Phytochemical Profiling of Flavonoids, Phenolic Acids, Terpenoids, and Volatile Fraction of a Rosemary (Rosmarinus officinalis L.) Extract
Abstract
:1. Introduction
2. Results and Discussion
2.1. Profiling of the Phenolic Composition
2.2. Volatile Profile of Rosemary Extract
3. Materials and Methods
3.1. Materials
3.2. Identification and Quantification of (Poly)phenolic Compounds by UHPLC-ESI-MSn
3.3. HS-SPME/GC-MS Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
CID | collision-induced dissociation |
EI | electronic impact |
ESI | electrospray ionisation |
GC-MS | gas chromatography-mass spectrometry |
HS-SPME | head space solid-phase microextraction |
LRI | linear retention indices |
MS | mass spectrometry |
SIM | selected ion monitoring |
UHPLC-ESI-MSn | ultra-high performance liquid chromatography-electrospray ionization-mass spectrometry |
References
- Hassani, F.V.; Shirani, K.; Hosseinzadeh, H. Rosemary (Rosmarinus officinalis) as a potential therapeutic plant in metabolic syndrome: A review. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2016, 389, 931–949. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Kim, M.O.; Seo, J.H.; Kim, I.S.; Kim, N.Y.; Lee, S.H.; Park, J.; Kim, J.; Lee, H.S. Abietane diterpenoids of Rosmarinus officinalis and their diacylglycerol acyltransferase-inhibitory activity. Food Chem. 2012, 132, 1775–1780. [Google Scholar] [CrossRef]
- Kontogianni, V.G.; Tomic, G.; Nikolic, I.; Nerantzaki, A.A.; Sayyad, N.; Stosic-Grujicic, S.; Stojanovic, I.; Gerothanassis, I.P.; Tzakos, A.G. Phytochemical profile of Rosmarinus officinalis and Salvia officinalis extracts and correlation to their antioxidant and anti-proliferative activity. Food Chem. 2013, 136, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.B.; Rai, D.K.; Brunton, N.P.; Martin-Diana, A.B.; Barry-Ryan, A.C. Characterization of phenolic composition in lamiaceae spices by LC-ESI-MS/MS. J. Agric. Food Chem. 2010, 58, 10576–10581. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, K.; El Omri, A.; Kondo, S.; Han, J.; Isoda, H. Rosmarinus officinalis polyphenols produce anti-depressant like effect through monoaminergic and cholinergic functions modulation. Behav. Brain Res. 2013, 238, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.I.; Vattem, D.A.; Shetty, K. Evaluation of clonal herbs of Lamiaceae species for management of diabetes and hypertension. Asia Pac. J. Clin. Nutr. 2006, 15, 107–118. [Google Scholar] [PubMed]
- Tai, J.; Cheung, S.; Wu, M.; Hasman, D. Antiproliferation effect of rosemary (Rosmarinus officinalis) on human ovarian cancer cells in vitro. Phytomedicine 2012, 19, 436–443. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Li, N.; Luo, M.; Zu, Y.; Efferth, T. Antibacterial activity and anticancer activity of Rosmarinus officinalis L. essential oil compared to that of its main components. Molecules 2012, 17, 2704–2713. [Google Scholar] [CrossRef] [PubMed]
