Validation of Walk Score® for Estimating Neighborhood Walkability: An Analysis of Four US Metropolitan Areas
Abstract
:1. Introduction
2. Methods
2.1. Address Data
2.2. Address Geocoding
2.3. Neighborhood Walkability Assessment using Geographic Information Systems
2.4. Neighborhood Walkability Assessment using Walk Score
2.5. Statistical Analysis
3. Results
3.1. Descriptive Statistics of Walk Score and GIS Neighborhood Walkability Indicators
3.2. Correlation between Walk Scores and GIS Neighborhood Walkability Indicators
4. Discussion
5. Conclusions
Acknowledgements
- Conflict of Interest StatementThe authors declare that there are no conflicts of interest.
References
- Lee, I.-M. Epidemiology Methods in Physical Activity Studies; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Dishman, R.K.; Washburn, R.A.; Health, G. Heath, Physical Activity Epidemiology; Human Kinetics: Champaign, IL, USA, 2004. [Google Scholar]
- US Department of Health and Human Services, Physical Activity and Health: A Report of the Surgeon General; US Department of Health and Human Services: Atlanta, GA, USA, 1996.
- Troiano, R.P.; Berrigan, D.; Dodd, K.W.; Masse, L.C.; Tilert, T.; McDowell, M. Physical activity in the United States measured by accelerometer. Med. Sci. Sports Exerc. 2008, 40, pp. 181–188.
- Giles-Corti, B.; Kelty, S.F.; Zubrick, S.R.; Villanueva, K.P. Encouraging walking for transport and physical activity in children and adolescents: How important is the built environment? Sports Med. 2009, 39, 995–1009. [Google Scholar]
- Saelens, B.E.; Handy, S.L. Built environment correlates of walking: A review. Med. Sci. Sports Exerc. 2008, 40 Suppl 7, S550–S566. [Google Scholar]
- Davison, K.K.; Lawson, C.T. Do attributes in the physical environment influence children’s physical activity? A review of the literature. Int. J. Behav. Nutr. Phys. Act. 2006, 3, 19. [Google Scholar]
- Humpel, N.; Owen, N.; Leslie, E. Environmental factors associated with adults’ participation in physical activity: A review. Am. J. Prev. Med. 2002, 22, 188–199. [Google Scholar]
- Ding, D.; Sallis, J.F.; Kerr, J.; Lee, S.; Rosenberg, D.E. Neighborhood environment and physical activity among youth a review. Am. J. Prev. Med. 2011, 41, 442–455. [Google Scholar]
- Rosso, A.L.; Auchincloss, A.H.; Michael, Y.L. The urban built environment and mobility in older adults: A comprehensive review. J. Aging Res. 2011. [Google Scholar] [CrossRef]
- Saelens, B.E.; Papadopoulos, C. The importance of the built environment in older adults’ physical activity: A review of the literature. Washington State Journal of Public Health Practice 2008, 1, 13–21. [Google Scholar]
- Saelens, B.E.; Sallis, J.F.; Frank, L.D. Environmental correlates of walking and cycling: findings from the transportation, urban design, and planning literatures. Ann. Behav. Med. 2003, 25, 80–91. [Google Scholar]
- Lo, R.H. Walkability: What is it? J. Urban. 2009, 2, 145–166. [Google Scholar]
- Brownson, R.C.; Hoehner, C.M.; Day, K.; Forsyth, A.; Sallis, J.F. Measuring the built environment for physical activity: State of the science. Am. J. Prev. Med. 2009, 36 Suppl 4, S99–S123. [Google Scholar]
- Diez Roux, A.V. Neighborhoods and health: Where are we and were do we go from here? Rev. Epidemiol. Sante Publique 2007, 55, 13–21. [Google Scholar]
