Treatment of Diarrhoea in Rural African Communities: An Overview of Measures to Maximise the Medicinal Potentials of Indigenous Plants
Abstract
:1. Introduction
2. Aetiology of Diarrhoea
Aetiology | Main site of action | Primary mechanism | Clinical features | Reference(s) |
---|---|---|---|---|
ETEC | Small intestine | Heat stable and heat labile toxins produced by the organism induce secretory diarrhoea | Watery stools associated with fever, abdominal cramps and vomiting | [22,27] |
EPEC | Proximal small intestine | Attachment/effacement of enterocytes, alteration of intracellular calcium and cytoskeleton | Self-limiting watery diarrhoea occasionally accompanied with fever and vomiting. | [22,27] |
EIEC | Distal ileum and colon | Tissue invasion and mucosal destruction | Watery occasionally bloody diarrhoea | [27] |
EHEC | Colon | Elaboration of potent shiga-like cytotoxins l and ll | Bloody diarrhoea in 90% of cases and haemolytic uremic syndrome in 10%. | [22,27] |
Vibrio cholerae enterotoxin | Endocrine cells on the villus surface of the intestinal epithelium | Enterotoxins cause an increase in cAMP or cGMP inducing cAMP-mediated alterations of ion transport. | Voluminous watery diarrhoea without abdominal cramps or fever; nausea and vomiting. | [31] |
Shigella | M-cells of the colonic and rectal epithelium | Bacteria invade the intestinal epithelium damaging it and causing inflammation. Diarrhoea is due to epithelial damage and inflammatory mediators. | Abdominal cramps and pain with initial high volume watery stool that eventually reduces in volume, becomes stained with mucus and blood and associated with urgency and painful defecation. | [32,33] |
Salmonella | Peyers patches of the small intestine | Bacteria invade the intestinal epithelium damaging it and causing inflammation. Diarrhoea is due to epithelial damage and inflammatory mediators. | Loose stools to profuse watery diarrhoea, nausea, vomiting and sometimes persistent headache, especially in S. typhi infection. | [33] |
Yersinia enterocolitica | Intestinal epithelium of the terminal portion of the ileum | Bacteria invade the intestinal epithelium damaging it but inhibit host inflammatory responses | Abdominal pain and diarrhoea occasionally accompanied by fever, nausea, vomiting and malaise. | [33,34] |
Norovirus | Sub-mucosa of proximal small intestines | Continuous viral replication in the sub-mucosa of the proximal small intestines is believed to interfere with normal intestinal function | Stomach pain, fever, nausea, vomiting, mild self-limiting and non bloody diarrhoea | [37,38] |
Astroviruses | Epithelial cells of the proximal small intestines | Viral infection increases intestinal barrier permeability and causes sodium mal-absorption creating an osmotic pressure which pulls water and ions into the intestinal lumen. | Moderate to severe diarrhoea characterised by abdominal pain and vomiting. | [29,30] |
Enteric adenoviruses | Intestinal epithelium, peyers patches in the ileum | Viral infection of the intestinal epithelium damages endothelial cells and interferes with smooth functioning of the intestines | Watery diarrhoea accompanied by vomiting, low grade fever and mild dehydration. | [39,40] |
Cytomegalovirus | Entire gastrointestinal tract but frequently involves the oesophagus and colon | Viral infection causes intestinal inflammation, erosion and ulceration with inclusions in the stromal and endothelial cells. Causes distal oesophageal ulceration. | Acute watery diarrhoea, stained with blood and may be persistent | [5,41] |
Cryptosporidium parvum | Surface epithelial cells lining the distal jejunum and ileum. | Protozoan invades minimally the intestinal mucosa causing self-limiting diarrhoea in immune competent individuals. | Mild to severe watery diarrhoea | [42] |
Giardia lamblia | Small intestine | Colonisation of the intestine is an important step for diarrhoea. Initially, there is excystation followed by attachment to the intestinal epithelium and multiplication, then encystment. This process disrupts and distorts the microvilli of the intestine. | Asymptomatic, Stools are loose or semi-formed, mild abdominal discomfort | [24,43] |
Entamoeba histolytica | Small intestines | Ingested cysts rupture in the small intestine releasing trophozoites which invade the mucin layer of the intestinal mucosa. Protozoan has an ability to kill and phagocytise host cells. | Lumpy mucoid stools with blood stains, diarrhoea, cramping, abdominal pain, flatulence, tenesmus rectal, headache and vomiting | [44,45] |
Balantidium coli | Caecum and colon | Trophozoites produce proteolytic enzymes that digest the mucus coating of the colon facilitating tissue invasion, abscess formation, ulceration and perforation of the intestine. | Acute explosive watery diarrhoea, stools may be stained with blood. Cramping, halitosis, abdominal pain. Tenesmus, weight loss and intestinal perforations are seen in severe cases. | [5,46] |
3. Diagnosis of Diarrhoea
4. Treatment Strategies
4.1. Anti-Motility and Anti-Secretory Agents
4.2. Antimicrobial Therapy
4.3. Treatment with Indigenous Herbal Medicines
