Features of Microglia and Neuroinflammation Relevant to Environmental Exposure and Neurotoxicity
Abstract
:1. Introduction
2. Receptors for Sensing Potential Threats
3. Microglial Pro-inflammatory Cytokines
4. Reactive Oxygen Species and Nitric Oxide
5. Resident Microglia versus Infiltrating, Blood-Borne Monocyte Contributions
6. Contribution of Microglia to Neurodegeneration
6.1. Chronic Neuroinflammation
7. Examples of Application to Environmental Neurotoxicity
7.1. Manganese
7.2. Diesel Exhaust Particles
9. Conclusions
Acknowledgements
- Conflict of InterestThe authors declare no conflict of interest.
References and Notes
- Streit, WJ. Microglial senescence: Does the brain's immune system have an expiration date? Trends Neurosci 2006, 29, 506–510. [Google Scholar]
- Streit, WJ; Sammons, NW; Kuhns, AJ; Sparks, DL. Dystrophic microglia in the aging human brain. Glia 2004, 45, 208–212. [Google Scholar]
- Raivich, G. Like cops on the beat: The active role of resting microglia. Trends Neurosci 2005, 28, 571–573. [Google Scholar]
- Galea, I; Bechmann, I; Perry, VH. What is immune privilege (not)? Trends Immunol 2007, 28, 12–18. [Google Scholar]
- Ginhoux, F; Greter, M; Leboeuf, M; Nandi, S; See, P; Gokhan, S; Mehler, MF; Conway, SJ; Ng, LG; Stanley, ER; et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010, 330, 841–845. [Google Scholar]
- McMahon, EJ; Bailey, SL; Castenada, CV; Waldner, H; Miller, SD. Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis. Nat. Med 2005, 11, 335–339. [Google Scholar]
- Cannella, B; Raine, CS. Multiple sclerosis: Cytokine receptors on oligodendrocytes predict innate regulation. Ann. Neurol 2004, 55, 46–57. [Google Scholar]
- Fassbender, K; Mielke, O; Bertsch, T; Muehlhauser, F; Hennerici, M; Kurimoto, M; Rossol, S. Interferon-gamma-inducing factor (IL-18) and interferon-gamma in inflammatory CNS diseases. Neurology 1999, 53, 1104–1106. [Google Scholar]
- Jander, S; Stoll, G. Interleukin-18 is induced in acute inflammatory demyelinating polyneuropathy. J. Neuroimmunol 2001, 114, 253–258. [Google Scholar]
- Shi, FD; Takeda, K; Akira, S; Sarvetnick, N; Ljunggren, HG. IL-18 directs autoreactive T cells and promotes autodestruction in the central nervous system via induction of IFN-gamma by NK cells. J. Immunol 2000, 165, 3099–3104. [Google Scholar]
- Chang, TT; Sobel, RA; Wei, T; Ransohoff, RM; Kuchroo, VK; Sharpe, AH. Recovery from EAE is associated with decreased survival of encephalitogenic T cells in the CNS of B7-1/B7-2-deficient mice. Eur. J. Immunol 2003, 33, 2022–2032. [Google Scholar]
- Bailey, SL; Carpentier, PA; McMahon, EJ; Begolka, WS; Miller, SD. Innate and adaptive immune responses of the central nervous system. Crit. Rev. Immunol 2006, 26, 149–188. [Google Scholar]
- Bartholomaus, I; Kawakami, N; Odoardi, F; Schlager, C; Miljkovic, D; Ellwart, JW; Klinkert, WE; Flugel-Koch, C; Issekutz, TB; Wekerle, H; Flugel, A. Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions. Nature 2009, 462, 94–98. [Google Scholar]
- Becher, B; Bechmann, I; Greter, M. Antigen presentation in autoimmunity and CNS inflammation: How T lymphocytes recognize the brain. J. Mol. Med 2006, 84, 532–543. [Google Scholar]
- Hickey, WF; Kimura, H. Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science 1988, 239, 290–292. [Google Scholar]
- Kivisakk, P; Imitola, J; Rasmussen, S; Elyaman, W; Zhu, B; Ransohoff, RM; Khoury, SJ. Localizing central nervous system immune surveillance: Meningeal antigen-presenting cells activate T cells during experimental autoimmune encephalomyelitis. Ann. Neurol 2009, 65, 457–469. [Google Scholar]
- McMahon, EJ; Bailey, SL; Miller, SD. CNS dendritic cells: Critical participants in CNS inflammation? Neurochem. Int 2006, 49, 195–203. [Google Scholar]
- Kawakami, N; Lassmann, S; Li, Z; Odoardi, F; Ritter, T; Ziemssen, T; Klinkert, WE; Ellwart, JW; Bradl, M; Krivacic, K; et al. The activation status of neuroantigen-specific T cells in the target organ determines the clinical outcome of autoimmune encephalomyelitis. J. Exp. Med 2004, 199, 185–197. [Google Scholar]
- Ni, M; Li, X; Yin, Z; Sidoryk-Wegrzynowicz, M; Jiang, H; Farina, M; Rocha, JB; Syversen, T; Aschner, M. Comparative study on the response of rat primary astrocytes and microglia to methylmercury toxicity. Glia 2011, 59, 810–820. [Google Scholar]
- Hutchinson, MR; Loram, LC; Zhang, Y; Shridhar, M; Rezvani, N; Berkelhammer, D; Phipps, S; Foster, PS; Landgraf, K; Falke, JJ; Rice, KC; Maier, SF; Yin, H; Watkins, LR. Evidence that tricyclic small molecules may possess toll-like receptor and myeloid differentiation protein 2 activity. Neuroscience 2010, 168, 551–563. [Google Scholar]
- Wang, Y; Wang, B; Zhu, MT; Li, M; Wang, HJ; Wang, M; Ouyang, H; Chai, ZF; Feng, WY; Zhao, YL. Microglial activation, recruitment and phagocytosis as linked phenomena in ferric oxide nanoparticle exposure. Toxicol. Lett 2011, 205, 26–37. [Google Scholar]
- Dutta, K; Ghosh, D; Nazmi, A; Kumawat, KL; Basu, A. A common carcinogen benzo[a]pyrene causes neuronal death in mouse via microglial activation. PLoS One 2010, 5, e9984:1–e9984:14. [Google Scholar]
- Napoli, I; Neumann, H. Microglial clearance function in health and disease. Neuroscience 2009, 158, 1030–1038. [Google Scholar]
- Davalos, D; Grutzendler, J; Yang, G; Kim, JV; Zuo, Y; Jung, S; Littman, DR; Dustin, ML; Gan, WB. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci 2005, 8, 752–758. [Google Scholar]
- Kreutzberg, GW. Microglia: A sensor for pathological events in the CNS. Trends Neurosci 1996, 19, 312–318. [Google Scholar]
- Kimoto, H; Eto, R; Abe, M; Kato, H; Araki, T. Alterations of glial cells in the mouse hippocampus during postnatal development. Cell Mol. Neurobiol 2009, 29, 1181–1189. [Google Scholar]
- Nimmerjahn, A; Kirchhoff, F; Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005, 308, 1314–1318. [Google Scholar]
- Biber, K; Neumann, H; Inoue, K; Boddeke, HW. Neuronal ‘On’ and ‘Off’ signals control microglia. Trends Neurosci 2007, 30, 596–602. [Google Scholar]
- Neumann, H. Control of glial immune function by neurons. Glia 2001, 36, 191–199. [Google Scholar]
- Pocock, JM; Kettenmann, H. Neurotransmitter receptors on microglia. Trends Neurosci 2007, 30, 527–535. [Google Scholar]
- Barclay, AN; Wright, GJ; Brooke, G; Brown, MH. CD200 and membrane protein interactions in the control of myeloid cells. Trends Immunol 2002, 23, 285–290. [Google Scholar]
- Hoek, RM; Ruuls, SR; Murphy, CA; Wright, GJ; Goddard, R; Zurawski, SM; Blom, B; Homola, ME; Streit, WJ; Brown, MH; Barclay, AN; Sedgwick, JD. Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science 2000, 290, 1768–1771. [Google Scholar]
- Wright, GJ; Cherwinski, H; Foster-Cuevas, M; Brooke, G; Puklavec, MJ; Bigler, M; Song, Y; Jenmalm, M; Gorman, D; McClanahan, T; et al. Characterization of the CD200 receptor family in mice and humans and their interactions with CD200. J. Immunol 2003, 171, 3034–3046. [Google Scholar]
- Lyons, A; Downer, EJ; Crotty, S; Nolan, YM; Mills, KH; Lynch, MA. CD200 ligand receptor interaction modulates microglial activation in vivo and in vitro: A role for IL-4. J. Neurosci 2007, 27, 8309–8313. [Google Scholar]
- Hanisch, UK; Kettenmann, H. Microglia: Active sensor and versatile effector cells in the normal and pathologic brain. Nat. Neurosci 2007, 10, 1387–1394. [Google Scholar]