- Fowler, F.J. Survey Research Methods, 3rd ed; Sage Publications: Thousand Oaks, CA, USA, 2001. [Google Scholar]
- Matthews, S.A.; Moudon, A.V.; Daniel, M. Work group II: Using Geographic Information Systems for enhancing research relevant to policy on diet, physical activity, and weight. Am. J. Prev. Med. 2009, 36 Suppl 4, S171–S176. [Google Scholar]
- Carr, L.J.; Dunsiger, S.I.; Marcus, B.H. Walk score as a global estimate of neighborhood walkability. Am. J. Prev. Med. 2010, 39, 460–463. [Google Scholar]
- Carr, L.J.; Dunsiger, S.I.; Marcus, B.H. Validation of Walk Score for estimating access to walkable amenities. Br. J. Sports Med. 2011, 45, 1144–1148. [Google Scholar]
- Gortmaker, S.L.; Lee, R.M.; Mozaffarian, R.S.; Sobol, A.M.; Nelson, T.F.; Roth, B.A.; Wiecha, J.L. Impact of an after-school intervention on increases in children’s physical activity. Med. Sci. Sports Exerc. 2011. [Google Scholar] [CrossRef]
- Duncan, D.T.; Castro, M.C.; Blossom, J.C.; Bennett, G.G.; Gortmaker, S.L. Evaluation of the positional difference between two common geocoding methods. Geospat. Health 2011, 5, 265–273. [Google Scholar]
- Krizek, K.J. Operationalizing neighborhood accessibility for land use-travel behavior research and regional modeling. J. Plann. Educ. Res. 2003, 22, 270–287. [Google Scholar]
- Colabianchi, N.; Dowda, M.; Pfeiffer, K.A.; Porter, D.E.; Almeida, M.J.; Pate, R.R. Towards an understanding of salient neighborhood boundaries: Adolescent reports of an easy walking distance and convenient driving distance. Int. J. Behav. Nutr. Phys. Act. 2007, 4, 66. [Google Scholar]
- Timperio, A.; Crawford, D.; Telford, A.; Salmon, J. Perceptions about the local neighborhood and walking and cycling among children. Prev. Med. 2004, 38, 39–47. [Google Scholar]
- Michael, Y.L.; Perdue, L.A.; Orwoll, E.S.; Stefanick, M.L.; Marshall, L.M. Osteoporotic Fractures in Men Study Group. Physical activity resources and changes in walking in a cohort of older men. Am. J. Public Health 2010, 100, 654–660. [Google Scholar]
- Nagel, C.L.; Carlson, N.E.; Bosworth, M.; Michael, Y.L. The relation between neighborhood built environment and walking activity among older adults. Am. J. Epidemiol. 2008, 168, 461–468. [Google Scholar]
- Satariano, W.A.; Ivey, S.L.; Kurtovich, E.; Kealey, M.; Hubbard, A.E.; Bayles, C.M.; Bryant, L.L.; Hunter, R.H.; Prohaska, T.R. Lower-body function, neighborhoods, and walking in an older population. Am. J. Prev. Med. 2010, 38, 419–428. [Google Scholar]
- Shumway-Cook, A.; Patla, A.E.; Stewart, A.; Ferrucci, L.; Ciol, M.A.; Guralnik, J.M. Environmental demands associated with community mobility in older adults with and without mobility disabilities. Phys. Ther. 2002, 82, 670–681. [Google Scholar]
- Front Seat. Walk Score Methodology. 2011. Available online: http://www.walkscore.com/methodology.shtml accessed on 7 June 2011.
- Google. Geolocation API. 2011. Available online: http://code.google.com/apis/gears/api_geolocation.html accessed on 7 June 2011.
- Front Seat. Walk Score API. 2011. Available online: http://www.walkscore.com/professional/api.php accessed on 7 June 2011.
- Clifford, P.; Richardson, S. Testing the association between two spatial processes. Stat. Decis 1985, Suppl 2, 155–160. [Google Scholar]
- Student. The elimination of spurious correlation due to position in time or space. Biometrika 1914, 10, 179–180.