Scientific name | Family | Part(s) used | Preparation | Phytochemical Ingredients and Mechanisms of action | Reference (s) |
---|---|---|---|---|---|
Psidium guajava Linn | Myrtaceae | Leaves | Infusion/Decoction | Antimicrobial, prevents attachment and colonisation of bacteria to the intestinal epithelium. Interferes with bacterial metabolism. Antispasmodic activity, inhibition of increased watery secretion and inhibition of acetylcholine release. Inhibition of intestinal transit through the inhibition of PGE2-induced enteropooling | [59,65,66,67,68] |
Conyza dioscoridis (L.) Desf. | Compositae | Leaves | Decoction | The phyto-component-rich ethanol extract has been shown to induce a dose-dependent relaxation of duodenal muscles possibly through calcium-channel and ganglionic blocking effects. | [69] |
Tithonia diversifolia | Asteraceae | Leaves | decoction | Phytochemicals have antispasmodic activity. | [70,71] |
Alchornea cordifolia Shum and Thon. | Euphorbiaceae | Leaves | Decoction | Phytochemical components such as tannins and flavonoids are thought to delay intestinal transit, increase colonic water and electrolyte reabsorption by modifying their transport across the colonic mucosa. Ethyl acetate extracts also have antimicrobial properties against diarrheagenic organisms such as E. coli, Candida albicans, Staphylococcus aureus and Pseudomonas aeruginosa. | [72,73] |
Heinsia pulchella K. Shum | Root bark | Decoction | Plant crude extracts contain various phytochemical components with antimicrobial activity against diarrhoea-causing organisms such as Entamoeba histolytica. | [74,75] | |
Catharanthus roseus Linn | Apocyanaceae | Leaves | Decoction | Plant is rich in tannins, alkaloids, flavonoids, saponins and triterpenes some of which have anti-motility effects by their inhibition of gastrointestinal transit. | |
Alhagi maurorum Medic. | Leguminosae | Aerial parts | Decoction | Phytochemical constituents such as flavonoids, tannins and unsaturated sterols/terpenes may cause a relaxing effect on the intestinal tissue possibly through calcium channel blocking effect. | [69] |
Mentha microphylla C. Koch. | Labiatae | Aerial parts | Decoction | Phytochemical constituents such as flavonoids, tannins and unsaturated sterols/terpenes may cause a relaxing effect on the intestinal tissue possibly through calcium channel blocking effect. | [69] |
Zygophyllum album L.f. Täckh. | Zygophyllaceae | Aerial parts | Decoction | Phyto-constituents in the plant extracts cause relaxation of duodenal muscles possibly through calcium-channel and ganglionic blocking effects. | [69] |
Cylicodiscus gabunensis | Mimosaceae | Stem bark | Decoction | The plant may contain protein tannates that may make the intestinal mucosa more resistant, thus reducing intestinal secretion, increase reabsorption of water and decrease motility. | [76,77] |
Euphorbia hirta | Euphorbiaceae | Leaves | Macerate | Plant contains the flavonoid glycoside quercitrin known to exhibit anti-motility effects, delay intestinal transit and increase colonic fluid absorption when combined with secretagogue compounds such as PGE2 and sodium picosulphate. | [78,79] |
Hippocratea africana | Hippocrateaceae | Roots | Decoction | Plant contains phytochemical components that inhibit intestinal transit and fluid accumulation in the small intestines. | [80] |
Securinega virosa | Euphorbiaceae | Roots, leaves and stem bark | Decoction | Phytochemical components such as anthraquinone glycosides, alkaloids, tannins, saponins and alkaloids present in different parts of the plant cause contraction of jejunal tissue and inhibition of prostaglandin biosynthesis. | [81] |
Ziziphus mauritiana Lam | Rhamnaceae | Root | Decoction | Phytochemicals in the plant may cause inhibition of acetylcholine-induced contraction of the ileum, decrease gastrointestinal transit and inhibit fluid accumulation in the intestines. | [82] |
Mormodica charantia | Curcubitaceae | Leaves | Decoction | The plant is believed to contain phytocomponents with morphine-like action against diarrhoea. The major mechanisms being their ability to delay gastrointestinal propulsion, reduce number of stools and inhibit intestinal fluid accumulation. | [83] |
Stereospermum kunthianum (Cham, Sandrine Petit) | Bignoniaceae | Stem bark | Decoction | Plant contains phytochemicals that are believed to delay intestinal transit. | [84] |
Bridelia micrantha | Phyllanthaceae | Stem bark | Decoction | Phytochemicals in the plant cause inhibition of intestinal transit through the inhibition of PGE2-induced enteropooling. | [66] |
Eleutherina bulbosa (Mill.) | Iridaceae | Bulb | Decoction | Phytochemicals in the plant cause inhibition of intestinal transit through the inhibition of PGE2-induced enteropooling. | [66] |
Dissotis rotundifolia Triania | Melastomaceae | Leaves | Decoction | Plant is rich in alkaloids, tannins, cardiac glycosides reported to be antimicrobial against diarrhoea-causing organisms. Some of these compounds also inhibit intestinal motility. | [85] |