- Van Rossum, D; Hanisch, UK. Microglia. Metab. Brain Dis 2004, 19, 393–411. [Google Scholar]
- Akira, S; Uematsu, S; Takeuchi, O. Pathogen recognition and innate immunity. Cell 2006, 124, 783–801. [Google Scholar]
- Ponomarev, ED; Shriver, LP; Dittel, BN. CD40 expression by microglial cells is required for their completion of a two-step activation process during central nervous system autoimmune inflammation. J. Immunol 2006, 176, 1402–1410. [Google Scholar]
- Takeuchi, O; Akira, S. Toll-like receptors; their physiological role and signal transduction system. Int. Immunopharmacol 2001, 1, 625–635. [Google Scholar]
- Bowman, CC; Rasley, A; Tranguch, SL; Marriott, I. Cultured astrocytes express toll-like receptors for bacterial products. Glia 2003, 43, 281–291. [Google Scholar]
- Kielian, T; Mayes, P; Kielian, M. Characterization of microglial responses to Staphylococcus aureus: Effects on cytokine, costimulatory molecule, and Toll-like receptor expression. J. Neuroimmunol 2002, 130, 86–99. [Google Scholar]
- Farina, C; Krumbholz, M; Giese, T; Hartmann, G; Aloisi, F; Meinl, E. Preferential expression and function of Toll-like receptor 3 in human astrocytes. J. Neuroimmunol 2005, 159, 12–19. [Google Scholar]
- Lehnardt, S; Henneke, P; Lien, E; Kasper, DL; Volpe, JJ; Bechmann, I; Nitsch, R; Weber, JR; Golenbock, DT; Vartanian, T. A mechanism for neurodegeneration induced by group B streptococci through activation of the TLR2/MyD88 pathway in microglia. J. Immunol 2006, 177, 583–592. [Google Scholar]
- Lehnardt, S; Lehmann, S; Kaul, D; Tschimmel, K; Hoffmann, O; Cho, S; Krueger, C; Nitsch, R; Meisel, A; Weber, JR. Toll-like receptor 2 mediates CNS injury in focal cerebral ischemia. J. Neuroimmunol 2007, 190, 28–33. [Google Scholar]
- Babcock, AA; Wirenfeldt, M; Holm, T; Nielsen, HH; Dissing-Olesen, L; Toft-Hansen, H; Millward, JM; Landmann, R; Rivest, S; Finsen, B; et al. Toll-like receptor 2 signaling in response to brain injury: An innate bridge to neuroinflammation. J. Neurosci 2006, 26, 12826–12837. [Google Scholar]
- Lehnardt, S; Massillon, L; Follett, P; Jensen, FE; Ratan, R; Rosenberg, PA; Volpe, JJ; Vartanian, T. Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc. Natl. Acad. Sci. USA 2003, 100, 8514–8519. [Google Scholar]
- Visintin, A; Mazzoni, A; Spitzer, JH; Wyllie, DH; Dower, SK; Segal, DM. Regulation of Toll-like receptors in human monocytes and dendritic cells. J. Immunol 2001, 166, 249–255. [Google Scholar]
- Jack, CS; Arbour, N; Manusow, J; Montgrain, V; Blain, M; McCrea, E; Shapiro, A; Antel, JP. TLR signaling tailors innate immune responses in human microglia and astrocytes. J. Immunol 2005, 175, 4320–4330. [Google Scholar]
- Caso, JR; Pradillo, JM; Hurtado, O; Leza, JC; Moro, MA; Lizasoain, I. Toll-like receptor 4 is involved in subacute stress-induced neuroinflammation and in the worsening of experimental stroke. Stroke 2008, 39, 1314–1320. [Google Scholar]
- Kilic, U; Kilic, E; Matter, CM; Bassetti, CL; Hermann, DM. TLR-4 deficiency protects against focal cerebral ischemia and axotomy-induced neurodegeneration. Neurobiol. Dis 2008, 31, 33–40. [Google Scholar] [Green Version]
- Lehnardt, S; Schott, E; Trimbuch, T; Laubisch, D; Krueger, C; Wulczyn, G; Nitsch, R; Weber, JR. A vicious cycle involving release of heat shock protein 60 from injured cells and activation of toll-like receptor 4 mediates neurodegeneration in the CNS. J. Neurosci 2008, 28, 2320–2331. [Google Scholar]
- Pais, TF; Figueiredo, C; Peixoto, R; Braz, MH; Chatterjee, S. Necrotic neurons enhance microglial neurotoxicity through induction of glutaminase by a MyD88-dependent pathway. J. Neuroinflammation 2008, 5, 43. [Google Scholar]
- Glezer, I; Lapointe, A; Rivest, S. Innate immunity triggers oligodendrocyte progenitor reactivity and confines damages to brain injuries. FASEB J 2006, 20, 750–752. [Google Scholar]
- Saijo, K; Winner, B; Carson, CT; Collier, JG; Boyer, L; Rosenfeld, MG; Gage, FH; Glass, CK. A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell 2009, 137, 47–59. [Google Scholar]
- Nawashiro, H; Tasaki, K; Ruetzler, CA; Hallenbeck, JM. TNF-alpha pretreatment induces protective effects against focal cerebral ischemia in mice. J. Cereb. Blood Flow Metab 1997, 17, 483–490. [Google Scholar]
- Glezer, I; Simard, AR; Rivest, S. Neuroprotective role of the innate immune system by microglia. Neuroscience 2007, 147, 867–883. [Google Scholar]
- McPherson, CA; Kraft, AD; Harry, GJ. Injury-induced neurogenesis: Consideration of resident microglia as supportive of neural progenitor cells. Neurotox. Res 2011, 19, 341–352. [Google Scholar]
- Landreth, GE; Reed-Geaghan, EG. Toll-like receptors in Alzheimer’s disease. Curr. Top. Microbiol. Immunol 2009, 336, 137–153. [Google Scholar]
- Reed-Geaghan, EG; Savage, JC; Hise, AG; Landreth, GE. CD14 and toll-like receptors 2 and 4 are required for fibrillar A{beta}-stimulated microglial activation. J. Neurosci 2009, 29, 11982–11992. [Google Scholar]
- Walter, S; Letiembre, M; Liu, Y; Heine, H; Penke, B; Hao, W; Bode, B; Manietta, N; Walter, J; Schulz-Schuffer, W; Fassbender, K. Role of the toll-like receptor 4 in neuroinflammation in Alzheimer’s disease. Cell Physiol. Biochem 2007, 20, 947–956. [Google Scholar]
- Husemann, J; Loike, JD; Anankov, R; Febbraio, M; Silverstein, SC. Scavenger receptors in neurobiology and neuropathology: Their role on microglia and other cells of the nervous system. Glia 2002, 40, 195–205. [Google Scholar]
- Farber, K; Kettenmann, H. Physiology of microglial cells. Brain Res. Brain Res. Rev 2005, 48, 133–143. [Google Scholar]
- Farber, K; Pannasch, U; Kettenmann, H. Dopamine and noradrenaline control distinct functions in rodent microglial cells. Mol. Cell Neurosci 2005, 29, 128–138. [Google Scholar]
- Noda, M; Nakanishi, H; Nabekura, J; Akaike, N. AMPA-kainate subtypes of glutamate receptor in rat cerebral microglia. J. Neurosci 2000, 20, 251–258. [Google Scholar]
- Di Virgilio, F; Ceruti, S; Bramanti, P; Abbracchio, MP. Purinergic signalling in inflammation of the central nervous system. Trends Neurosci 2009, 32, 79–87. [Google Scholar]
- Farber, K; Kettenmann, H. Purinergic signaling and microglia. Pflugers Arch 2006, 452, 615–621. [Google Scholar]
- Kettenmann, H. Neuroscience: The brain’s garbage men. Nature 2007, 446, 987–989. [Google Scholar]
- Koizumi, S; Shigemoto-Mogami, Y; Nasu-Tada, K; Shinozaki, Y; Ohsawa, K; Tsuda, M; Joshi, BV; Jacobson, KA; Kohsaka, S; Inoue, K. UDP acting at P2Y6 receptors is a mediator of microglial phagocytosis. Nature 2007, 446, 1091–1095. [Google Scholar]
- Neeper, M; Schmidt, AM; Brett, J; Yan, SD; Wang, F; Pan, YC; Elliston, K; Stern, D; Shaw, A. Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J. Biol. Chem 1992, 267, 14998–15004. [Google Scholar]
- Schmidt, AM; Vianna, M; Gerlach, M; Brett, J; Ryan, J; Kao, J; Esposito, C; Hegarty, H; Hurley, W; Clauss, M; et al. Isolation and characterization of two binding proteins for advanced glycosylation end products from bovine lung which are present on the endothelial cell surface. J. Biol. Chem 1992, 267, 14987–14997. [Google Scholar]
- Bu, G. Apolipoprotein E and its receptors in Alzheimer’s disease: Pathways, pathogenesis and therapy. Nat. Rev. Neurosci 2009, 10, 333–344. [Google Scholar]