- Bailey, T.C.; Gatrell, A.C. Interactive Spatial Data Analysis; Longman Scientific & Technical: Harlow, Essex, England, 1995. [Google Scholar]
- Waller, L.A.; Gotway, C.A. Applied Spatial Statistics for Public Health Data; Wiley-Interscience: Hoboken, NJ, USA, 2004. [Google Scholar]
- Bivand, R.S.; Pebesma, E.J.; Gómez-Rubio, V. Applied Spatial Data Analysis with R; Springer: New York, NY, USA, 2008. [Google Scholar]
- Tudor-Locke, C.E.; Myers, A.M. Challenges and opportunities for measuring physical activity in sedentary adults. Sports Med. 2001, 31, 91–100. [Google Scholar]
- Vargo, J.; Stone, B.; Glanz, K. Google Walkability: A new tool for local planning and public health research? J. Phys. Activ. Health. 2011. Available online: http://journals.humankinetics.com/jpah-in-press/jpah-in-press/google-walkability-a-new-tool-for-local-planning-and-public-health-research accessed on 3 November 2011.
- Gebel, K.; Bauman, A.; Owen, N. Correlates of non-concordance between perceived and objective measures of walkability. Ann. Behav. Med. 2009, 37, 228–238. [Google Scholar]
- Ball, K.; Jeffery, R.W.; Crawford, D.A.; Roberts, R.J.; Salmon, J.; Timperio, A.F. Mismatch between perceived and objective measures of physical activity environments. Prev. Med. 2008, 47, 294–298. [Google Scholar]
- McGinn, A.P.; Evenson, K.R.; Herring, A.H.; Huston, S.L.; Rodriguez, D.A. Exploring associations between physical activity and perceived and objective measures of the built environment. J. Urban Health 2007, 84, 162–184. [Google Scholar]
- Kirtland, K.A.; Porter, D.E.; Addy, C.L.; Neet, M.J.; Williams, J.E.; Sharpe, P.A.; Neff, L.J.; Kimsey, C.D., Jr; Ainsworth, B.E. Environmental measures of physical activity supports: Perception versus reality. Am. J. Prev. Med. 2003, 24, 323–331. [Google Scholar]
- Gebel, K.; Bauman, A.E.; Sugiyama, T.; Owen, N. Mismatch between perceived and objectively assessed neighborhood walkability attributes: prospective relationships with walking and weight gain. Health Place 2011, 17, 519–24. [Google Scholar]
- Downs, T.J.; Ogneva-Himmelberger, Y.; Aupont, O.; Wang, Y.; Raj, A.; Zimmerman, P.; Goble, R.; Taylor, O.; Churchill, L.; Lemay, C.; et al. Vulnerability-based spatial sampling stratification for the National Children’s Study, Worcester County, Massachusetts: Capturing health-relevant environmental and sociodemographic variability. Environ. Health Perspect. 2010, 118, 1318–1325. [Google Scholar]
- Delmelle, E. Spatial Sampling. In The SAGE Handbook of Spatial Analysis; Fotheringham, A.S., Rogerson, P.A., Eds.; SAGE Publications: London, UK, 2009; pp. 183–206. [Google Scholar]
- Lee, C.; Moudon, A.V.; Courbois, J.Y. Built environment and behavior: Spatial sampling using parcel data. Ann. Epidemiol. 2006, 16, 387–394. [Google Scholar]