Trilepisium madagascariense DC, Leeuwenberg | Moraceae | Stem bark | Decoction | The plant is rich in phytochemical compounds. A compound isolated from this plant, isoliquiritigenin is reported to inhibit diarrhoea droppings by 84.81%. The methanol extract reduces enteropooling , inhibit gastrointestinal motility in Shigella- and Castor oil-induced diarrhoea in rats by increasing reabsorption of electrolytes and water or by inhibiting induced intestinal accumulation of fluid just as the standard drugs loperamide and diphenoxylate HCl. | [58] |
Carica papaya | Caricaceae | Seeds | Decoction | Phytochemicals in the seeds have been reported to demonstrate antimicrobial activity against many diarrhoea-causing bacteria such as Salmonella enteritidis, Escherichia coli, Shigella flexneri and opportunistic pathogens. | [70] |
4.3.1. Pharmaceutical Anti-Diarrhoeic Agents Isolated from Medicinal Plants
Drug/Chemical | Specific Use | Plant |
---|---|---|
Aesculetin | Anti-dysentery | Frazinus rhychophylla |
Emetine | Amoebic dysentery | Cephaelis ipecacuanha |
Agrimophol | Anthelmintic | Agrimonia supatoria |
Berberine | Bacillary dysentery | Berberis vulgaris |
Hemsleyadin | Bacillary dysentery | Hemsleya amabilis |
Neoandrographolide | Dysentery | Andrographis paniculata |
5. Measures to Maximise the Medicinal Potentials of Indigenous Plants Used in the Treatment of Diarrhoea in Africa
5.1. Plant Over-Exploitation
5.2. The Excessive Harvest of Certain Plant Parts
5.3. Lack of Standardization of Methods
5.4. Dosages and Quality Control of the Medicines
5.5. Packaging and Storage
6. Conclusions
Conflict of Interest
Acknowledgements
References
- Palombo, E.A. Phytochemicals from traditional medicinal plants used in the treatment of diarrhoea: Modes of action and effects on intestinal function. Phytother. Res. 2006, 20, 717–724. [Google Scholar] [CrossRef]
- Mandomando, I.M.; Macete, E.V.; Ruiz, J.; Sanz, S.; Abacassamo, F.; Valles, X.; Sacarlal, J.; Navia, M.M.; Vila, J.; Alonso, P.L.; Gascon, J. Aetiology of diarrhoea in children younger than 5 years of age admitted in a rural hospital Southern Mozambique. Ame. J. Trop. Med. Hyg. 2007, 76, 522–527. [Google Scholar]
- Nigro, O.; Milton, A.G.; Ratnaike, R.N. Drug-associated diarrhoea and constipation in older people. Austral. J. Hosp. Pharm. 2000, 30, 165–169. [Google Scholar]
- WHO, Diarrhoea: Why children are still dying and what can be done. WHO: Geneva, Switzerland, 2009.
- De Wet, H.; Nkwanyama, M.N.; van Vuuren, S.F. Medicinal plants used in the treatment of diarrhoea in northern Maputaland, KwaZulu-Natal Province, South Africa. J. Ethnopharmacol. 2010, 130, 284–289. [Google Scholar] [CrossRef]
- Forsberg, B.C.; Gwatkin, D.; Tomson, G.; Allebeck, P.; Petzold, M.G. Socioeconomic inequalities in the prevalence and management of childhood diarrhoea: Potential health gains to be achieved. Open Inf. Dis. J. 2009, 3, 44–49. [Google Scholar] [CrossRef]
- Mwambete, K.D.; Joseph, R. Knowledge and perception of mothers and caregivers on childhood diarrhoea and its management in Temeke municipality, Tanzania. Tanz. J. HealthRes. 2010, 12, 1–9. [Google Scholar]
- Asakitikpi, A.E. Acute diarrhoea: Mothers’ knowledge of ORT and its usage in Ibadan metropolis, Nigeria. Ethno Med. 2010, 4, 125–130. [Google Scholar]
- Ellis, A.A.; Winch, P.; Daou, Z.; Gilroy, K.E.; Swedberg, E. Home management of childhood diarrhoea in Southern Mali-Implications for introduction of zinc treatment. Soc. Sci. Med. 2007, 64, 701–712. [Google Scholar] [CrossRef]
- Mabilia, M. The cultural context of childhood diarrhoea among Gogo infants. Anthropol. Med. 2000, 7, 191–208. [Google Scholar] [CrossRef]
- Aremu, O.; Lawoko, S.; Moradi, T.; Dalal, K. Socio-economic determinants in selecting childhood diarrhoea treatment options in Sub-Saharan Africa: A multilevel model. Italian J. Paed. 2011, 37, 1–8. [Google Scholar] [CrossRef]
- Bardhan, P.K. Improving the ORS: Does glutamine have a role? J. Health Popul. Nutr. 2007, 25, 263–266. [Google Scholar]
- Singh, R.; Sharma, A. Medicinal plants used for diarrhoea by tribals from Majhgawan block of district Satna, Mathya Pradesh, India. Ethno Med. 2011, 5, 205–208. [Google Scholar]
- Tchacondo, T.; Karou, S.D.; Batawila, K.; Agban, A.; Ouro-Bang’na, K.; Anani, K.T.; Gbeassor, M.; de Souza, C. Herbal remedies and their adverse effects in Tem tribe traditional medicine in Togo. Afr. J. Tradit. Complement. Altern. Med. 2011, 8, 45–60. [Google Scholar]
- Sharma, A.; Patel, V.K.; Chaturvedi, A.N. Viriocidal activity of certain medicinal plants used in Indian folklore medicine by tribals of Mahakoshal region of central India. Indian J. Pharmacol. 2009, 41, 129–133. [Google Scholar] [CrossRef]
- Patra, A.; Jha, S.; Murthy, P.N. Phytochemical and pharmacological potential of Hygrophila spinosa T. Anders. Pharmacog. Rev. 2009, 3, 330–341. [Google Scholar]
- Maroyi, A. An ethno botanical survey of medicinal plants used by the people Nhema communal area, Zimbabwe. J. Ethnopharmacol. 2011, 136, 347–354. [Google Scholar] [CrossRef]
- WHO, Report of the Second Meeting of Directors of WHO Collaborating Centres for Traditional Medicine; Document WHO/TRM/88.1; WHO: Geneva, Swiszerland, 1987.