- Schmidt, AM; Sahagan, B; Nelson, RB; Selmer, J; Rothlein, R; Bell, JM. The role of RAGE in amyloid-beta peptide-mediated pathology in Alzheimer’s disease. Curr. Opin. Investig. Drugs 2009, 10, 672–680. [Google Scholar]
- Srikanth, V; Maczurek, A; Phan, T; Steele, M; Westcott, B; Juskiw, D; Munch, G. Advanced glycation endproducts and their receptor RAGE in Alzheimer’s disease. Neurobiol. Aging 2011, 32, 763–777. [Google Scholar]
- Halle, A; Hornung, V; Petzold, GC; Stewart, CR; Monks, BG; Reinheckel, T; Fitzgerald, KA; Latz, E; Moore, KJ; Golenbock, DT. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat. Immunol 2008, 9, 857–865. [Google Scholar]
- Ravichandran, KS. “Recruitment signals” from apoptotic cells: Invitation to a quiet meal”. Cell 2003, 113, 817–820. [Google Scholar]
- Miyanishi, M; Tada, K; Koike, M; Uchiyama, Y; Kitamura, T; Nagata, S. Identification of Tim4 as a phosphatidylserine receptor. Nature 2007, 450, 435–439. [Google Scholar]
- Takahashi, K; Rochford, CD; Neumann, H. Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J. Exp. Med 2005, 201, 647–657. [Google Scholar]
- Neumann, H; Takahashi, K. Essential role of the microglial triggering receptor expressed on myeloid cells-2 (TREM2) for central nervous tissue immune homeostasis. J. Neuroimmunol 2007, 184, 92–99. [Google Scholar]
- Butovsky, O; Koronyo-Hamaoui, M; Kunis, G; Ophir, E; Landa, G; Cohen, H; Schwartz, M. Glatiramer acetate fights against Alzheimer’s disease by inducing dendritic-like microglia expressing insulin-like growth factor 1. Proc. Natl. Acad. Sci. USA 2006, 103, 11784–11789. [Google Scholar]
- Hanisch, UK. Microglia as a source and target of cytokines. Glia 2002, 40, 140–155. [Google Scholar]
- Liberto, CM; Albrecht, PJ; Herx, LM; Yong, VW; Levison, SW. Pro-regenerative properties of cytokine-activated astrocytes. J. Neurochem 2004, 89, 1092–1100. [Google Scholar]
- Wee Yong, V. Inflammation in neurological disorders: A help or a hindrance? Neuroscientist 2010, 16, 408–420. [Google Scholar]
- Heese, K; Hock, C; Otten, U. Inflammatory signals induce neurotrophin expression in human microglial cells. J. Neurochem 1998, 70, 699–707. [Google Scholar]
- Owens, T; Babcock, AA; Millward, JM; Toft-Hansen, H. Cytokine and chemokine inter-regulation in the inflamed or injured CNS. Brain Res. Brain Res. Rev 2005, 48, 178–184. [Google Scholar]
- Herx, LM; Rivest, S; Yong, VW. Central nervous system-initiated inflammation and neurotrophism in trauma: IL-1 beta is required for the production of ciliary neurotrophic factor. J. Immunol 2000, 165, 2232–2239. [Google Scholar]
- McGuire, SO; Ling, ZD; Lipton, JW; Sortwell, CE; Collier, TJ; Carvey, PM. Tumor necrosis factor alpha is toxic to embryonic mesencephalic dopamine neurons. Exp. Neurol 2001, 169, 219–230. [Google Scholar]
- Bruce, AJ; Boling, W; Kindy, MS; Peschon, J; Kraemer, PJ; Carpenter, MK; Holtsberg, FW; Mattson, MP. Altered neuronal and microglial responses to excitotoxic and ischemic brain injury in mice lacking TNF receptors. Nat. Med 1996, 2, 788–794. [Google Scholar]
- Mattson, MP; Cheng, B; Baldwin, SA; Smith-Swintosky, VL; Keller, J; Geddes, JW; Scheff, SW; Christakos, S. Brain injury and tumor necrosis factors induce calbindin D-28k in astrocytes: Evidence for a cytoprotective response. J. Neurosci. Res 1995, 42, 357–370. [Google Scholar]
- Sullivan, PG; Bruce-Keller, AJ; Rabchevsky, AG; Christakos, S; Clair, DK; Mattson, MP; Scheff, SW. Exacerbation of damage and altered NF-kappaB activation in mice lacking tumor necrosis factor receptors after traumatic brain injury. J. Neurosci 1999, 19, 6248–6256. [Google Scholar]
- Barger, SW; Horster, D; Furukawa, K; Goodman, Y; Krieglstein, J; Mattson, MP. Tumor necrosis factors alpha and beta protect neurons against amyloid beta-peptide toxicity: Evidence for involvement of a kappa B-binding factor and attenuation of peroxide and Ca2+ accumulation. Proc. Natl. Acad. Sci. USA 1995, 92, 9328–9332. [Google Scholar]
- Cheng, B; Christakos, S; Mattson, MP. Tumor necrosis factors protect neurons against metabolic-excitotoxic insults and promote maintenance of calcium homeostasis. Neuron 1994, 12, 139–153. [Google Scholar]
- Shohami, E; Bass, R; Wallach, D; Yamin, A; Gallily, R. Inhibition of tumor necrosis factor alpha (TNFalpha) activity in rat brain is associated with cerebroprotection after closed head injury. J. Cereb. Blood Flow Metab 1996, 16, 378–384. [Google Scholar]
- Venters, HD; Dantzer, R; Kelley, KW. A new concept in neurodegeneration: TNFalpha is a silencer of survival signals. Trends Neurosci 2000, 23, 175–180. [Google Scholar]
- Harry, GJ; Lefebvre d'Hellencourt, C; McPherson, CA; Funk, JA; Aoyama, M; Wine, RN. Tumor necrosis factor p55 and p75 receptors are involved in chemical-induced apoptosis of dentate granule neurons. J. Neurochem 2008, 106, 281–298. [Google Scholar]
- Taupin, P. A dual activity of ROS and oxidative stress on adult neurogenesis and Alzheimer’s disease. Cent. Nerv. Syst. Agents Med. Chem 2010, 10, 16–21. [Google Scholar]
- Lipton, SA; Gu, Z; Nakamura, T. Inflammatory mediators leading to protein misfolding and uncompetitive/fast off-rate drug therapy for neurodegenerative disorders. Int. Rev. Neurobiol 2007, 82, 1–27. [Google Scholar]
- Colton, C; Wilt, S; Gilbert, D; Chernyshev, O; Snell, J; Dubois-Dalcq, M. Species differences in the generation of reactive oxygen species by microglia. Mol. Chem. Neuropathol 1996, 28, 15–20. [Google Scholar]
- Marin-Teva, JL; Dusart, I; Colin, C; Gervais, A; van Rooijen, N; Mallat, M. Microglia promote the death of developing Purkinje cells. Neuron 2004, 41, 535–547. [Google Scholar]
- Guyton, KZ; Gorospe, M; Kensler, TW; Holbrook, NJ. Mitogen-activated protein kinase (MAPK) activation by butylated hydroxytoluene hydroperoxide: Implications for cellular survival and tumor promotion. Cancer Res 1996, 56, 3480–3485. [Google Scholar]
- Konishi, H; Tanaka, M; Takemura, Y; Matsuzaki, H; Ono, Y; Kikkawa, U; Nishizuka, Y. Activation of protein kinase C by tyrosine phosphorylation in response to H2O2. Proc. Natl. Acad. Sci. USA 1997, 94, 11233–11237. [Google Scholar]
- Schreck, R; Rieber, P; Baeuerle, PA. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J 1991, 10, 2247–2258. [Google Scholar]
- Infanger, DW; Sharma, RV; Davisson, RL. NADPH oxidases of the brain: Distribution, regulation, and function. Antioxid. Redox Signal 2006, 8, 1583–1596. [Google Scholar]
- Choi, SH; Lee, DY; Kim, SU; Jin, BK. Thrombin-induced oxidative stress contributes to the death of hippocampal neurons in vivo: Role of microglial NADPH oxidase. J. Neurosc 2005, 25, 4082–4090. [Google Scholar]
- Park, KW; Jin, BK. Thrombin-induced oxidative stress contributes to the death of hippocampal neurons: Role of neuronal NADPH oxidase. J. Neurosci. Res 2008, 86, 1053–1063. [Google Scholar]
- Lambeth, JD. NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 2004, 4, 181–189. [Google Scholar]
- Sumimoto, H; Ueno, N; Yamasaki, T; Taura, M; Takeya, R. Molecular mechanism underlying activation of superoxide-producing NADPH oxidases: Roles for their regulatory proteins. Jpn. J. Infect. Dis 2004, 57, S24–25. [Google Scholar]
- Colton, CA; Gilbert, DL. Production of superoxide anions by a CNS macrophage, the microglia. FEBS Lett 1987, 223, 284–288. [Google Scholar]