- Ullevig, S.L.; Zhao, Q.; Zamora, D.; Asmis, R. Ursolic acid protects diabetic mice against monocyte dysfunction and accelerated atherosclerosis. Atherosclerosis 2011, 219, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Afonso, M.S.; De O Silva, A.M.; Carvalho, E.B.; Rivelli, D.P.; Barros, S.B.; Rogero, M.M.; Lottenberg, A.M.; Torres, R.P.; Mancini-Filho, J. Phenolic compounds from Rosemary (Rosmarinus officinalis L.) attenuate oxidative stress and reduce blood cholesterol concentrations in diet-induced hypercholesterolemic rats. Nutr. Metab. 2013, 10, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harach, T.; Aprikian, O.; Monnard, I.; Moulin, J.; Membrez, M.; Béolor, J.C.; Raab, T.; MacÉ, K.; Darimont, C. Rosemary (Rosmarinus officinalis L.) Leaf extract limits weight gain and liver steatosis in mice fed a high-fat diet. Planta Med. 2010, 76, 566–571. [Google Scholar] [CrossRef] [PubMed]
- Romo-Vaquero, M.; Yáñez-Gascón, M.J.; Villalba, R.; Larrosa, M.; Fromentin, E.; Ibarra, A.; Roller, M.; Tomás-Barberán, F.; de Gea, J.C.; García-Conesa, M.T. Inhibition of gastric lipase as a mechanism for body weight and plasma lipids reduction in Zucker rats fed a rosemary extract rich in carnosic acid. PLoS ONE 2012, 7, e39773. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Fons, L.; Garzón, M.T.; Micol, V. Relationship between the antioxidant capacity and effect of rosemary (Rosmarinus officinalis L.) polyphenols on membrane phospholipid order. J. Agric. Food Chem. 2010, 58, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Romo-Vaquero, M.; García-Villalba, R.; Larrosa, M.; Yáñez-Gascón, M.J.; Fromentin, E.; Flanagan, J.; Roller, M.; Tomás-Barberán, F.A.; Espín, J.C.; García-Conesa, M.T. Bioavailability of the major bioactive diterpenoids in a rosemary extract: Metabolic profile in the intestine, liver, plasma, and brain of Zucker rats. Mol. Nutr. Food Res. 2013, 57, 1834–1846. [Google Scholar] [CrossRef] [PubMed]
- Del Rio, D.; Rodríguez-Mateos, A.; Spencer, J.P.E.; Tognolini, M.; Borges, G.; Crozier, A. Dietary (poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal. 2013, 18, 1818–1892. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Mateos, A.; Vauzour, D.; Krueger, C.G.; Shanmuganayagam, D.; Reed, J.; Calani, L.; Mena, P.; Del Rio, D.; Crozier, A. Bioavailability, bioactivity and impact on health of dietary flavonoids and related compounds: An update. Arch. Toxicol. 2014, 88, 1803–1853. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.; Caleja, C.; Barros, L.; Santos-Buelga, C.; Barreiro, M.F.; Ferreira, I.C.F.R. Rosemary extracts in functional foods: Extraction, chemical characterization and incorporation of free and microencapsulated forms in cottage cheese. Food Funct. 2016, 7, 2185–2196. [Google Scholar] [CrossRef] [PubMed]
- Mulinacci, N.; Innocenti, M.; Bellumori, M.; Giaccherini, C.; Martini, V.; Michelozzi, M. Storage method, drying processes and extraction procedures strongly affect the phenolic fraction of rosemary leaves: An HPLC/DAD/MS study. Talanta 2011, 85, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Bicchi, C.; Binello, A.; Rubiolo, P. Determination of phenolic diterpene antioxidants in rosemary (Rosmarinus officinalis L.) with different methods of extraction and analysis. Phytochem. Anal. 2000, 11, 236–242. [Google Scholar] [CrossRef]
- Almela, L.; Sánchez-Muñoz, B.; Fernández-López, J.A.; Roca, M.J.; Rabe, V. Liquid chromatograpic-mass spectrometric analysis of phenolics and free radical scavenging activity of rosemary extract from different raw material. J. Chromatogr. A 2006, 1120, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Mena, P.; Calani, L.; Dall’Asta, C.; Galaverna, G.; García-Viguera, C.; Bruni, R.; Crozier, A.; Del Rio, D. Rapid and comprehensive evaluation of (poly)phenolic compounds in pomegranate (Punica granatum L.) Juice by UHPLC-MSn. Molecules 2012, 17, 14821–14840. [Google Scholar] [CrossRef] [PubMed]