- Boadi, K.O.; Kuitunen, M. Childhood diarrhoeal morbidity in the Accra metropolitan area, Ghana: Socio-economic, environmental and behavioural risks determinants. J. Health Popul. Dev. Countries. 2005, 7, 1–13. [Google Scholar]
- Casburn-Jones, A.C.; Farthing, M.J.G. Management of infectious diarrhoea. Gut 2004, 53, 296–305. [Google Scholar] [CrossRef]
- Cooke, M.L. Causes and management of diarrhoea in children in a clinical setting. S. Afr. J. Clin. Nutr. 2010, 23, S42–S46. [Google Scholar]
- Vilchez, S.; Reyes, D.; Paniagua, M.; Bucardo, F.; Mollby, R.; Weintraub, A. Prevalence of diarrhoeagenic Escherichia coli in children from Leon, Nicaragua. J. Med. Microbiol 2009, 58, 630–637. [Google Scholar] [CrossRef]
- Haque, R.; Mondial, D.; Karim, A.; Molla, I.H.; Rahim, A.; Faruque, A.S.G.; Ahmad, N.; Kirkpatrick, B.D.; Houpt, E.; Snider, C.; et al. Prospective case control study of the association between common enteric protozoal parasites and diarrhoea in Bangladesh. Clin. Inf. Dis. 2009, 48, 1191–1197. [Google Scholar]
- Nkrumah, B.; Nguah, S.B. Giardia lamblia: A major parasitic cause of childhood diarrhoea in patients attending a district hospital in Ghana. Parasites Vec. 2011, 4, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Adjei, A.A.; Armah, H.; Rodrigues, O.; Renner, L.; Borketey, P.; Ayeh-Kumi, P.; Adiku, T.; Sifah, E.; Lartey, M. Cryptosporidium spp., a frequent cause of diarrhoea among children at the Korle-Bu teaching hospital, Accra, Ghana. Jpn. J. Inf. Dis. 2004, 57, 216–219. [Google Scholar]
- Samie, A.; Guerrant, R.L.; Barrett, L.; Bessong, P.O.; Igumbor, E.O.; Obi, C.L. Prevalence of intestinal parasitic and bacterial pathogens in diarrhoeal and non-diarrhoeal human stools from Vhembe district, South Africa. J. Health Popul. Nutr. 2009, 27, 739–745. [Google Scholar]
- Thapar, N.; Sanderson, I.R. Diarrhoea in children: An interface between developing and developed countries. Lancet 2004, 363, 641–653. [Google Scholar] [CrossRef]
- Payne, C.M.; Fass, R.; Bernstein, H.; Giron, J.; Bernstein, C.; Dvorak, K.; Garewal, H. Pathogenesis of diarrhoea in the adult: Diagnostic challenges and life-threatening conditions. Eur. J. Gastroenterol. Hepatol. 2006, 18, 1047–1051. [Google Scholar] [CrossRef]
- Moser, L.A.; Carter, M.; Schultz-Cherry, S. Astrovirus increases epithelial barrier permeability independently of viral replication. J. Virol. 2007, 81, 11937–11945. [Google Scholar] [CrossRef]
- Nighot, P.K.; Moeser, A.; Ali, A.A.; Blikslager, A.T.; Koci, M.D. Astrovirus infection induces sodium mal-absorption and redistributes sodium hydrogen exchanger expression. Virology 2010, 401, 146–154. [Google Scholar] [CrossRef]
- Field, M. Intestinal ion transport and the pathophysiology of diarrhoea. J. Clin. Investig. 2003, 111, 931–943. [Google Scholar]
- Ashkenazi, S. Shigella infections in children: New insights. Sem. Paed. Inf. Dis. 2004, 15, 246–252. [Google Scholar] [CrossRef]
- Reis, R.S.; Horn, F. Enteropathogenic Escherichia coli, Salmonella, Shigella and Yersinia: Cellular aspects of host-bacteria interactions in enteric diseases. Gut Pathogens 2010, 2. [Google Scholar]
- Tennant, S.M.; Grant, T.H.; Robins-Browne, R.M. Pathogenecity of Yersinia enterocolitica biotype 1A. FEMS Immunol. Med. Microbiol. 2003, 38, 127–137. [Google Scholar] [CrossRef]
- Nguyen, T.V.; Van, P.L.; Huy, C.L.; Weintraub, A. Diarrhoea caused by Rotavirus in children less than 5 years of age in Hanoi, Vietnam. J. Clin. Microbiol. 2004, 42, 5745–5750. [Google Scholar] [CrossRef]
- Lorrot, M.; Vasseur, M. How do the Rotavirus NSP4 and bacterial enterotoxins lead differently to diarrhoea. Virol. J. 2007, 4. [Google Scholar]
- Narkeviciute, I.; Tamusauskaite, I. Peculiarities of Norovirus and Rotavirus infections in hospitalised young children. J. Paed. Gastroenterol. Nutr. 2008, 46, 289–292. [Google Scholar] [CrossRef]