- Colton, CA; Jia, M; Li, MX; Gilbert, DL. K+ modulation of microglial superoxide production: Involvement of voltage-gated Ca2+ channels. Am. J. Physiol 1994, 266, C1650–1655. [Google Scholar]
- Khanna, R; Roy, L; Zhu, X; Schlichter, LC. K+ channels and the microglial respiratory burst. Am. J. Physiol. Cell Physiol 2001, 280, C796–806. [Google Scholar]
- Shatwell, KP; Segal, AW. NADPH oxidase. Int. J. Biochem. Cell. Biol 1996, 28, 1191–1195. [Google Scholar]
- Brown, GC; Neher, JJ. Inflammatory neurodegeneration and mechanisms of microglial killing of neurons. Mol. Neurobiol 2010, 41, 242–247. [Google Scholar]
- Lee, HG; Won, SM; Gwag, BJ; Lee, YB. Microglial P2X7 receptor expression is accompanied by neuronal damage in the cerebral cortex of the APPswe/PS1dE9 mouse model of Alzheimer’s disease. Exp. Mol. Med 2011, 43, 7–14. [Google Scholar]
- Schilling, T; Eder, C. Stimulus-dependent requirement of ion channels for microglial NADPH oxidase-mediated production of reactive oxygen species. J. Neuroimmunol 2010, 225, 190–194. [Google Scholar]
- Skaper, SD. Ion channels on microglia: Therapeutic targets for neuroprotection. CNS Neurol. Disord. Drug Targets 2011, 10, 44–56. [Google Scholar]
- Fordyce, CB; Jagasia, R; Zhu, X; Schlichter, LC. Microglia Kv1.3 channels contribute to their ability to kill neurons. J. Neurosci 2005, 25, 7139–7149. [Google Scholar]
- Parvathenani, LK; Tertyshnikova, S; Greco, CR; Roberts, SB; Robertson, B; Posmantur, R. P2X7 mediates superoxide production in primary microglia and is up-regulated in a transgenic mouse model of Alzheimer’s disease. J. Biol. Chem 2003, 278, 13309–13317. [Google Scholar]
- Brown, GC. Mechanisms of inflammatory neurodegeneration: iNOS and NADPH oxidase. Biochem. Soc. Trans 2007, 35, 1119–1121. [Google Scholar]
- Savill, J; Gregory, C; Haslett, C. Cell biology. Eat me or die. Science 2003, 302, 1516–1517. [Google Scholar]
- Barger, SW; Goodwin, ME; Porter, MM; Beggs, ML. Glutamate release from activated microglia requires the oxidative burst and lipid peroxidation. J. Neurochem 2007, 101, 1205–1213. [Google Scholar]
- Miller, RL; James-Kracke, M; Sun, GY; Sun, AY. Oxidative and inflammatory pathways in Parkinson’s disease. Neurochem. Res 2009, 34, 55–65. [Google Scholar]
- Qin, L; Liu, Y; Wang, T; Wei, SJ; Block, ML; Wilson, B; Liu, B; Hong, JS. NADPH oxidase mediates lipopolysaccharide-induced neurotoxicity and proinflammatory gene expression in activated microglia. J. Biol. Chem 2004, 279, 1415–1421. [Google Scholar]
- Tieu, K; Ischiropoulos, H; Przedborski, S. Nitric oxide and reactive oxygen species in Parkinson’s disease. IUBMB Life 2003, 55, 329–335. [Google Scholar]
- Mander, P; Brown, GC. Activation of microglial NADPH oxidase is synergistic with glial iNOS expression in inducing neuronal death: A dual-key mechanism of inflammatory neurodegeneration. J. Neuroinflammation 2005, 2, 20. [Google Scholar]
- Chung, YC; Kim, SR; Jin, BK. Paroxetine prevents loss of nigrostriatal dopaminergic neurons by inhibiting brain inflammation and oxidative stress in an experimental model of Parkinson’s disease. J. Immunol 2010, 185, 1230–1237. [Google Scholar]
- Jekabsone, A; Mander, PK; Tickler, A; Sharpe, M; Brown, GC. Fibrillar beta-amyloid peptide Abeta1-40 activates microglial proliferation via stimulating TNF-alpha release and H2O2 derived from NADPH oxidase: A cell culture study. J. Neuroinflammation 2006, 3, 24. [Google Scholar]
- Mander, PK; Jekabsone, A; Brown, GC. Microglia proliferation is regulated by hydrogen peroxide from NADPH oxidase. J. Immunol 2006, 176, 1046–1052. [Google Scholar]
- Bal-Price, A; Matthias, A; Brown, GC. Stimulation of the NADPH oxidase in activated rat microglia removes nitric oxide but induces peroxynitrite production. J. Neurochem 2002, 80, 73–80. [Google Scholar]
- Gobbel, GT; Chan, TY; Chan, PH. Nitric oxide- and superoxide-mediated toxicity in cerebral endothelial cells. J. Pharmacol. Exp. Ther 1997, 282, 1600–1607. [Google Scholar]
- Tarpey, MM; Wink, DA; Grisham, MB. Methods for detection of reactive metabolites of oxygen and nitrogen: In vitro and in vivo considerations. Am. J. Physiol. Regul. Integr. Comp. Physiol 2004, 286, R431–444. [Google Scholar]
- Lee, S; Suk, K. Heme oxygenase-1 mediates cytoprotective effects of immunostimulation in microglia. Biochem. Pharmacol 2007, 74, 723–729. [Google Scholar]
- Noda, M; Doi, Y; Liang, J; Kawanokuchi, J; Sonobe, Y; Takeuchi, H; Mizuno, T; Suzumura, A. Fractalkine attenuates excito-neurotoxicity via microglial clearance of damaged neurons and antioxidant enzyme heme oxygenase-1 expression. J. Biol. Chem 2011, 286, 2308–2319. [Google Scholar]
- Basuroy, S; Tcheranova, D; Bhattacharya, S; Leffler, CW; Parfenova, H. Nox4 NADPH oxidase-derived reactive oxygen species, via endogenous carbon monoxide, promote survival of brain endothelial cells during TNF-alpha-induced apoptosis. Am. J. Physiol. Cell Physiol 2011, 300, C256–265. [Google Scholar]
- Leffler, CW; Parfenova, H; Jaggar, JH. Carbon monoxide as an endogenous vascular modulator. Am. J. Physiol. Heart Circ. Physiol 2011, 301, H1–H11. [Google Scholar]
- Vieira, HL; Queiroga, CS; Alves, PM. Pre-conditioning induced by carbon monoxide provides neuronal protection against apoptosis. J. Neurochem 2008, 107, 375–384. [Google Scholar]
- Zeynalov, E; Dore, S. Low doses of carbon monoxide protect against experimental focal brain ischemia. Neurotox. Res 2009, 15, 133–137. [Google Scholar]
- Syapin, PJ. Regulation of haeme oxygenase-1 for treatment of neuroinflammation and brain disorders. Br. J. Pharmacol 2008, 155, 623–640. [Google Scholar]
- Guix, FX; Uribesalgo, I; Coma, M; Munoz, FJ. The physiology and pathophysiology of nitric oxide in the brain. Prog. Neurobiol 2005, 76, 126–152. [Google Scholar]
- Bon, CL; Garthwaite, J. On the role of nitric oxide in hippocampal long-term potentiation. J. Neurosci 2003, 23, 1941–1948. [Google Scholar]
- Calabrese, V; Mancuso, C; Calvani, M; Rizzarelli, E; Butterfield, DA; Stella, AM. Nitric oxide in the central nervous system: Neuroprotection versus neurotoxicity. Nat. Rev. Neurosci 2007, 8, 766–775. [Google Scholar]
- Droge, W. Free radicals in the physiological control of cell function. Physiol. Rev 2002, 82, 47–95. [Google Scholar]
- Tichauer, J; Saud, K; von Bernhardi, R. Modulation by astrocytes of microglial cell-mediated neuroinflammation: Effect on the activation of microglial signaling pathways. Neuroimmunomodulation 2007, 14, 168–174. [Google Scholar]
- Murphy, S. Production of nitric oxide by glial cells: Regulation and potential roles in the CNS. Glia 2000, 29, 1–13. [Google Scholar]
- Heneka, MT; Feinstein, DL. Expression and function of inducible nitric oxide synthase in neurons. J. Neuroimmunol 2001, 114, 8–18. [Google Scholar]
- Nussler, AK; Billiar, TR. Inflammation, immunoregulation, and inducible nitric oxide synthase. J. Leukoc. Biol 1993, 54, 171–178. [Google Scholar]
- Vitek, MP; Brown, C; Xu, Q; Dawson, H; Mitsuda, N; Colton, CA. Characterization of NO and cytokine production in immune-activated microglia and peritoneal macrophages derived from a mouse model expressing the human NOS2 gene on a mouse NOS2 knockout background. Antioxid. Redox Signal 2006, 8, 893–901. [Google Scholar]
- Cho, S; Park, EM; Zhou, P; Frys, K; Ross, ME; Iadecola, C. Obligatory role of inducible nitric oxide synthase in ischemic preconditioning. J. Cereb. Blood Flow Metab 2005, 25, 493–501. [Google Scholar]