- McNab, H.; Ferreira, E.S.B.; Hulme, A.N.; Quye, A. Negative ion ESI-MS analysis of natural yellow dye flavonoids-An isotopic labelling study. Int. J. Mass Spectrom. 2009, 284, 57–65. [Google Scholar] [CrossRef]
- Borrás Linares, I.; Arráez-Román, D.; Herrero, M.; Ibáñez, E.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Comparison of different extraction procedures for the comprehensive characterization of bioactive phenolic compounds in Rosmarinus officinalis by reversed-phase high-performance liquid chromatography with diode array detection coupled to electrospray time-of-flight mass spectrometry. J. Chromatogr. A 2011, 1218, 7682–7690. [Google Scholar] [PubMed]
- Sawada, Y.; Nakabayashi, R.; Yamada, Y.; Suzuki, M.; Sato, M.; Sakata, A.; Akiyama, K.; Sakurai, T.; Matsuda, F.; Aoki, T.; Hirai, M.Y.; Saito, K. RIKEN tandem mass spectral database (ReSpect) for phytochemicals: A plant-specific MS/MS-based data resource and database. Phytochemistry 2012, 82, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Fabre, N.; Rustan, I.; de Hoffmann, E.; Quetin-Leclercq, J. Determination of flavone, flavonol, and flavanone aglycones by negative ion liquid chromatography electrospray ion trap mass spectrometry. J. Am. Soc. Mass. Spectrom. 2001, 12, 707–715. [Google Scholar] [CrossRef]
- Moharram, F.A.E.; Marzouk, M.S.; El-Shenawy, S.M.; Gaara, A.H.; El Kady, W.M. Polyphenolic profile and biological activity of Salvia splendens leaves. J. Pharm. Pharmacol. 2012, 64, 1678–1687. [Google Scholar] [CrossRef] [PubMed]
- Cuyckens, F.; Claeys, M. Mass spectrometry in the structural analysis of flavonoids. J. Mass Spectrom. 2004, 39, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Bresciani, L.; Calani, L.; Cossu, M.; Mena, P.; Sayegh, M.; Ray, S.; Del Rio, D. (Poly)phenolic characterization of three food supplements containing 36 different fruits, vegetables and berries. PharmaNutrition 2015, 3, 11–19. [Google Scholar] [CrossRef]
- Masuda, T.; Kirikihira, T.; Takeda, Y. Recovery of antioxidant activity from carnosol quinone: Antioxidants obtained from a water-promoted conversion of carnosol quinone. J. Agric. Food Chem. 2005, 53, 6831–6834. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Smuts, J.P.; Dodbiba, E.; Rangarajan, R.; Lang, J.C.; Armstrong, D.W. Degradation study of carnosic acid, carnosol, rosmarinic acid, and rosemary extract (Rosmarinus officinalis L.) assessed using HPLC. J. Agric. Food Chem. 2012, 60, 9305–9314. [Google Scholar] [CrossRef] [PubMed]
- Ivanović, J.; Dilas, S.; Jadranin, M.; Vajs, V.; Babović, N.; Petrović, S.; Žižović, I. Supercritical carbon dioxide extraction of antioxidants from rosemary (Rosmarinus officinalis L.) and sage (Salvia officinalis L.). J. Serb. Chem. Soc. 2009, 74, 717–732. [Google Scholar] [CrossRef]
- Vallverdú-Queralt, A.; Regueiro, J.; Martínez-Huélamo, M.; Rinaldi Alvarenga, J.F.; Leal, L.N.; Lamuela-Raventos, R.M. A comprehensive study on the phenolic profile of widely used culinary herbs and spices: Rosemary, thyme, oregano, cinnamon, cumin and bay. Food Chem. 2014, 154, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Cirlini, M.; Mena, P.; Tassotti, M.; Herrlinger, K.A.; Nieman, K.M.; Dall’Asta, C.; Rio, D.D. Phenolic and volatile composition of a dry spearmint (Mentha spicata L.) extract. Molecules 2016, 21, 1007. [Google Scholar] [CrossRef] [PubMed]