- Scipioni, A.; Mauroy, A.; Vinje, J.; Thiry, E. Animal noroviruses. Vet. J. 2008, 178, 32–45. [Google Scholar] [CrossRef]
- Uhnoo, I.; Svensson, L.; Wadell, G. Enteric adenoviruses. Bailliere’s Clin. Gastroenterol. 1990, 4, 627–642. [Google Scholar] [CrossRef]
- Lu, T.M.; Tsai, H.T.; Cheng, Y.W.; Chin, L.W.; Yang, C.C. Gastroenteroviruses in Taiwan. Open Inf. Dis. J. 2009, 3, 37–43. [Google Scholar] [CrossRef]
- Bhaijee, F.; Subramony, C.; Tang, S.J.; Pepper, D.J. Human immunodeficiency virus-associated gastrointestinal disease: Common endoscopic biopsy diagnosis. Pathol. Res. Inter. 2011, 1, 1–8. [Google Scholar]
- Laurent, F.; McCole, D.; Eckmann, L.; Kagnof, F.M.F. Pathogenesis of Cryptosporidium parvum infection. Microbes Inf. 1999, 1, 141–148. [Google Scholar] [CrossRef]
- Michael, F.J.G. The molecular pathogenesis of Giardiasis. J. Paed. Gastroenterol. Nutr. 1997, 24, 79–88. [Google Scholar] [CrossRef]
- Stauffer, W.; Ravdin, J.I. Entamoeba histolityca: An update. Cur. Opi. Inf. Dis. 2003, 16, 479–485. [Google Scholar] [CrossRef]
- Redondo, R.B.; Mendez, L.G.M.; Baer, G. Entaboeba histolytica and Entamoeba dispair: Differentiation by enzyme-linked immunosorbent assay (ELISA) and its clinical correlation in paediatric patients. Par. Latinoam. 2006, 67, 37–42. [Google Scholar]
- Schuster, F.L.; Ramirez-Avila, L. Current world status of Balantidium coli. Clin. Microbiol. Rev. 2008, 21, 626–638. [Google Scholar] [CrossRef]
- Damian, M.; Tatu-Chiţoiu, D.; Usein, C.R.; Oprişan, G.; Palade, A.M.; Dinu, S.; Szmal, C.; Ciontea, S.A.; Ceciu, S.; Condei, M.; Persu, A.; Baicuş, A.; Pop, M.; Neagoe, I.; Steriu, D.; Codreanu, R.; Graur, M.; Cretu, M.C.; Cilievici, S.; Nica, M.; Ecovoiu, A.; Gavrili, L. Laboratory diagnosis of infectious diarrhoea syndrome; A three years study in two hospitals of infectious diseases. Roum. Arch. Microbiol. Immunol. 2009, 68, 89–94. [Google Scholar]
- Njume, C.; Afolayan, A.J.; Ndip, R.N. An overview of antimicrobial resistance and the future of medicinal plants in the treatment of Helicobacter pylori infections. Afr. J. Pharm. Pharmacol. 2009, 3, 685–699. [Google Scholar]
- Forsberg, B.C.; Petzold, M.G.; Tomson, G.; Allebeck, P. Diarrhoea case management in low- and middle-income countries—An unfinished agenda. Bull. World Health Organ. 2007, 85, 42–48. [Google Scholar] [CrossRef]
- Atia, A.N.; Buchman, A.L. Oral rehydration solutions in non-cholera diarrhoea: A review. Am. J. Gastroenterol. 2009, 104, 2596–2604. [Google Scholar]
- Santosham, M.; Chandran, A.; Fitzwater, S.; Fishcher-Walker, C.; Baqui, A.H.; Black, R. Progress and barriers for the control of diarrhoeal diseases. Lancet 2010, 376, 63–67. [Google Scholar]
- Dupont, H.L. Travellers’diarrhoea: Antimicrobial therapy and chemoprevention. Nat. Clin. Prac. Gastroenterol. Hepatol. 2005, 2, 191–198. [Google Scholar]
- Manyi-Loh, C.E.; Clarke, A.M.; Mkwetshana, N.F.; Ndip, R.N. Treatment of Helicobacter pylori infections: Mitigating factors and prospective natural remedies. Afr. J. Biotechnol. 2010, 9, 2032–2042. [Google Scholar]
- Daniz-Santos, D.R.; Silva, L.R.; Silva, N. Antibiotics for the empirical treatment of acute infectious diarrhoea in children. Bra. J. Inf. Dis. 2006, 10, 217–227. [Google Scholar]
- Njume, C.; Afolayan, A.J.; Samie, A.; Ndip, R.N. Inhibitory and bactericidal potential of crude acetone extracts of Combretum molle (Combretaceae) against drug-resistant strains of Helicobacter pylori. J. Health Popul. Nutr. 2011, 29, 438–445. [Google Scholar]
- Green, E.; Samie, A.; Obi, C.L.; Bessong, P.O.; Ndip, R.N. Inhibitory properties of selected Souh African medicinal plants against Mycobacterium tuberculosis. J. Ethnopharmacol. 2010, 130, 151–157. [Google Scholar] [CrossRef]