- Colton, CA. Induction of nitric oxide in cultured microglia: Evidence for a cytoprotective role. Adv. Neuroimmunol 1995, 5, 491–503. [Google Scholar]
- Thiel, VE; Audus, KL. Nitric oxide and blood-brain barrier integrity. Antioxid. Redox Signal 2001, 3, 273–278. [Google Scholar]
- Merrill, JE; Ignarro, LJ; Sherman, MP; Melinek, J; Lane, TE. Microglial cell cytotoxicity of oligodendrocytes is mediated through nitric oxide. J. Immunol 1993, 151, 2132–2141. [Google Scholar]
- Bal-Price, A; Brown, GC. Inflammatory neurodegeneration mediated by nitric oxide from activated glia-inhibiting neuronal respiration, causing glutamate release and excitotoxicity. J. Neurosci 2001, 21, 6480–6491. [Google Scholar]
- Bal-Price, A; Moneer, Z; Brown, GC. Nitric oxide induces rapid, calcium-dependent release of vesicular glutamate and ATP from cultured rat astrocytes. Glia 2002, 40, 312–323. [Google Scholar]
- Colton, CA; Wilcock, DM. Assessing activation states in microglia. CNS Neurol. Disord. Drug Targets 2010, 9, 174–191. [Google Scholar]
- Broom, L; Marinova-Mutafchieva, L; Sadeghian, M; Davis, JB; Medhurst, AD; Dexter, DT. Neuroprotection by the selective iNOS inhibitor GW274150 in a model of Parkinson disease. Free Radic. Biol. Med 2011, 50, 633–640. [Google Scholar]
- Ebadi, M; Sharma, SK. Peroxynitrite and mitochondrial dysfunction in the pathogenesis of Parkinson’s disease. Antioxid. Redox Signal 2003, 5, 319–335. [Google Scholar]
- L'Episcopo, F; Tirolo, C; Caniglia, S; Testa, N; Serra, PA; Impagnatiello, F; Morale, MC; Marchetti, B. Combining nitric oxide release with anti-inflammatory activity preserves nigrostriatal dopaminergic innervation and prevents motor impairment in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. J. Neuroinflammation 2010, 7, 83. [Google Scholar]
- Farooqui, T; Farooqui, AA. Lipid-mediated oxidative stress and inflammation in the pathogenesis of Parkinson’s disease. Parkinsons Dis 2011, 2011, 247467. [Google Scholar]
- Adams, RA; Bauer, J; Flick, MJ; Sikorski, SL; Nuriel, T; Lassmann, H; Degen, JL; Akassoglou, K. The fibrin-derived gamma377-395 peptide inhibits microglia activation and suppresses relapsing paralysis in central nervous system autoimmune disease. J. Exp. Med 2007, 204, 571–582. [Google Scholar]
- Ransohoff, RM; Perry, VH. Microglial physiology: Unique stimuli, specialized responses. Annu. Rev. Immunol 2009, 27, 119–145. [Google Scholar]
- Ryu, JK; Davalos, D; Akassoglou, K. Fibrinogen signal transduction in the nervous system. J Thromb Haemost 2009, 7(Suppl 1), 151–154. [Google Scholar]
- Ryu, JK; McLarnon, JG. A leaky blood-brain barrier, fibrinogen infiltration and microglial reactivity in inflamed Alzheimer’s disease brain. J. Cell Mol. Med 2009, 13, 2911–2925. [Google Scholar]
- Chan, WY; Kohsaka, S; Rezaie, P. The origin and cell lineage of microglia: New concepts. Brain Res. Rev 2007, 53, 344–354. [Google Scholar]
- Flugel, A; Bradl, M; Kreutzberg, GW; Graeber, MB. Transformation of donor-derived bone marrow precursors into host microglia during autoimmune CNS inflammation and during the retrograde response to axotomy. J. Neurosci. Res 2001, 66, 74–82. [Google Scholar]
- Carson, MJ; Reilly, CR; Sutcliffe, JG; Lo, D. Mature microglia resemble immature antigen-presenting cells. Glia 1998, 22, 72–85. [Google Scholar]
- Ford, AL; Goodsall, AL; Hickey, WF; Sedgwick, JD. Normal adult ramified microglia separated from other central nervous system macrophages by flow cytometric sorting. Phenotypic differences defined and direct ex vivo antigen presentation to myelin basic protein-reactive CD4+ T cells compared. J. Immunol 1995, 154, 4309–4321. [Google Scholar]
- Simard, AR; Rivest, S. Bone marrow stem cells have the ability to populate the entire central nervous system into fully differentiated parenchymal microglia. FASEB J 2004, 18, 998–1000. [Google Scholar]
- Ajami, B; Bennett, JL; Krieger, C; Tetzlaff, W; Rossi, FM. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat. Neurosci 2007, 10, 1538–1543. [Google Scholar]
- Mildner, A; Schmidt, H; Nitsche, M; Merkler, D; Hanisch, UK; Mack, M; Heikenwalder, M; Bruck, W; Priller, J; Prinz, M. Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat. Neurosci 2007, 10, 1544–1553. [Google Scholar]
- Schmid, CD; Melchior, B; Masek, K; Puntambekar, SS; Danielson, PE; Lo, DD; Sutcliffe, JG; Carson, MJ. Differential gene expression in LPS/IFNgamma activated microglia and macrophages. In vitro versus in vivo J Neurochem 2009, 109(Suppl 1), 117–125. [Google Scholar]
- Carson, MJ; Bilousova, TV; Puntambekar, SS; Melchior, B; Doose, JM; Ethell, IM. A rose by any other name? The potential consequences of microglial heterogeneity during CNS health and disease. Neurotherapeutics 2007, 4, 571–579. [Google Scholar]
- El Khoury, J; Luster, AD. Mechanisms of microglia accumulation in Alzheimer’s disease: Therapeutic implications. Trends Pharmacol. Sci 2008, 29, 626–632. [Google Scholar]
- El Khoury, J; Toft, M; Hickman, SE; Means, TK; Terada, K; Geula, C; Luster, AD. Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat. Med 2007, 13, 432–438. [Google Scholar]
- Kochanek, PM; Hallenbeck, JM. Polymorphonuclear leukocytes and monocytes/macrophages in the pathogenesis of cerebral ischemia and stroke. Stroke 1992, 23, 1367–1379. [Google Scholar]
- Stoll, G; Jander, S; Schroeter, M. Detrimental and beneficial effects of injury-induced inflammation and cytokine expression in the nervous system. Adv. Exp. Med. Biol 2002, 513, 87–113. [Google Scholar]
- Graeber, MB; Lopez-Redondo, F; Ikoma, E; Ishikawa, M; Imai, Y; Nakajima, K; Kreutzberg, GW; Kohsaka, S. The microglia/macrophage response in the neonatal rat facial nucleus following axotomy. Brain Res 1998, 813, 241–253. [Google Scholar]
- Ransohoff, RM. Microgliosis: The questions shape the answers. Nat. Neurosci 2007, 10, 1507–1509. [Google Scholar]
- Funk, JA; Gohlke, J; Kraft, AD; McPherson, CA; Collins, JB; Jean Harry, G. Voluntary exercise protects hippocampal neurons from trimethyltin injury: Possible role of interleukin-6 to modulate tumor necrosis factor receptor-mediated neurotoxicity. 2011. [Google Scholar]
- Carson, MJ. Microglia as liaisons between the immune and central nervous systems: Functional implications for multiple sclerosis. Glia 2002, 40, 218–231. [Google Scholar]
- Danton, GH; Dietrich, WD. Inflammatory mechanisms after ischemia and stroke. J. Neuropathol. Exp. Neurol 2003, 62, 127–136. [Google Scholar]
- Gonzalez-Scarano, F; Baltuch, G. Microglia as mediators of inflammatory and degenerative diseases. Annu. Rev. Neurosci 1999, 22, 219–240. [Google Scholar]
- Thomas, WE. Brain macrophages: Evaluation of microglia and their functions. Brain Res. Brain Res. Rev 1992, 17, 61–74. [Google Scholar]
- Rivest, S. Regulation of innate immune responses in the brain. Nat. Rev. Immunol 2009, 9, 429–439. [Google Scholar]
- Town, T; Nikolic, V; Tan, J. The microglial “activation” continuum: From innate to adaptive responses. J. Neuroinflammation 2005, 2, 24. [Google Scholar]
- Chu, Y; Jin, X; Parada, I; Pesic, A; Stevens, B; Barres, B; Prince, DA. Enhanced synaptic connectivity and epilepsy in C1q knockout mice. Proc. Natl. Acad. Sci. USA 2010, 107, 7975–7980. [Google Scholar]