- Högnadóttir, Á.; Rouseff, R.L. Identification of aroma active compounds in orange essence oil using gas chromatography-olfactometry and gas chromatography-mass spectrometry. J. Chromatogr. A 2003, 998, 201–211. [Google Scholar] [CrossRef]
- Cirlini, M.; Dall’Asta, C.; Silvanini, A.; Begh, D.; Fabbri, A.; Galaverna, G.; Ganino, T. Volatile fingerprinting of chestnut flours from traditional Emilia Romagna (Italy) cultivars. Food Chem. 2012, 134, 662–668. [Google Scholar] [CrossRef] [PubMed]
- Goodner, K.L. Practical retention index models of OV-101, DB-1, DB-5, and DB-Wax for flavor and fragrance compounds. LWT Food Sci. Technol. 2008, 41, 951–958. [Google Scholar] [CrossRef]
- Bianchi, F.; Careri, M.; Mangia, A.; Musci, M. Retention indices in the analysis of food aroma volatile compounds in temperature-programmed gas chromatography: Database creation and evaluation of precision and robustness. J. Sep. Sci. 2007, 30, 563–572. [Google Scholar] [CrossRef] [PubMed]
- Brunton, N.P.; Cronin, D.A.; Monahan, F.J. Volatile components associated with freshly cooked and oxidized off-flavours in Turkey breast meat. Flavour Fragr. J. 2002, 17, 327–334. [Google Scholar] [CrossRef]
- Dall’Asta, C.; Cirlini, M.; Morini, E.; Galaverna, G. Brand-dependent volatile fingerprinting of Italian wines from Valpolicella. J. Chromatogr. A 2011, 1218, 7557–7565. [Google Scholar] [CrossRef] [PubMed]
- Olivero, J.; Gracia, T.; Payares, P.; Vivas, R.; Díaz, D.; Daza, E.; Geerlings, P. Molecular structure and gas chromatographic retention behavior of the components of Ylang-Ylang oil. J. Pharm. Sci. 1997, 86, 625–630. [Google Scholar] [CrossRef] [PubMed]
- Bicchi, C.; Rubiolo, P.; Saranz Camargo, E.E.; Vilegas, W.; de Souza Gracioso, J.; Monteiro Souza Brito, A.R. Components of Turnera diffusa Willd. var. afrodisiaca (Ward) Urb. essential oil. Flavour Fragr. J. 2003, 18, 59–61. [Google Scholar] [CrossRef]
- Priestap, H.A.; Van Baren, C.M.; Lira, P.D.L.; Coussio, J.D.; Bandoni, A.L. Volatile constituents of Aristolochia argentina. Phytochemistry 2003, 63, 221–225. [Google Scholar] [CrossRef]
- Frizzo, C.D.; Serafini, L.A.; Dellacassa, E.; Lorenzo, D.; Moyna, P. Essential oil of Baccharis uncinella DC. from Southern Brazil. Flavour Fragr. J. 2001, 16, 286–288. [Google Scholar] [CrossRef]
- Choi, H.S. Character impact odorants of Citrus hallabong [(C. unshiu Marcov × C. sinensis Osbeck) × C. reticulata Blanco] cold-pressed peel oil. J. Agric. Food Chem. 2003, 51, 2687–2692. [Google Scholar] [CrossRef] [PubMed]
- Karioti, A.; Skaltsa, H.; Demetzos, C.; Perdetzoglou, D.; Economakis, C.D.; Salem, A.B. Effect of nitrogen concentration of the nutrient solution on the volatile constituents of leaves of Salvia fruticosa Mill. in solution culture. J. Agric. Food Chem. 2003, 51, 6505–6508. [Google Scholar] [CrossRef] [PubMed]
- Culleré, L.; Escudero, A.; Cacho, J.; Ferreira, V. Gas chromatography-olfactometry and chemical quantitative study of the aroma of six premium quality Spanish aged red wines. J. Agric. Food Chem. 2004, 52, 1653–1660. [Google Scholar] [CrossRef] [PubMed]
- Chisholm, M.G.; Wilson, M.A.; Gaskey, G.M. Characterization of aroma volatiles in key lime essential oils (Citrus aurantifolia Swingle). Flavour Fragr. J. 2003, 18, 106–115. [Google Scholar] [CrossRef]