- Appidi, J.R.; Grierson, D.S.; Afolayan, A.J. Ethno botanical studies of plants used for the treatment of diarrhoea in the Eastern Cape, South Africa. Pak. J. Biol. Sci. 2008, 11, 1961–1963. [Google Scholar] [CrossRef]
- Teke, G.N.; Kuiate, J.R.; Kwete, V.; Teponno, R.B.; Tapondjou, L.A.; Vilarem, G. Antidiarrhoeal activity of extracts and compound from Trilepisium madagascariense stem bark. Indian J. Pharmacol. 2010, 42, 157–163. [Google Scholar] [CrossRef]
- Ojewole, J.A.O.; Awe, E.O.; Chiwororo, W.D.H. Antidiarrhoeal activity of Psidium guajava Linn. (Myrtaceae) leaf aqueous extract in rodents. J. Smooth Muscle Res. 2008, 44, 195–207. [Google Scholar] [CrossRef]
- Kong, J.M.; Goh, N.K.; Chia, L.S.; Chia, T.F. Recent advances in traditional plant drugs and orchids. Acta Pharmacol. Sing. 2003, 24, 7–21. [Google Scholar]
- Singh, K.N.; Lal, B. Ethnomedicines used against four common ailments by the tribal communities of Lahaul-Spiti in Western Himalaya. J. Ethnopharmacol. 2008, 115, 147–159. [Google Scholar]
- Wang, O.; Liu, S.; Zou, J.; Lu, L.; Chen, L.; Qiu, S.; Li, H.; Lu, X. Anticancer activity of 2α, 3α, 19β, 23β-Tetrahydroxyurs-12-en-28-oic acid (THA), a novel triterpenoid isolated from Sinojackia sarcocarpa. PLOS One 2011. [Google Scholar]
- Wachtel-Galor, S.; Benzie, I.F.F. Reference. In Herbal Medicine: Biomolecular and Clinical Aspects; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Lin, J.; Opoku, A.R.; Geheeb-Keller, M.; Hutchings, A.D.; Terblanche, S.E.; Jager, A.K.; van Starden, J. Preliminary screening of some traditional Zulu medicinal plants for anti-inflammatory and anti-microbial activities. J. Ethnopharmacol. 1999, 68, 267–274. [Google Scholar] [CrossRef]
- Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 1999, 12, 564–582. [Google Scholar]
- Lin, J.; Puckree, T.; Mvelase, T.P. Anti-diarrhoeal evaluation of some medicinal plants used by Zulu traditional healers. J. Ethnopharmacol. 2002, 79, 53–56. [Google Scholar] [CrossRef]
- Gutierrez, R.M.; Mitchell, S.; Solis, R.V. Psidium guajava: A review of its traditional uses, phytochemistry and pharmacology. J. Ethnopharmacol. 2008, 117, 1–27. [Google Scholar] [CrossRef]
- Birdi, T.; Daswani, P.; Brijesh, S.; Tetali, P.; Natu, A.; Antia, N. Newer insights into the mechanism of action of Psidium guajava L. leaves in infectious diarrhoea. BMC Complement. Altern. Med. 2010, 10, 1–11. [Google Scholar] [CrossRef]
- Atta, A.H.; Mouneir, S.M. Antidiarrhoeal activity of some Egyptian medicinal plant extracts. J. Ethopharmacol. 2004, 92, 303–309. [Google Scholar] [CrossRef]
- Tona, L.; Kambu, K.; Mesia, K.; Cimanga, K.; Apers, S.; De Bruyne, T.; Pieters, L.; Totte, J.; Vlietinck, A.J. Reference. In Biological Screening of Traditional Preparations from Some Medicinal Plants Used as Anti-Diarrhoeal in Kinshasa, Congo; Phytomed: Hasle-Rüegsau, Switzerland, 1999. [Google Scholar]
- Chagas-Paula, D.A.; Oliveira, R.B.; Rocha, B.A.; Da Costa, F.B. Ethnobotany, chemistry and biological activities of the genus Tithonia (Asteraceae). Chem. Biodiver. 2012, 9, 210–235. [Google Scholar] [CrossRef]
- Agbor, G.A.; Leopold, T.; Jeanne, N.Y. The antidiarrheal activity of Alchornea cordifolia leaf extract. Phytother. Res. 2004, 18, 873–876. [Google Scholar] [CrossRef]
- Adeshina, G.O.; Onaolapo, J.A.; Ehinmidu, J.O.; Odama, L.E. Phytochemical and antimicrobial studies of the ethyl acetate extract of Alchornia cordifolia leaf found in Abuja, Nigeria. J. Med. Plants Res. 2010, 4, 649–658. [Google Scholar]
- Tona, L.; Kambu, K.; Ngimbi, N.; Cimanga, K.; Vlietinck, A.J. Antiamoebic and phytochemical screening of some Congolese medicinal plants. J. Ethnopharmacol. 1998, 61, 57–65. [Google Scholar]
- Hassan, K.A.; Brenda, A.T.; Patrick, V.; Patrick, O.E. In vivo antidiarrhoeal activity of the ethanolic leaf extract of Catharanthus roseus Linn (Apocyanaceae) in Wistar rats. Afr. J. Pharm. Pharmacol. 2011, 5, 1795–1800. [Google Scholar]