- Wake, H; Moorhouse, AJ; Jinno, S; Kohsaka, S; Nabekura, J. Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J. Neurosci 2009, 29, 3974–3980. [Google Scholar]
- Tremblay, ME; Lowery, RL; Majewska, AK. Microglial interactions with synapses are modulated by visual experience. PLoS Biol. 2010, 8, e1000527:1–e1000527:16. [Google Scholar]
- Stevens, B; Allen, NJ; Vazquez, LE; Howell, GR; Christopherson, KS; Nouri, N; Micheva, KD; Mehalow, AK; Huberman, AD; Stafford, B; et al. The classical complement cascade mediates CNS synapse elimination. Cell 2007, 131, 1164–1178. [Google Scholar]
- Kraft, AD; Kaltenbach, LS; Lo, DC; Harry, GJ. Activated microglia proliferate at neurites of mutant huntingtin-expressing neurons. 2011. [Google Scholar]
- Perry, VH; O'Connor, V. The role of microglia in synaptic stripping and synaptic degeneration: A revised perspective. ASN Neuro 2010, 2, 281–291. [Google Scholar]
- Meyer-Luehmann, M; Spires-Jones, TL; Prada, C; Garcia-Alloza, M; de Calignon, A; Rozkalne, A; Koenigsknecht-Talboo, J; Holtzman, DM; Bacskai, BJ; Hyman, BT. Rapid appearance and local toxicity of amyloid-beta plaques in a mouse model of Alzheimer’s disease. Nature 2008, 451, 720–724. [Google Scholar]
- Damani, MR; Zhao, L; Fontainhas, AM; Amaral, J; Fariss, RN; Wong, WT. Age-related alterations in the dynamic behavior of microglia. Aging Cell 2011, 10, 263–276. [Google Scholar]
- Streit, WJ; Miller, KR; Lopes, KO; Njie, E. Microglial degeneration in the aging brain—bad news for neurons? Front. Biosci 2008, 13, 3423–3438. [Google Scholar]
- Ryu, JK; McLarnon, JG. Minocycline or iNOS inhibition block 3-nitrotyrosine increases and blood-brain barrier leakiness in amyloid beta-peptide-injected rat hippocampus. Exp. Neurol 2006, 198, 552–557. [Google Scholar]
- Yong, VW; Wells, J; Giuliani, F; Casha, S; Power, C; Metz, LM. The promise of minocycline in neurology. Lancet Neurol 2004, 3, 744–751. [Google Scholar]
- Wasserman, JK; Schlichter, LC. Minocycline protects the blood-brain barrier and reduces edema following intracerebral hemorrhage in the rat. Exp. Neurol 2007, 207, 227–237. [Google Scholar]
- Hirsch, EC; Hunot, S. Neuroinflammation in Parkinson’s disease: A target for neuroprotection? Lancet Neurol 2009, 8, 382–397. [Google Scholar]
- Du, Y; Ma, Z; Lin, S; Dodel, RC; Gao, F; Bales, KR; Triarhou, LC; Chernet, E; Perry, KW; Nelson, DL; et al. Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease. Proc. Natl. Acad. Sci. USA 2001, 98, 14669–14674. [Google Scholar]
- He, Y; Appel, S; Le, W. Minocycline inhibits microglial activation and protects nigral cells after 6-hydroxydopamine injection into mouse striatum. Brain Res 2001, 909, 187–193. [Google Scholar]
- Wu, DC; Jackson-Lewis, V; Vila, M; Tieu, K; Teismann, P; Vadseth, C; Choi, DK; Ischiropoulos, H; Przedborski, S. Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J. Neurosci 2002, 22, 1763–1771. [Google Scholar]
- Liou, HH; Chen, RC; Tsai, YF; Chen, WP; Chang, YC; Tsai, MC. Effects of paraquat on the substantia nigra of the wistar rats: Neurochemical, histological, and behavioral studies. Toxicol. Appl. Pharmacol 1996, 137, 34–41. [Google Scholar]
- McCormack, AL; Thiruchelvam, M; Manning-Bog, AB; Thiffault, C; Langston, JW; Cory-Slechta, DA; Di Monte, DA. Environmental risk factors and Parkinson’s disease: Selective degeneration of nigral dopaminergic neurons caused by the herbicide paraquat. Neurobiol. Dis 2002, 10, 119–127. [Google Scholar]
- Purisai, MG; McCormack, AL; Cumine, S; Li, J; Isla, MZ; Di Monte, DA. Microglial activation as a priming event leading to paraquat-induced dopaminergic cell degeneration. Neurobiol. Dis 2007, 25, 392–400. [Google Scholar]
- Saint-Pierre, M; Tremblay, ME; Sik, A; Gross, RE; Cicchetti, F. Temporal effects of paraquat/maneb on microglial activation and dopamine neuronal loss in older rats. J. Neurochem 2006, 98, 760–772. [Google Scholar]
- Thiruchelvam, M; Richfield, EK; Baggs, RB; Tank, AW; Cory-Slechta, DA. The nigrostriatal dopaminergic system as a preferential target of repeated exposures to combined paraquat and maneb: Implications for Parkinson’s disease. J. Neurosci 2000, 20, 9207–9214. [Google Scholar]
- Mangano, EN; Hayley, S. Inflammatory priming of the substantia nigra influences the impact of later paraquat exposure: Neuroimmune sensitization of neurodegeneration. Neurobiol. Aging 2009, 30, 1361–1378. [Google Scholar]
- Casarejos, MJ; Menendez, J; Solano, RM; Rodriguez-Navarro, JA; Garcia de Yebenes, J; Mena, MA. Susceptibility to rotenone is increased in neurons from parkin null mice and is reduced by minocycline. J. Neurochem 2006, 97, 934–946. [Google Scholar]
- O'Callaghan, JP; Sriram, K; Miller, DB. Defining “neuroinflammation”. Ann. NY Acad. Sci 2008, 1139, 318–330. [Google Scholar]
- Boger, HA; Middaugh, LD; Granholm, AC; McGinty, JF. Minocycline restores striatal tyrosine hydroxylase in GDNF heterozygous mice but not in methamphetamine-treated mice. Neurobiol. Dis 2009, 33, 459–466. [Google Scholar]
- Chen, X; Ma, X; Jiang, Y; Pi, R; Liu, Y; Ma, L. The prospects of minocycline in multiple sclerosis. J. Neuroimmunol 2011, 235, 1–8. [Google Scholar]
- Yenari, MA; Xu, L; Tang, XN; Qiao, Y; Giffard, RG. Microglia potentiate damage to blood-brain barrier constituents: Improvement by minocycline in vivo and in vitro. Stroke 2006, 37, 1087–1093. [Google Scholar]
- Glass, CK; Saijo, K; Winner, B; Marchetto, MC; Gage, FH. Mechanisms underlying inflammation in neurodegeneration. Cell 2010, 140, 918–934. [Google Scholar]
- Rao, JS; Harry, GJ; Rapoport, SI; Kim, HW. Increased excitotoxicity and neuroinflammatory markers in postmortem frontal cortex from bipolar disorder patients. Mol. Psychiatry 2010, 15, 384–392. [Google Scholar]
- Graeber, MB; Streit, WJ. Microglia: Biology and pathology. Acta Neuropathol 2010, 119, 89–105. [Google Scholar]
- Yan, P; Bero, AW; Cirrito, JR; Xiao, Q; Hu, X; Wang, Y; Gonzales, E; Holtzman, DM; Lee, JM. Characterizing the appearance and growth of amyloid plaques in APP/PS1 mice. J. Neurosci 2009, 29, 10706–10714. [Google Scholar]
- Akiyama, H; Barger, S; Barnum, S; Bradt, B; Bauer, J; Cole, GM; Cooper, NR; Eikelenboom, P; Emmerling, M; Fiebich, BL; et al. Inflammation and Alzheimer's disease. Neurobiol Aging 2000, 21, 383–421. [Google Scholar]
- Eikelenboom, P; Zhan, SS; Kamphorst, W; van der Valk, P; Rozemuller, JM. Cellular and substrate adhesion molecules (integrins) and their ligands in cerebral amyloid plaques in Alzheimer’s disease. Virchows Arch 1994, 424, 421–427. [Google Scholar]
- Eikelenboom, P; Zhan, SS; van Gool, WA; Allsop, D. Inflammatory mechanisms in Alzheimer’s disease. Trends Pharmacol. Sci 1994, 15, 447–450. [Google Scholar]
- Williams, AE; Ryder, S; Blakemore, WF. Monocyte recruitment into the scrapie-affected brain. Acta Neuropathol 1995, 90, 164–169. [Google Scholar]
- Betmouni, S; Perry, VH; Gordon, JL. Evidence for an early inflammatory response in the central nervous system of mice with scrapie. Neuroscience 1996, 74, 1–5. [Google Scholar]
- Williams, AE; Lawson, LJ; Perry, VH; Fraser, H. Characterization of the microglial response in murine scrapie. Neuropathol. Appl. Neurobiol 1994, 20, 47–55. [Google Scholar]
- McCoy, MK; Tansey, MG. TNF signaling inhibition in the CNS: Implications for normal brain function and neurodegenerative disease. J. Neuroinflammation 2008, 5, 45. [Google Scholar]