- Hoehner, C.M.; Schootman, M. Concordance of commercial data sources for neighborhood-effects studies. J. Urban Health 2010, 87, 713–725. [Google Scholar]
- Oreskovic, N.M.; Winickoff, J.P.; Kuhlthau, K.A.; Romm, D.; Perrin, J.M. Obesity and the built environment among Massachusetts children. Clin. Pediatr. (Phila.) 2009, 48, 904–912. [Google Scholar]
- Boone, J.E.; Gordon-Larsen, P.; Stewart, J.D.; Popkin, B.M. Validation of a GIS facilities database: Quantification and implications of error. Ann. Epidemiol. 2008, 18, 371–377. [Google Scholar]
- Haining, R. Bivariate correlation with spatial data. Geogr. Anal. 1991, 23, 210–227. [Google Scholar]
- Clifford, P.; Richardson, S.; Hemon, D. Assessing the significance of the correlation between two spatial processes. Biometrics 1989, 45, 123–134. [Google Scholar]
- Anselin, L. Under the hood: Issues in the specification and interpretation of spatial regression models. Agr. Econ. 2002, 27, 247–267. [Google Scholar]
- Getis, A.; Aldstadt, J. Constructing the spatial weights matrix using a local statistic. Geogr. Anal. 2004, 36, 90–104. [Google Scholar]
- Griffith, D.A. Some Guidelines for Specifying the Geographic Weights Matrix Contained in Spatial Statistical Models. In Practical Handbook of Spatial Statistics; Arlinghaus, S.L., Ed.; CRC: Boca Raton, FL, USA, 1996; pp. 65–82. [Google Scholar]
- Lovasi, G.S.; Moudon, A.V.; Pearson, A.L.; Hurvitz, P.M.; Larson, E.B.; Siscovick, D.S.; Berke, E.M.; Lumley, T.; Psaty, B.M. Using built environment characteristics to predict walking for exercise. Int. J. Health Geogr. 2008, 7, 10:1–10:13. [Google Scholar]
- Cerin, E.; Leslie, E.; du Toit, L.; Owen, N.; Frank, L.D. Destinations that matter: Associations with walking for transport. Health Place 2007, 13, 713–724. [Google Scholar]
- Lee, C.; Moudon, A.V. The 3Ds + R: Quantifying land use and urban form correlates of walking. Transport. Res. Transport Environ. 2006, 11, 204–215. [Google Scholar]
M (SD) | Range | |
---|---|---|
Overall (n = 733) | 38.84 (23.81) | 0–97 |
Pacific Northwest (n = 172) | 45.39 (24.50) | 0–97 |
Midwest (n = 167) | 26.19 (19.80) | 0–74 |
South (n = 230) | 33.02 (17.86) | 0–91 |
East (n = 164) | 53.01 (24.70) | 0–91 |
400-meter Network Buffer | 800-meter Network Buffer | 1600-meter Network Buffer | ||||
---|---|---|---|---|---|---|
M (SD) | Range | M (SD) | Range | M (SD) | Range | |
Overall (n = 733) | ||||||
Retail destinations (density) | 5.08 (12.18) | 0–107.84 | 5.11 (9.35) | 0–118.79 | 5.42 (6.13) | 0–55.55 |
Service destinations (density) | 0.89 (4.20) | 0–60.27 | 0.88 (2.53) | 0–33.80 | 1.06 (1.59) | 0–16.27 |
Cultural/educational destinations (density) | 3.27 (6.33) | 0–50.97 | 3.73 (4.98) | 0–24.63 | 3.84 (4.11) | 0–26.19 |
Parks (density) | 0.97 (2.81) | 0–19.97 | 0.60 (1.24) | 0–8.34 | 0.48 (0.68) | 0–3.88 |
Median pedestrian route directness | 1.31 (0.67) | 1–12.04 | 1.39 (0.47) | 1–6.95 | 1.37 (0.31) | 1–4.56 |