- Cavalli, J.F.; Tomi, F.; Bernardini, A.F.; Casanova, J. Composition and chemical variability of the bark oil of Cedrelopsis grevei H. Baillon from Madagascar. Flavour Fragr. J. 2003, 18, 532–538. [Google Scholar] [CrossRef]
- Davies, N.W. Gas chromatographic retention indices of monoterpenes and sesquiterpenes on methyl silicon and Carbowax 20M phases. J. Chromatogr. A 1990, 503, 1–24. [Google Scholar] [CrossRef]
- Szumny, A.; Figiel, A.; Gutiérrez-Ortíz, A.; Carbonell-Barrachina, A.A. Composition of rosemary essential oil (Rosmarinus officinalis) as affected by drying method. J. Food Eng. 2010, 97, 253–260. [Google Scholar] [CrossRef]
- Presti, M.L.; Ragusa, S.; Trozzi, A.; Dugo, P.; Visinoni, F.; Fazio, A.; Dugo, G.; Mondello, L. A comparison between different techniques for the isolation of rosemary essential oil. J. Sep. Sci. 2005, 28, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Cervelli, C.; Ruffoni, B.; Shachter, A.; Dudai, N. Volatile diversity in wild populations of rosemary (Rosmarinus officinalis L.) from the tyrrhenian Sea vicinity cultivated under homogeneous environmental conditions. Ind. Crops Prod. 2016, 84, 381–390. [Google Scholar] [CrossRef]
- Lemos, M.F.; Pacheco, H.P.; Endringer, D.C.; Scherer, R. Seasonality modifies rosemary’s composition and biological activity. Ind. Crops Prod. 2015, 70, 41–47. [Google Scholar] [CrossRef]
- Lakušić, D.V.; Ristić, M.S.; Slavkovska, V.N.; Åinžar-Sekulić, J.B.; Lakušić, B.S. Environment-related variations of the composition of the essential oils of rosemary (Rosmarinus officinalis L.) in the Balkan penninsula. Chem. Biodivers. 2012, 9, 1286–1302. [Google Scholar] [CrossRef] [PubMed]
- Celiktas, O.Y.; Kocabas, E.E.H.; Bedir, E.; Sukan, F.V.; Ozek, T.; Baser, K.H.C. Antimicrobial activities of methanol extracts and essential oils of Rosmarinus officinalis, depending on location and seasonal variations. Food Chem. 2007, 100, 553–559. [Google Scholar] [CrossRef]
- Pintore, G.; Usai, M.; Bradesi, P.; Juliano, C.; Boatto, G.; Tomi, F.; Chessa, M.; Cerri, R.; Casanova, J. Chemical composition and antimicrobial activity of Rosmarinus officinalis L. oils from Sardinia and Corsica. Flavour Fragr. J. 2002, 17, 15–19. [Google Scholar] [CrossRef]
- Díaz-Maroto, M.C.; Pérez-Coello, M.S.; Sánchez-Palomo, E.; González Viñas, M.A. Impact of drying and storage time on sensory characteristics of rosemary (Rosmarinus officinalis L.). J. Sens. Stud. 2007, 22, 34–48. [Google Scholar] [CrossRef]
- Pino, J.A.; Estarrón, M.; Fuentes, V. Essential oil of rosemary (Rosmarinus officinalis L.) from Cuba. J. Essent. Oil Res. 1998, 10, 111–112. [Google Scholar] [CrossRef]
- Bendif, H.; Boudjeniba, M.; Djamel Miara, M.; Biqiku, L.; Bramucci, M.; Caprioli, G.; Lupidi, G.; Quassinti, L.; Sagratini, G.; Vitali, L.A.; Vittori, S.; Maggi, F. Rosmarinus eriocalyx: An alternative to Rosmarinus officinalis as a source of antioxidant compounds. Food Chem. 2017, 218, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Salcedo, E.M.; Mena, P.; García-Viguera, C.; Martínez, J.J.; Hernández, F. Phytochemical evaluation of white (Morus alba L.) and black (Morus nigra L.) mulberry fruits, a starting point for the assessment of their beneficial properties. J. Funct. Foods 2015, 12, 399–408. [Google Scholar] [CrossRef]
- Sample Availability: Samples are available from the authors.