- Simi, A; Tsakiri, N; Wang, P; Rothwell, NJ. Interleukin-1 and inflammatory neurodegeneration. Biochem. Soc. Trans 2007, 35, 1122–1126. [Google Scholar]
- McGeer, PL; McGeer, EG. Inflammation and the degenerative diseases of aging. Ann. NY Acad. Sci 2004, 1035, 104–116. [Google Scholar]
- Lee, CY; Landreth, GE. The role of microglia in amyloid clearance from the AD brain. J. Neural. Transm 2010, 117, 949–960. [Google Scholar]
- Naert, G; Rivest, S. The role of microglial cell subsets in Alzheimer’s disease. Curr. Alzheimer Res 2011, 8, 151–155. [Google Scholar]
- Persaud-Sawin, DA; Banach, L; Harry, GJ. Raft aggregation with specific receptor recruitment is required for microglial phagocytosis of Abeta42. Glia 2009, 57, 320–335. [Google Scholar]
- Imbimbo, BP. An update on the efficacy of non-steroidal anti-inflammatory drugs in Alzheimer’s disease. Expert Opin. Investig. Drugs 2009, 18, 1147–1168. [Google Scholar]
- Sonnen, JA; Larson, EB; Walker, RL; Haneuse, S; Crane, PK; Gray, SL; Breitner, JC; Montine, TJ. Nonsteroidal anti-inflammatory drugs are associated with increased neuritic plaques. Neurology 2010, 75, 1203–1210. [Google Scholar]
- Zilka, N; Ferencik, M; Hulin, I. Neuroinflammation in Alzheimer’s disease: Protector or promoter? Bratisl. Lek. Listy 2006, 107, 374–383. [Google Scholar]
- Grathwohl, SA; Kalin, RE; Bolmont, T; Prokop, S; Winkelmann, G; Kaeser, SA; Odenthal, J; Radde, R; Eldh, T; Gandy, S; et al. Formation and maintenance of Alzheimer’s disease beta-amyloid plaques in the absence of microglia. Nat. Neurosci 2009, 12, 1361–1363. [Google Scholar]
- Wyss-Coray, T. Inflammation in Alzheimer disease: Driving force, bystander or beneficial response? Nat. Med 2006, 12, 1005–1015. [Google Scholar]
- Guilarte, TR. Manganese and Parkinson’s disease: A critical review and new findings. Environ. Health Perspect 2010, 118, 1071–1080. [Google Scholar]
- Greenamyre, JT; Cannon, JR; Drolet, R; Mastroberardino, PG. Lessons from the rotenone model of Parkinson’s disease. Trends Pharmacol Sci 2010, 31, 141–142, author reply 142–143. [Google Scholar]
- Schmidt, WJ; Alam, M. Controversies on new animal models of Parkinson’s disease pro and con: The rotenone model of Parkinson’s disease (PD). J. Neural. Transm. Suppl 2006, 70, 272–276. [Google Scholar]
- Aschner, M; Guilarte, TR; Schneider, JS; Zheng, W. Manganese: Recent advances in understanding its transport and neurotoxicity. Toxicol. Appl. Pharmacol 2007, 221, 131–147. [Google Scholar]
- Perl, DP; Olanow, CW. The neuropathology of manganese-induced Parkinsonism. J. Neuropathol. Exp. Neurol 2007, 66, 675–682. [Google Scholar]
- Calne, DB; Chu, NS; Huang, CC; Lu, CS; Olanow, W. Manganism and idiopathic parkinsonism: Similarities and differences. Neurology 1994, 44, 1583–1586. [Google Scholar]
- Cersosimo, MG; Koller, WC. The diagnosis of manganese-induced parkinsonism. Neurotoxicology 2006, 27, 340–346. [Google Scholar]
- Pal, PK; Samii, A; Calne, DB. Manganese neurotoxicity: A review of clinical features, imaging and pathology. Neurotoxicology 1999, 20, 227–238. [Google Scholar]
- Olanow, CW; Good, PF; Shinotoh, H; Hewitt, KA; Vingerhoets, F; Snow, BJ; Beal, MF; Calne, DB; Perl, DP. Manganese intoxication in the rhesus monkey: A clinical, imaging, pathologic, and biochemical study. Neurology 1996, 46, 492–498. [Google Scholar]
- Guilarte, TR; Burton, NC; McGlothan, JL; Verina, T; Zhou, Y; Alexander, M; Pham, L; Griswold, M; Wong, DF; Syversen, T; et al. Impairment of nigrostriatal dopamine neurotransmission by manganese is mediated by pre-synaptic mechanism(s): Implications to manganese-induced parkinsonism. J. Neurochem 2008, 107, 1236–1247. [Google Scholar]
- Guilarte, TR; Chen, MK; McGlothan, JL; Verina, T; Wong, DF; Zhou, Y; Alexander, M; Rohde, CA; Syversen, T; Decamp, E; et al. Nigrostriatal dopamine system dysfunction and subtle motor deficits in manganese-exposed non-human primates. Exp. Neurol 2006, 202, 381–390. [Google Scholar]
- Verina, T; Kiihl, SF; Schneider, JS; Guilarte, TR. Manganese exposure induces microglia activation and dystrophy in the substantia nigra of non-human primates. Neurotoxicology 2011, 32, 215–226. [Google Scholar]
- Lopes, KO; Sparks, DL; Streit, WJ. Microglial dystrophy in the aged and Alzheimer’s disease brain is associated with ferritin immunoreactivity. Glia 2008, 56, 1048–1060. [Google Scholar]
- Sriram, K; Lin, GX; Jefferson, AM; Roberts, JR; Chapman, RS; Chen, BT; Soukup, JM; Ghio, AJ; Antonini, JM. Dopaminergic neurotoxicity following pulmonary exposure to manganese-containing welding fumes. Arch. Toxicol 2010, 84, 521–540. [Google Scholar]
- Chang, JY; Liu, LZ. Manganese potentiates nitric oxide production by microglia. Brain Res. Mol. Brain Res 1999, 68, 22–28. [Google Scholar]
- Crittenden, PL; Filipov, NM. Manganese-induced potentiation of in vitro proinflammatory cytokine production by activated microglial cells is associated with persistent activation of p38 MAPK. Toxicol. In Vitro 2008, 22, 18–27. [Google Scholar]
- Zhang, P; Lokuta, KM; Turner, DE; Liu, B. Synergistic dopaminergic neurotoxicity of manganese and lipopolysaccharide: Differential involvement of microglia and astroglia. J. Neurochem 2010, 112, 434–443. [Google Scholar]
- Hesterberg, TW; Bunn, WB, 3rd; Chase, GR; Valberg, PA; Slavin, TJ; Lapin, CA; Hart, GA. A critical assessment of studies on the carcinogenic potential of diesel exhaust. Crit. Rev. Toxicol 2006, 36, 727–776. [Google Scholar]
- Hartz, AM; Bauer, B; Block, ML; Hong, JS; Miller, DS. Diesel exhaust particles induce oxidative stress, proinflammatory signaling, and P-glycoprotein up-regulation at the blood-brain barrier. FASEB J 2008, 22, 2723–2733. [Google Scholar]
- Block, ML; Wu, X; Pei, Z; Li, G; Wang, T; Qin, L; Wilson, B; Yang, J; Hong, JS; Veronesi, B. Nanometer size diesel exhaust particles are selectively toxic to dopaminergic neurons: The role of microglia, phagocytosis, and NADPH oxidase. FASEB J 2004, 18, 1618–1620. [Google Scholar]
- Aloisi, F. Immune function of microglia. Glia 2001, 36, 165–179. [Google Scholar]
- Becher, B; Antel, JP. Comparison of phenotypic and functional properties of immediately ex vivo and cultured human adult microglia. Glia 1996, 18, 1–10. [Google Scholar]
- Long, TC; Tajuba, J; Sama, P; Saleh, N; Swartz, C; Parker, J; Hester, S; Lowry, GV; Veronesi, B. Nanosize titanium dioxide stimulates reactive oxygen species in brain microglia and damages neurons in vitro. Environ. Health Perspect 2007, 115, 1631–1637. [Google Scholar]
- Campbell, A; Oldham, M; Becaria, A; Bondy, SC; Meacher, D; Sioutas, C; Misra, C; Mendez, LB; Kleinman, M. Particulate matter in polluted air may increase biomarkers of inflammation in mouse brain. Neurotoxicology 2005, 26, 133–140. [Google Scholar]
- Guastadisegni, C; Kelly, FJ; Cassee, FR; Gerlofs-Nijland, ME; Janssen, NA; Pozzi, R; Brunekreef, B; Sandstrom, T; Mudway, I. Determinants of the proinflammatory action of ambient particulate matter in immortalized murine macrophages. Environ. Health Perspect 2010, 118, 1728–1734. [Google Scholar]
- Gerlofs-Nijland, ME; van Berlo, D; Cassee, FR; Schins, RP; Wang, K; Campbell, A. Effect of prolonged exposure to diesel engine exhaust on proinflammatory markers in different regions of the rat brain. Part. Fibre Toxicol 2010, 7, 12. [Google Scholar]