- Mabeku, K.L.B.; Beng, P.V.; Kouam, J.; Ngadjui, B.T.; Fomum, J.T.; Etoa, F.X. Evaluation of the antidiarrhoeal activity of the stem bark of Cylicodiscus gabunensis (Mimosaceae). Afr. J. Biotechnol. 2006, 5, 1062–1066. [Google Scholar]
- Gutierrez, S.P.; Sanchez, M.A.Z.; Gonzalez, C.P.; Garcia, L.A. Antidiarrhoeal activity of different plants used in traditional medicine. Afr. J. Biotechnol. 2007, 6, 2988–2994. [Google Scholar]
- Galvez, J.; Crespo, M.E.; Jimenez, J.; Suarez, A.; Zazuelo, A. Antidiarrhoeic activity of quercitrin in mice and rats. J. Pharm. Pharmacol. 1993, 45, 157–159. [Google Scholar]
- Kumar, S.; Malhotra, R.; Kumar, D. Euphorbia hirta, its chemistry, traditional and medicinal uses, and pharmacological activities. Pharmacog. Rev. 2010, 4, 58–61. [Google Scholar] [CrossRef]
- Okokon, J.E.; Akpan, H.D.; Umoh, E.E.; Ekaidem, I.S. Antidiarrhoeal and antiulcer activities of Hippocratea Africana root extract. Pakistani J. Pharmaceut. Sci. 2011, 24, 201–205. [Google Scholar]
- Magaji, M.G.; Yaro, A.H.; Mohammed, A.; Zezi, A.U.; Tanko, Y.; Bala, T.Y. Preliminary antidiarrhoeal activity of methanolic extracts of Securinega virosa (Euphorbiaceae). Afr. J. Biotechnol. 2007, 6, 2752–2757. [Google Scholar]
- Dahiru, D.; Sini, J.M.; John-Africa, L. Antidiarrhoeal activity of Ziziphus mauritiana root extract in rodents. Afr. J. Biotechnol. 2006, 5, 941–945. [Google Scholar]
- Bakare, R.I.; Magbagbeola, O.A.; Akinwande, A.I.; Okunowo, O.W.; Green, M. Antidiarrhoeal activity of aqueous leaf-extract of Mormodica charantia in rats. J. Pharmacog. Phytother. 2011, 3, 1–7. [Google Scholar]
- Ching, F.P.; Omogbai, E.K.I.; Ozolua, R.I.; Okpo, S.O. Antidiarrhoeal activities of aqueous extracts of Stereospermum kunthianum (Cham, Sandrine Petit) stem bark in rodents. Afr. J. Biotechnol. 2008, 7, 1220–1225. [Google Scholar]
- Abere, T.A.; Ekoto, P.E.; Agoreyo, F.O. Anti-diarrhoea and toxicological evaluation of leaf extract of Dissotis rotundifolia Triania (Melastomaceae). BMC Complement. Alter. Med. 2010, 10, 1–7. [Google Scholar] [CrossRef]
- Njume, C.; Afolayan, A.J.; Ndip, R.N. Diversity of plants used in the treatment of Helicobacter pylori-associated morbidities in the Nkonkobe municipality of the Eastern Cape province of South Africa. J. Med. Plants Res. 2011, 5, 3146–3151. [Google Scholar]
- Green, E.; Obi, C.L.; Samie, A.; Bessong, P.O.; Ndip, R.N. Characterization of n-hexane sub-fraction of Bridelia micrantha (Berth) and its antimycobaterium activity. BMC Complement. Altern. Med. 2011, 11, 1–5. [Google Scholar]
- Cocks, M.L.; Dold, A.P. Cultural significance of biodiversity: The role of medicinal plants in urban African cultural practices in the Eastern Cape, South Africa. J. Ethnobiol. 2006, 26, 60–81. [Google Scholar] [CrossRef]
- Dold, A.P.; Cocks, M.L. The trade in medicinal plants in the Eastern Cape Province, South Africa. S. Afr. J. Sci. 2002, 98, 589–597. [Google Scholar]
- Moeng, E.T.; Potgieter, M.J. The trade of medicinal plants by muthi shops and street vendors in the Limpopo Province, South Africa. Afr. J. Med. Plants Res. 2011, 5, 558–564. [Google Scholar]
- Cunningham, A.B. Reference. In African Medicinal Plants: Setting Priorities at the Interphase Between Conservation and Primary Healthcare. People and Plants Working Paper 1; United Nations Educational, Scientific and Cultural Organization: Paris, France, 1993. [Google Scholar]
- Ndhlala, A.R.; Kasiyamhuru, A.; Mupure, C.; Chitindingu, K.; Benhura, M.A.; Muchuweti, M. Phenolic composition of Flacourtia indica, Opuntia megacantha and Sclerocarya birrea. Food Chem. 2007, 103, 82–87. [Google Scholar] [CrossRef]
- Njume, C.; Afolayan, A.J.; Green, E.; Ndip, R.N. Volatile compounds in the stem bark of Sclerocarya birrea (Anacardiaceae) possess antimicrobial activity against drug-resistant strains of Helicobacter pylori. Int. J. Antimicrob. Agents. 2011, 38, 319–324. [Google Scholar] [CrossRef]
