.95 (5.41) | 0.36 |
% MVPA | −4.83 (9.30) | 0.60 | −4.61 (8.22) | 0.57 | −5.81 (7.62) | 0.45 |
Multi-use trail density | ||||||
% sedentary | 0.05 (0.60) | 0.93 | 0.29 (1.30) | 0.82 | −2.14 (1.68) | 0.20 |
% light | −1.10 (0.34) | 0.01 | −1.61 (0.67) | 0.02 | 0.56 (0.71) | 0.43 |
% MVPA | 1.03 (0.63) | 0.10 | 1.26 (1.23) | 0.26 | 1.67 (1.16) | 0.15 |
Bike infrastructure density | ||||||
% sedentary | 0.17 (0.29) | 0.56 | 0.05 (0.44) | 0.92 | −0.52 (0.33) | 0.12 |
% light | −0.28 (0.09) | 0.01 | −0.27 (0.15) | 0.07 | −0.01 (0.11) | 0.90 |
% MVPA | 0.11 (0.26) | 0.68 | 0.21 (0.35) | 0.55 | 0.50 (0.28) | 0.08 |
Bike station density | ||||||
% sedentary | −0.08 (0.28) | 0.79 | 0.18 (0.33) | 0.60 | 0.26 (0.34) | 0.45 |
% light | −0.06 (0.14) | 0.69 | −0.42 (0.15) | 0.01 | −0.32 (0.12) | 0.01 |
% MVPA | 0.14 (0.18) | 0.44 | 0.23 (0.26) | 0.37 | 0.03 (0.29) | 0.91 |
Built Environment Variable | Line Buffer | Minimum Convex Hull | Standard Deviational Ellipse | |||
---|---|---|---|---|---|---|
Estimate (SE) | p Value | Estimate (SE) | p Value | Estimate (SE) | p Value | |
Land use mix | ||||||
% sedentary | −9.26 (10.62) | 0.38 | −16.78 (9.33) | 0.07 | 4.54 (8.99) | 0.61 |
% light | 0.69 (6.75) | 0.92 | 8.76 (5.19) | 0.09 | −2.58 (5.78) | 0.66 |
% MVPA | 9.21 (5.12) | 0.07 | 9.12 (6.33) | 0.15 | −1.45 (5.06) | 0.77 |
Intersection density | ||||||
% sedentary | −0.01 (0.02) | 0.41 | −0.004 (0.02) | 0.86 | −0.01 (0.01) | 0.41 |
% light | 0.01 (0.01) | 0.58 | −0.01 (0.01) | 0.34 | −0.003 (0.01) | 0.68 |
% MVPA | 0.01 (0.01) | 0.50 | 0.02 (0.02) | 0.35 | 0.01 (0.01) | 0.14 |
Greenness | ||||||
% sedentary | 4.28 (15.08) | 0.78 | −5.20 (10.01) | 0.60 | 7.31 (8.76) | 0.40 |
% light | 2.02 (8.27) | 0.81 | 11.19 (4.85) | 0.02 | 1.48 (4.86) | 0.76 |
% MVPA | −6.24 (9.52) | 0.51 | −5.78 (7.16) | 0.42 | −8.51 (6.65) | 0.20 |
Multi-use trail density | ||||||
% sedentary | 0.12 (0.59) | 0.83 | −0.33 (1.24) | 0.79 | −2.37 (1.46) | 0.10 |
% light | −1.05 (0.33) | 0.01 | −1.19 (0.62) | 0.05 | 0.84 (0.69) | 0.22 |
% MVPA | 0.91 (0.59) | 0.12 | 1.50 (1.05) | 0.15 | 1.49 (1.04) | 0.15 |
Bike infrastructure density | ||||||
% sedentary | 0.12 (0.26) | 0.64 | −0.05 (0.38) | 0.91 | −0.56 (0.34) | 0.10 |
% light | −0.25 (0.08) | 0.01 | −0.25 (0.14) | 0.07 | 0.06 (0.13) | 0.66 |
% MVPA | 0.12 (0.22) | 0.57 | 0.29 (0.30) | 0.35 | 0.51 (0.25) | 0.04 |
Bike station density | ||||||
% sedentary | −0.13 (0.24) | 0.60 | 0.02 (0.31) | 0.94 | 0.22 (0.36) | 0.53 |
% light | −0.04 (0.12) | 0.76 | −0.36 (0.14) | 0.01 | −0.27 (0.14) | 0.06 |
% MVPA | 0.16 (0.15) | 0.28 | 0.33 (0.23) | 0.16 | 0.05 (0.26) | 0.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vittor, D.G.; Wilson, J.S.; Crouter, S.E.; Ethier, B.G.; Shi, L.; Camhi, S.M.; Troped, P.J. Associations Between the Built Environment in GPS-Derived Activity Spaces and Sedentary Behavior, Light Physical Activity, and Moderate-to-Vigorous Physical Activity. Int. J. Environ. Res. Public Health 2025, 22, 566. https://doi.org/10.3390/ijerph22040566
Vittor DG, Wilson JS, Crouter SE, Ethier BG, Shi L, Camhi SM, Troped PJ. Associations Between the Built Environment in GPS-Derived Activity Spaces and Sedentary Behavior, Light Physical Activity, and Moderate-to-Vigorous Physical Activity. International Journal of Environmental Research and Public Health. 2025; 22(4):566. https://doi.org/10.3390/ijerph22040566
Chicago/Turabian StyleVittor, Dante G., Jeffrey S. Wilson, Scott E. Crouter, Benjamin G. Ethier, Ling Shi, Sarah M. Camhi, and Philip J. Troped. 2025. "Associations Between the Built Environment in GPS-Derived Activity Spaces and Sedentary Behavior, Light Physical Activity, and Moderate-to-Vigorous Physical Activity" International Journal of Environmental Research and Public Health 22, no. 4: 566. https://doi.org/10.3390/ijerph22040566
APA StyleVittor, D. G., Wilson, J. S., Crouter, S. E., Ethier, B. G., Shi, L., Camhi, S. M., & Troped, P. J. (2025). Associations Between the Built Environment in GPS-Derived Activity Spaces and Sedentary Behavior, Light Physical Activity, and Moderate-to-Vigorous Physical Activity. International Journal of Environmental Research and Public Health, 22(4), 566. https://doi.org/10.3390/ijerph22040566