Intersection density | 60.59 (30.87) | 0–200.26 | 54.83 (24.83) | 0–152.69 | 50.64 (21.91) | 6.57–137.16 |
Cul de sacs (count) | 2.85 (2.42) | 0–13.00 | 9.23 (6.51) | 0–42.00 | 34.94 (21.16) | 1–111.00 |
Average speed limit (mph) | 26.92 (2.47) | 21.67–41.18 | 27.07 (2.01) | 22.27–35.94 | 27.32 (1.59) | 22.86–35.37 |
Highway density | 25.96 (84.01) | 0–676.04 | 31.89 (71.60) | 0–621.70 | 38.38 (60.12) | 0–400.15 |
Residential density | 76.95 (67.52) | 0.11–373.94 | 75.84 (63.86) | 0.11–343.05 | 73.02 (58.36) | 0.22–382.55 |
Population density | 1,470 (1,438) | 1.85–8,346 | 1,451 (1,377) | 1.85–7,172 | 1,384 (1,229) | 5.06–6,020 |
Pacific Northwest (n = 172) | ||||||
Retail destinations (density) | 5.83 (13.58) | 0–73.49 | 6.07 (13.00) | 0–118.79 | 6.38 (8.71) | 0–55.55 |
Service destinations (density) | 1.07 (5.27) | 0–60.27 | 1.00 (3.19) | 0–33.80 | 1.27 (2.23) | 0–16.27 |
Cultural/educational destinations (density) | 2.69 (6.14) | 0–32.09 | 3.30 (4.90) | 0–24.22 | 3.52 (4.41) | 0–26.19 |
Parks (density) | 2.90 (4.68) | 0–19.97 | 1.68 (1.86) | 0–8.34 | 1.21 (0.87) | 0–3.88 |
Median pedestrian route directness | 1.43 (1.27) | 1–12.04 | 1.43 (0.65) | 1–6.95 | 1.41 (0.32) | 1–2.83 |
Intersection density | 63.56 (26.74) | 0–149.13 | 58.49 (20.07) | 6.51–109.74 | 52.80 (16.48) | 9.47–100.16 |
Cul de sacs (count) | 3.55 (2.64) | 0–12.00 | 11.86 (7.63) | 0–42.00 | 46.40 (24.60) | 3.00–111.00 |
Average speed limit (mph) | 27.08 (2.44) | 22.60–35.93 | 27.17 (1.82) | 23.41–33.16 | 26.95 (1.26) | 23.72–31.59 |
Highway density | 19.44 (77.91) | 0–481.67 | 20.75 (50.39) | 0–328.65 | 18.18 (28.65) | 0–150.37 |
Residential density | 76.63 (60.15) | 0.11–319.02 | 74.59 (57.43) | 0.11–343.05 | 71.67 (56.54) | 0.22–382.55 |
Population density | 1,472 (1,056) | 1.85–6,055 | 1,445 (1,020) | 1.85–6,670 | 1,408 (966.17) | 5.06–5,850 |
Midwest (n = 167) | ||||||
Retail destinations (density) | 3.42 (13.77) | 0–107.84 | 3.33 (8.77) | 0–57.59 | 3.80 (4.97) | 0–21.44 |
Service destinations (density) | 0.85 (4.33) | 0–33.18 | 0.70 (2.09) | 0–11.56 | 0.79 (1.41) | 0–7.61 |
Cultural/educational destinations (density) | 1.77 (3.85) | 0–19.80 | 1.95 (2.46) | 0–11.31 | 2.45 (1.66) | 0–8.66 |
Parks (density) | 0.21 (1.20) | 0–7.65 | 0.13 (0.55) | 0–3.42 | 0.08 (0.18) | 0–0.90 |
Median pedestrian route directness | 1.32 (0.58) | 1–3.78 | 1.42 (0.57) | 1–6.08 | 1.41 (0.33) | 1–2.83 |
Intersection density | 44.39 (15.17) | 0–82.00 | 40.96 (10.26) | 0–71.29 | 38.59 (7.79) | 6.57–53.39 |
Cul de sacs (count) | 1.93 (1.55) | 0–7.00 | 6.13 (4.41) | 0–23.00 | 21.75 (10.77) | 1–53.00 |
Average speed limit (mph) | 25.70 (1.62) | 21.67–32.14 | 25.79 (1.60) | 22.27–33.50 | 26.33 (1.46) | 22.86–33.38 |
Highway density | 5.77 (41.32) | 0–366.94 | 13.63 (54.00) | 0–441.36 | 24.67 (49.45) | 0–268.08 |