- Braca, A.; Politi, M.; Sanogo, R.; Sanou, H.; Morelli, I.; Pizza, C.; Tommasi, N.D. Chemical composition and anti-oxidant activity of phenolic compounds from wild and cultivated Sclerocarya birrea (Anacardiaceae) leaves. J. Agr. Food Chem. 2003, 51, 6689–6695. [Google Scholar] [CrossRef]
- Eloff, J.N. Antibacterial activity of murula (Sclerocarya birrea (A. rich) Hochst. subsp. Caffra (Sond) Kokwaro) (Anacardiaceae) bark and leaves. J. Ethnopharmacol. 2001, 76, 305–308. [Google Scholar] [CrossRef]
- Thakur, L.; Ghodasra, U.; Patel, N.; Dabhi, M. Novel approaches for stability improvement in natural medicines. Pharmacog. Rev. 2011, 5, 48–54. [Google Scholar] [CrossRef]
- Kudlova, E. Home management of acute diarrhoea in Czech children. J. Paed. Gastroenterol. Nutr. 2010, 50, 510–515. [Google Scholar]
- Seely, E.W.; Maxwell, C. Chronic hypertension in pregnancy. Circulation 2007, 115, e188–e190. [Google Scholar] [CrossRef]
- Tabuti, J.R.S.; Lye, K.A.; Dhillion, S.S. Traditional herbal drugs of Bulamogi, Uganda: Plants, use and administration. J. Ethnopharmacol. 2003, 88, 19–34. [Google Scholar] [CrossRef]
- WHO. WHO Guidelines for Assessing Quality of Herbal Medicines with Reference to Contaminants and Residues. Available online: http://apps.who.int/medicinedocs/index/assoc/s14878e/s14878e.pdf (accessed on 31 July 2012).
- Ernst, E. Harmless herbs: A review of the recent literature. Ame. J. Med. 1998, 104, 170–178. [Google Scholar]
- Dambisya, Y.M.; Tindimwebwa, G. Traditional remedies in children around Eastern Cape, South Africa. E. Afr. Med. J. 2003, 80, 402–405. [Google Scholar]
- Bugno, A.; Almodovar, A.A.B.; Pereira, T.C.; Pinto, T.J.A.; Sabino, M. Occurrence of toxigenic fungi in herbal drugs. Bra. J. Microbiol. 2006, 37, 47–51. [Google Scholar]
- WHO. WHO Guidelines on Good Manufacturing Practices (GMP) for Herbal Medicines. Available online: http://apps.who.int/medicinedocs/documents/s14215e/s14215e.pdf (accessed on 31 July 2012).
- Ahmad, I.; Aquil, F.; Owais, M. reference. In Modern Phytomed: Turning Medicinal Plants into Drugs; WILEY-VCH Verlag GmbH and Co KGaA: Weinheim, Germany, 2006. [Google Scholar]
- Ntonifor, N.N.; Forbanka, D.N.; Mbuh, J.V. Potency of Chenopodium ambrosioides powders and its combination with wood ash on Sitophilus zeamais in stored maize. J. Entomol. 2011, 8, 375–383. [Google Scholar] [CrossRef]
- Srivastava, P.; Raut, H.N.; Puntambekar, H.M.; Desai, A.C. Effect of storage conditions on free radical scavenging activities of crude plant material of Piper longum. J. Phytol. 2011, 3, 23–27. [Google Scholar]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Njume, C.; Goduka, N.I. Treatment of Diarrhoea in Rural African Communities: An Overview of Measures to Maximise the Medicinal Potentials of Indigenous Plants. Int. J. Environ. Res. Public Health 2012, 9, 3911-3933. https://doi.org/10.3390/ijerph9113911
Njume C, Goduka NI. Treatment of Diarrhoea in Rural African Communities: An Overview of Measures to Maximise the Medicinal Potentials of Indigenous Plants. International Journal of Environmental Research and Public Health. 2012; 9(11):3911-3933. https://doi.org/10.3390/ijerph9113911
Chicago/Turabian StyleNjume, Collise, and Nomalungelo I. Goduka. 2012. "Treatment of Diarrhoea in Rural African Communities: An Overview of Measures to Maximise the Medicinal Potentials of Indigenous Plants" International Journal of Environmental Research and Public Health 9, no. 11: 3911-3933. https://doi.org/10.3390/ijerph9113911
APA StyleNjume, C., & Goduka, N. I. (2012). Treatment of Diarrhoea in Rural African Communities: An Overview of Measures to Maximise the Medicinal Potentials of Indigenous Plants. International Journal of Environmental Research and Public Health, 9(11), 3911-3933. https://doi.org/10.3390/ijerph9113911