ID. | Compounds | RT (min) | [M − H]− (m/z) | MS2 ion Fragments (m/z) a | MS3 ion Fragments (m/z) a | Exp. 1 c | Exp. 2 c | Ident. d |
---|---|---|---|---|---|---|---|---|
1 | Caffeic acid | 6.82 | 179 | 135 | x | x | Std | |
2 | Medioresinol | 7.18 | 387 | 207 b, 163, 369 | 163 | x | x | [4,12] |
3 | p-Coumaric acid | 7.93 | 163 | 119 | 119 | x | x | [4] |
4 | Luteolin-rutinoside | 8.78 | 593 | 285 | 285, 241, 175, 199, 217 | x | - | [4,22] |
5 | Luteolin-hexoside | 8.98 | 447 | 285, 378 | 285, 241, 267, 199, 175 | x | x | [4] |
6 | Isorhamnetin-3-O-hexoside | 9.28 | 477 | 315, 300, 357, 462 | 300 | x | x | [4] |
7 | 4-hydroxybenzoic acid | 9.47 | 137 | 93, 137 | x | x | [4] | |
8 | Apigenin-7-O-glucoside | 9.82 | 431 | 269 | 225, 149, 201, 183, 281 | x | x | [23] |
9 | Hesperidin (Hesperetin-7-O-rutinoside) | 9.87 | 609 | 301 | 286, 242, 257, 283, 125 | x | x | Std |
10 | Homoplantaginin (Hispidulin 7-glucoside) | 10.04 | 461 | 299, 446, 284, 341 | 284, 255, 179 | x | x | [3] |
11 | Rosmarinic acid | 10.11 | 359 | 161, 179, 197, 223 | 161, 133 | x | x | Std |
12 | Luteolin-7-O-glucuronide | 10.28 | 461 | 285 | 241, 217, 175, 199 | x | x | [4] |
13 | Dihydroxy-dimethoxyflavone derivative | 10.33 | 387 | 313, 343 | 298 | x | - | [4,24] |
14 | Dihydroxy-dimethoxyflavone | 10.71 | 313 | 298 | 269, 283, 297, 280 | x | - | [4,24] |
15 | Medioresinol derivative | 11.22 | 593 | 387, 561, 519 | 207, 163, 369 | x | x | [12] |
16 | Dihydroxy-dimethoxyflavone | 11.24 | 313 | 298 | 283, 297, 269, 150 | x | - | [4,24] |
17 | Luteolin-3′-acetyl-O-glucuronide | 11.25 | 503 | 285, 399, 443 | 241, 243, 217, 199, 175 | x | x | [13,23] |
18 | Medioresinol-glucuronide | 11.37 | 563 | 387, 531, 489 | 207, 163, 369 | x | x | [12] |
19 | Eriodictyol | 11.46 | 287 | 151 | 107 | x | x | [25] |
20 | Isorhamnetin-rutinoside | 11.51 | 623 | 315, 300 | 300 | x | x | [4,22] |
21 | Luteolin | 11.75 | 285 | 285, 241, 199, 217, 257, 151, 179, 213 | x | x | [4,22,26] | |
22 | Isorhamnetin | 11.91 | 315 | 300, 301, 287 | 300, 216, 228, 256, 272 | x | x | [4,22] |
23 | Trihydroxy-methoxyflavone | 11.98 | 299 | 284 | 283, 227, 256, 212, 200 | x | x | [3,27] |
24 | Methyl rosmarinate | 12.36 | 373 | 179, 135, 305 | 135 | x | x | [26] |
25 | Apigenin-7-O-rutinoside | 12.58 | 577 | 269, 307 | 269, 225, 201, 181, 149 | x | x | [4,22] |
26 | Apigenin | 13.02 | 269 | 269, 225, 149, 201, 183 | 181, 197, 169, 224 | x | x | [4,22] |
27 | Hispidulin-rutinoside | 13.21 | 607 | 299, 284, 269, 323 | 284 | x | - | [3,27] |
28 | Hesperetin | 13.41 | 301 | 286, 242, 257, 283, 125 | 258, 242, 199, 174, 215 | x | x | [28] |
29 | 5,6,7,10-tetrahydro-7-hydroxy rosmariquinone derivative | 14.88 | 345 | 301 | 301, 258, 283, 273, 217 | x | x | [14] |
30 | Cirsimaritin | 14.98 | 313 | 298 | 283, 297, 269 | x | x | [4,12] |
31 | Carnosol methyl ether isomer | 15.35 | 343 | 328, 299 | 313, 299, 285 | x | x | [14] |
32 | Rosmanol | 15.46 | 345 | 283, 301, 327 | 268, 240, 227, 265, 239 | x | x | Std |