Residential density | 30.68 (18.77) | 1.45–121.37 | 31.06 (19.03) | 1.45–124.38 | 30.97 (17.54) | 1.45–96.77 |
Population density | 577.51 (339.65) | 25.16–1,915 | 581.16 (330.59) | 25.16–1,776 | 571.51 (293.82) | 25.03–1,452 |
South (n = 230) | ||||||
Retail destinations (density) | 3.86 (11.04) | 0–63.93 | 4.04 (7.61) | 0–52.32 | 4.48 (4.58) | 0–31.22 |
Service destinations (density) | 1.17 (4.53) | 0–37.88 | 1.01 (2.93) | 0–30.52 | 1.10 (1.40) | 0–6.74 |
Cultural/educational destinations (density) | 2.71 (6.30) | 0–50.97 | 3.46 (4.56) | 0–21.53 | 3.31 (2.69) | 0–16.46 |
Parks (density) | 0.33 (1.57) | 0–13.94 | 0.24 (0.72) | 0–3.86 | 0.25 (0.38) | 0–1.59 |
Median pedestrian route directness | 1.26 (0.25) | 1–2.19 | 1.42 (0.37) | 1–3.10 | 1.36 (0.27) | 1–2.49 |
Intersection density | 52.17 (21.62) | 0–128.59 | 46.31 (12.66) | 9.38–77.97 | 42.91 (9.31) | 7.55–65.15 |
Cul de sacs (count) | 3.22 (2.64) | 0–13.00 | 10.04 (6.53) | 0–32.00 | 38.41 (21.36) | 1–83.00 |
Average speed limit (mph) | 27.11 (2.81) | 25.00–41.18 | 27.25 (1.86) | 25.00–35.94 | 27.52 (1.19) | 25.00–33.45 |
Highway density | 19.78 (80.49) | 0–676.03 | 23.03 (69.53) | 0–621.70 | 27.12 (53.97) | 0–290.40 |
Residential density | 81.81 (55.92) | 2.69–336.25 | 82.17 (53.67) | 2.72–332.16 | 82.19 (48.45) | 3.02–273.75 |
Population density | 1,264 (715.00) | 60.47–3185 | 1,256 (654.16) | 61.05–2,658 | 1,240 (574.41) | 65.34–2493 |
East (n = 164) | ||||||
Retail destinations (density) | 7.68 (9.77) | 0–55.63 | 7.42 (6.69) | 0–35.33 | 7.39 (5.08) | 0–18.39 |
Service destinations (density) | 0.37 (1.33) | 0–9.02 | 0.77 (1.25) | 0–5.97 | 1.08 (1.11) | 0–5.87 |
Cultural/educational destinations (density) | 6.20 (7.59) | 0–27.69 | 6.37 (6.34) | 0–24.63 | 6.35 (5.79) | 0–22.32 |
Parks (density) | 0.62 (1.50) | 0–6.17 | 0.47 (0.73) | 0–3.45 | 0.43 (0.49) | 0–1.97 |
Median pedestrian route directness | 1.28 (0.24) | 1–2.32 | 1.28 (0.20) | 1–1.91 | 1.29 (0.32) | 1–4.56 |
Intersection density | 85.76 (40.28) | 10.34–200.26 | 77.05 (34.69) | 9.46–152.69 | 71.46 (31.83) | 14.44–137.16 |
Cul de sacs (count) | 2.53 (2.21) | 0–10.00 | 8.47 (5.57) | 0–27.00 | 31.46 (16.45) | 2–68.00 |
Average speed limit (mph) | 27.70 (2.26) | 23.93–34.69 | 28.04 (2.12) | 22.35–35.26 | 28.43 (1.74) | 23.27–35.37 |
Highway density | 62.01 (112.50) | 0–574.98 | 74.61 (90.42) | 0–389.78 | 89.33 (73.31) | 0–400.15 |
Residential density | 117.60 (89.66) | 5.71–373.94 | 113.88 (82.88) | 5.98–285.51 | 104.41 (73.53) | 6.75–258.73 |
Population density | 2,666 (2,228) | 82.46–8,346 | 2,617 (2,123) | 87.15–7,162 | 2,386 (1,880) | 97.85–6,020 |
400-meter Network Buffer | 800-meter Network Buffer | 1600-meter Network Buffer | ||||
---|---|---|---|---|---|---|
rS | p-value | rS | p-value | rS | p-value | |
Overall (n = 733) | ||||||
Retail destinations (density) | 0.53 | <0.0001 | 0.67 | <0.0001 | 0.80 | <0.0001 |