- Kida, S; Steart, PV; Zhang, ET; Weller, RO. Perivascular cells act as scavengers in the cerebral perivascular spaces and remain distinct from pericytes, microglia and macrophages. Acta Neuropathol 1993, 85, 646–652. [Google Scholar]
- Brunssen, SH; Morgan, DL; Parham, FM; Harry, GJ. Carbon monoxide neurotoxicity: Transient inhibition of avoidance response and delayed microglia reaction in the absence of neuronal death. Toxicology 2003, 194, 51–63. [Google Scholar]
- Calderon-Garciduenas, L; D'Angiulli, A; Kulesza, RJ; Torres-Jardon, R; Osnaya, N; Romero, L; Keefe, S; Herritt, L; Brooks, DM; Avila-Ramirez, J; et al. Air pollution is associated with brainstem auditory nuclei pathology and delayed brainstem auditory evoked potentials. Int. J. Dev. Neurosci 2011, 29, 365–375. [Google Scholar]
- Calderon-Garciduenas, L; Macias-Parra, M; Hoffmann, HJ; Valencia-Salazar, G; Henriquez-Roldan, C; Osnaya, N; Monte, OC; Barragan-Mejia, G; Villarreal-Calderon, R; Romero, L; et al. Immunotoxicity and environment: Immunodysregulation and systemic inflammation in children. Toxicol. Pathol 2009, 37, 161–169. [Google Scholar]
- Finch, GL; Hobbs, CH; Blair, LF; Barr, EB; Hahn, FF; Jaramillo, RJ; Kubatko, JE; March, TH; White, RK; Krone, JR; et al. Effects of subchronic inhalation exposure of rats to emissions from a diesel engine burning soybean oil-derived biodiesel fuel. Inhal. Toxicol 2002, 14, 1017–1048. [Google Scholar]
- Jensen, LK; Klausen, H; Elsnab, C. Organic brain damage in garage workers after long-term exposure to diesel exhaust fumes. Ugeskr Laeger 1989, 151, 2255–2258. [Google Scholar]
- Calderon-Garciduenas, L; Azzarelli, B; Acuna, H; Garcia, R; Gambling, TM; Osnaya, N; Monroy, S; Del Tizapantzi, MR; Carson, JL; Villarreal-Calderon, A; et al. Air pollution and brain damage. Toxicol. Pathol 2002, 30, 373–389. [Google Scholar]
- Calderon-Garciduenas, L; Solt, AC; Henriquez-Roldan, C; Torres-Jardon, R; Nuse, B; Herritt, L; Villarreal-Calderon, R; Osnaya, N; Stone, I; Garcia, R; et al. Long-term air pollution exposure is associated with neuroinflammation, an altered innate immune response, disruption of the blood-brain barrier, ultrafine particulate deposition, and accumulation of amyloid beta-42 and alpha-synuclein in children and young adults. Toxicol. Pathol 2008, 36, 289–310. [Google Scholar]
- Takenaka, S; Karg, E; Roth, C; Schulz, H; Ziesenis, A; Heinzmann, U; Schramel, P; Heyder, J. Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environ Health Perspect 2001, 109(Suppl 4), 547–551. [Google Scholar]
- Calderon-Garciduenas, L; Mora-Tiscareno, A; Gomez-Garza, G; Carrasco-Portugal, MdelC; Perez-Guille, B; Flores-Murrieta, FJ; Perez-Guille, G; Osnaya, N; Juarez-Olguin, H; Monroy, ME; et al. Effects of a cyclooxygenase-2 preferential inhibitor in young healthy dogs exposed to air pollution: A pilot study. Toxicol. Pathol 2009, 37, 644–660. [Google Scholar]
- Calderon-Garciduenas, L; Mora-Tiscareno, A; Ontiveros, E; Gomez-Garza, G; Barragan-Mejia, G; Broadway, J; Chapman, S; Valencia-Salazar, G; Jewells, V; Maronpot, RR; et al. Air pollution, cognitive deficits and brain abnormalities: A pilot study with children and dogs. Brain Cogn 2008, 68, 117–127. [Google Scholar]
- Hesterberg, TW; Long, CM; Bunn, WB; Sax, SN; Lapin, CA; Valberg, PA. Non-cancer health effects of diesel exhaust: A critical assessment of recent human and animal toxicological literature. Crit. Rev. Toxicol 2009, 39, 195–227. [Google Scholar]
- Campen, MJ; Babu, NS; Helms, GA; Pett, S; Wernly, J; Mehran, R; McDonald, JD. Nonparticulate components of diesel exhaust promote constriction in coronary arteries from ApoE−/− mice. Toxicol. Sci 2005, 88, 95–102. [Google Scholar]
- Cherng, TW; Paffett, ML; Jackson-Weaver, O; Campen, MJ; Walker, BR; Kanagy, NL. Mechanisms of diesel-induced endothelial nitric oxide synthase dysfunction in coronary arterioles. Environ. Health Perspect 2011, 119, 98–103. [Google Scholar]
- Mills, NL; Tornqvist, H; Robinson, SD; Gonzalez, M; Darnley, K; MacNee, W; Boon, NA; Donaldson, K; Blomberg, A; Sandstrom, T; et al. Diesel exhaust inhalation causes vascular dysfunction and impaired endogenous fibrinolysis. Circulation 2005, 112, 3930–3936. [Google Scholar]
- Lehmann, AD; Blank, F; Baum, O; Gehr, P; Rothen-Rutishauser, BM. Diesel exhaust particles modulate the tight junction protein occludin in lung cells in vitro. Part. Fibre Toxicol 2009, 6, 26. [Google Scholar]
- Amara, N; Bachoual, R; Desmard, M; Golda, S; Guichard, C; Lanone, S; Aubier, M; Ogier-Denis, E; Boczkowski, J. Diesel exhaust particles induce matrix metalloprotease-1 in human lung epithelial cells via a NADP(H) oxidase/NOX4 redox-dependent mechanism. Am. J. Physiol. Lung Cell Mol. Physiol 2007, 293, L170–181. [Google Scholar]
- Bayram, H; Devalia, JL; Sapsford, RJ; Ohtoshi, T; Miyabara, Y; Sagai, M; Davies, RJ. The effect of diesel exhaust particles on cell function and release of inflammatory mediators from human bronchial epithelial cells in vitro. Am. J. Respir. Cell Mol. Biol 1998, 18, 441–448. [Google Scholar]
- Joris, I; Zand, T; Nunnari, JJ; Krolikowski, FJ; Majno, G. Studies on the pathogenesis of atherosclerosis. I. Adhesion and emigration of mononuclear cells in the aorta of hypercholesterolemic rats. Am. J. Pathol 1983, 113, 341–358. [Google Scholar]
- Lippmann, M; Gordon, T; Chen, LC. Effects of subchronic exposures to concentrated ambient particles in mice. IX. Integral assessment and human health implications of subchronic exposures of mice to CAPs. Inhal. Toxicol 2005, 17, 255–261. [Google Scholar]
- Streit, WJ; Sparks, DL. Activation of microglia in the brains of humans with heart disease and hypercholesterolemic rabbits. J. Mol. Med 1997, 75, 130–138. [Google Scholar]
- Sama, P; Long, TC; Hester, S; Tajuba, J; Parker, J; Chen, LC; Veronesi, B. The cellular and genomic response of an immortalized microglia cell line (BV2) to concentrated ambient particulate matter. Inhal. Toxicol 2007, 19, 1079–1087. [Google Scholar]
- Donaldson, K. The biological effects of coarse and fine particulate matter. Occup. Environ. Med 2003, 60, 313–314. [Google Scholar]
- Aschner, M; Allen, JW; Kimelberg, HK; LoPachin, RM; Streit, WJ. Glial cells in neurotoxicity development. Annu. Rev. Pharmacol. Toxicol 1999, 39, 151–173. [Google Scholar]
- Schwartz, M; Butovsky, O; Bruck, W; Hanisch, UK. Microglial phenotype: Is the commitment reversible? Trends Neurosci 2006, 29, 68–74. [Google Scholar]
© 2011 by the authors; licensee MDPI, Basel, Switzerland This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Kraft, A.D.; Harry, G.J. Features of Microglia and Neuroinflammation Relevant to Environmental Exposure and Neurotoxicity. Int. J. Environ. Res. Public Health 2011, 8, 2980-3018. https://doi.org/10.3390/ijerph8072980
Kraft AD, Harry GJ. Features of Microglia and Neuroinflammation Relevant to Environmental Exposure and Neurotoxicity. International Journal of Environmental Research and Public Health. 2011; 8(7):2980-3018. https://doi.org/10.3390/ijerph8072980
Chicago/Turabian StyleKraft, Andrew D., and G. Jean Harry. 2011. "Features of Microglia and Neuroinflammation Relevant to Environmental Exposure and Neurotoxicity" International Journal of Environmental Research and Public Health 8, no. 7: 2980-3018. https://doi.org/10.3390/ijerph8072980