Service destinations (density) | 0.27 | <0.0001 | 0.53 | <0.0001 | 0.67 | <0.0001 |
Cultural/educational destinations (density) | 0.44 | <0.0001 | 0.53 | <0.0001 | 0.69 | <0.0001 |
Parks (density) | 0.24 | <0.0001 | 0.37 | <0.0001 | 0.51 | <0.0001 |
Median pedestrian route directness | 0.24 | <0.0001 | −0.01 | 0.7908 | −0.05 | 0.2166 |
Intersection density | 0.51 | <0.0001 | 0.59 | <0.0001 | 0.65 | <0.0001 |
Cul de sacs (count) | 0.01 | 0.7024 | 0.14 | 0.0002 | 0.37 | <0.0001 |
Average speed limit (mph) | 0.47 | <0.0001 | 0.53 | <0.0001 | 0.47 | <0.0001 |
Highway density | 0.33 | <0.0001 | 0.39 | <0.0001 | 0.43 | <0.0001 |
Residential density | 0.65 | <0.0001 | 0.65 | <0.0001 | 0.65 | <0.0001 |
Population density | 0.64 | <0.0001 | 0.64 | <0.0001 | 0.64 | <0.0001 |
Pacific Northwest (n = 172) | ||||||
Retail destinations (density) | 0.45 | <0.0001 | 0.64 | <0.0001 | 0.78 | <0.0001 |
Service destinations (density) | 0.33 | <0.0001 | 0.60 | <0.0001 | 0.78 | <0.0001 |
Cultural/educational destinations (density) | 0.42 | <0.0001 | 0.53 | <0.0001 | 0.70 | <0.0001 |
Parks (density) | 0.19 | 0.0146 | 0.27 | 0.0003 | 0.38 | <0.0001 |
Median pedestrian route directness | 0.09 | 0.4232 | −0.02 | 0.8426 | −0.11 | 0.1496 |
Intersection density | 0.29 | <0.0001 | 0.42 | <0.0001 | 0.49 | <0.0001 |
Cul de sacs (count) | −0.09 | 0.2264 | −0.02 | 0.7494 | 0.24 | 0.0014 |
Average speed limit (mph) | 0.34 | <0.0001 | 0.37 | <0.0001 | 0.36 | <0.0001 |
Highway density | 0.23 | 0.0027 | 0.19 | 0.0116 | 0.32 | <0.0001 |
Residential density | 0.52 | <0.0001 | 0.51 | <0.0001 | 0.50 | <0.0001 |
Population density | 0.43 | <0.0001 | 0.43 | <0.0001 | 0.43 | <0.0001 |
Midwest (n = 167) | ||||||
Retail destinations (density) | 0.32 | <0.0001 | 0.49 | <0.0001 | 0.85 | <0.0001 |
Service destinations (density) | 0.34 | <0.0001 | 0.53 | <0.0001 | 0.69 | <0.0001 |
Cultural/educational destinations (density) | 0.27 | 0.0004 | 0.40 | <0.0001 | 0.73 | <0.0001 |
Parks (density) | −0.16 | 0.0382 | −0.09 | 0.2302 | 0.14 | 0.0638 |
Median pedestrian route directness | 0.19 | 0.1369 | 0.05 | 0.6009 | 0.17 | 0.0330 |
Intersection density | 0.29 | 0.0002 | 0.12 | 0.1320 | 0.28 | 0.0002 |
Cul de sacs (count) | −0.13 | 0.0942 | −0.03 | 0.6556 | 0.12 | 0.1115 |
Average speed limit (mph) | 0.45 | <0.0001 | 0.53 | <0.0001 | 0.58 | <0.0001 |
Highway density | 0.18 | 0.0201 | 0.32 | <0.0001 | 0.46 | <0.0001 |
Residential density | 0.74 | <0.0001 | 0.73 | <0.0001 | 0.71 | <0.0001 |
Population density | 0.70 | <0.0001 | 0.68 | <0.0001 | 0.67 | <0.0001 |
South (n = 230) | ||||||
Retail destinations (density) | 0.33 | <0.0001 | 0.58 | <0.0001 | 0.70 | <0.0001 |
Service destinations (density) | 0.25 | 0.0002 | 0.46 | <0.0001 | 0.57 | <0.0001 |
Cultural/educational destinations (density) | 0.25 | 0.0002 | 0.29 | <0.0001 | 0.49 | <0.0001 |
Parks (density) | 0.13 | 0.0531 | 0.26 | <0.0001 | 0.35 | <0.0001 |
Median pedestrian route directness | 0.24 | 0.0185 | 0.08 | 0.2724 | 0.15 | 0.0259 |
Intersection density | 0.17 | 0.0088 | 0.32 | <0.0001 | 0.40 | <0.0001 |
Cul de sacs (count) | −0.09 | 0.1979 | −0.08 | 0.2228 | 0.10 | 0.1258 |
Average speed limit (mph) | 0.26 | <0.0001 | 0.34 | <0.0001 | 0.28 | <0.0001 |
Highway density | 0.13 | 0.0494 | 0.13 | 0.0425 | 0.13 | 0.0467 |
Residential density | 0.43 | <0.0001 | 0.41 | <0.0001 | 0.42 | <0.0001 |
Population density | 0.36 | <0.0001 | 0.35 | <0.0001 | 0.33 | <0.0001 |
East (n = 164) | ||||||
Retail destinations (density) | 0.56 | <0.0001 | 0.70 | <0.0001 | 0.73 | <0.0001 |
Service destinations (density) | 0.28 | 0.0003 | 0.47 | <0.0001 | 0.56 | <0.0001 |
Cultural/educational destinations (density) | 0.60 | <0.0001 | 0.74 | <0.0001 | 0.83 | <0.0001 |
Parks (density) | 0.25 | 0.0010 | 0.41 | <0.0001 | 0.69 | <0.0001 |
Median pedestrian route directness | 0.24 | 0.0099 | 0.15 | 0.0820 | −0.09 | 0.2840 |
Intersection density | 0.75 | <0.0001 | 0.78 | <0.0001 | 0.79 | <0.0001 |
Cul de sacs (count) | 0.09 | 0.2681 | 0.32 | <0.0001 | 0.71 | <0.0001 |
Average speed limit (mph) | 0.41 | <0.0001 | 0.39 | <0.0001 | 0.33 | <0.0001 |
Highway density | 0.34 | <0.0001 | 0.36 | <0.0001 | 0.28 | 0.0003 |
Residential density | 0.77 | <0.0001 | 0.79 | <0.0001 | 0.80 | <0.0001 |
Population density | 0.75 | <0.0001 | 0.75 | <0.0001 | 0.76 | <0.0001 |
© 2011 by the authors; licensee MDPI, Basel, Switzerland This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Duncan, D.T.; Aldstadt, J.; Whalen, J.; Melly, S.J.; Gortmaker, S.L. Validation of Walk Score® for Estimating Neighborhood Walkability: An Analysis of Four US Metropolitan Areas. Int. J. Environ. Res. Public Health 2011, 8, 4160-4179. https://doi.org/10.3390/ijerph8114160
Duncan DT, Aldstadt J, Whalen J, Melly SJ, Gortmaker SL. Validation of Walk Score® for Estimating Neighborhood Walkability: An Analysis of Four US Metropolitan Areas. International Journal of Environmental Research and Public Health. 2011; 8(11):4160-4179. https://doi.org/10.3390/ijerph8114160
Chicago/Turabian StyleDuncan, Dustin T., Jared Aldstadt, John Whalen, Steven J. Melly, and Steven L. Gortmaker. 2011. "Validation of Walk Score® for Estimating Neighborhood Walkability: An Analysis of Four US Metropolitan Areas" International Journal of Environmental Research and Public Health 8, no. 11: 4160-4179. https://doi.org/10.3390/ijerph8114160
APA StyleDuncan, D. T., Aldstadt, J., Whalen, J., Melly, S. J., & Gortmaker, S. L. (2011). Validation of Walk Score® for Estimating Neighborhood Walkability: An Analysis of Four US Metropolitan Areas. International Journal of Environmental Research and Public Health, 8(11), 4160-4179. https://doi.org/10.3390/ijerph8114160