33 | Rosmadial isomer or rosmanol quinone | 15.97 | 343 | 299, 315 | 284, 243, 213, 256, 281 | x | x | [3,4,13] |
34 | Rosmanol isomer (epirosmanol) | 16.22 | 345 | 283, 301, 327 | 268, 227, 240, 239, 265 | x | x | [3] |
35 | Carnosol quinone | 16.27 | 327 | 299, 258 | 284, 271 | x | x | [29] |
36 | Isosakuranetin | 16.44 | 285 | 270, 229, 214, 201, 242 | x | x | [25] | |
37 | Genkwanin | 16.45 | 283 | 268 | 268 | x | x | [3,4] |
38 | Carnosic acid hexoside | 16.76 | 493 | 331, 373, 313, 179 | 287, 244 | x | x | Std |
39 | Rosmanol isomer (epiisorosmanol) | 17.18 | 345 | 301 | 301, 286 | x | x | [12] |
40 | 5,6,7,10-tetrahydro-7-hydroxy rosmariquinone derivative | 17.41 | 345 | 301 | 301, 258, 283, 273, 217 | x | x | [14] |
41 | Carnosol methyl ether isomer | 17.78 | 343 | 299, 328, 285, 343, 315 | 284, 243, 281, 299, 256 | x | x | [14] |
42 | Carnosol methyl ether isomer | 17.99 | 343 | 328, 313, 343, 299, 285 | 313, 300, 285, 257 | x | x | [14] |
43 | Carnosic acid derivative | 18.15 | 455 | 331, 287 | 287, 244 | x | x | Std |
44 | Rosmanol methyl ether | 18.59 | 359 | 283, 329, 300 | 268, 240, 227, 265, 239 | x | - | [14] |
45 | Rosmadial or rosmanol quinone | 18.62 | 343 | 299 | 243, 216, 284 | x | x | [14] |
46 | Epiisorosmanol methyl ether | 18.79 | 359 | 315 | 300 | x | - | [14] |
47 | Rosmanol methyl ether isomer | 18.96 | 359 | 283, 329, 300 | 268, 240, 227, 265, 239 | x | x | [14] |
48 | Carnosol | 19.07 | 329 | 285 | 270, 285, 269, 201, 214 | x | x | Std |
49 | Carnosic acid quinone | 19.51 | 329 | 285 | 270, 285, 201, 227 | x | x | [30] |
50 | 4′-Methoxytectochrysin | 19.76 | 297 | 282, 269, 297, 254 | 267, 281, 238 | x | x | [20] |
51 | Rosmadial | 19.87 | 343 | 315, 299 | 287, 269, 297 | x | x | [3,4,13] |
52 | Rosmaridiphenol | 20.09 | 315 | 285, 179, 135 | 285, 214, 201, 270 | x | x | [3,31] |
53 | 5,6,7,10-tetrahydro-7-hydroxy rosmariquinone | 20.37 | 301 | 258, 283, 273, 217, 233 | 243, 257, 188, 215, 162 | x | x | [14] |
54 | Carnosic acid | 20.85 | 331 | 287 | 287, 244, 272, 217 | x | x | Std |
55 | 12-O-Methylcarnosic acid | 21.87 | 345 | 301, 286 | 286 | x | x | Std |
56 | Carnosol isomer | 21.88 | 329 | 329, 314, 299, 285 | x | x | [31] | |
57 | Betulinic acid | 23.71 | 455.5 | 327, 317, 353, 409, 437 | x | x | Std |
ID. a | Compounds | Quantified as… | Concentration (mg/mL) | ||
---|---|---|---|---|---|
1 | Caffeic acid | Caffeic acid b | 0.03 | ± | 0.00 |
3 | p-Coumaric acid | Caffeic acid | 0.01 | ± | 0.00 |
4 | Luteolin-rutinoside | Luteolin-4-glucoside | 0.00 | ± | 0.00 |
5 | Luteolin-hexoside | Luteolin-4-glucoside | 0.01 | ± | 0.00 |
6 | Isorhamnetin-3-O-hexoside | Rutin | 0.04 | ± | 0.00 |
7 | 4-hydroxybenzoic acid | Caffeic acid | 0.01 | ± | 0.00 |
8 | Apigenin-7-O-glucoside | Vitexin (Apigenin-8-C-glucoside) | 0.02 | ± | 0.00 |
9 | Hesperidin (Hesperetin-7-O-rutinoside) | Hesperidin (Hesperitin-7-rutinoside) b | 0.26 | ± | 0.02 |
10 | Homoplantaginin (Hispidulin 7-glucoside) | Luteolin-4-glucoside | 0.12 | ± | 0.02 |
11 | Rosmarinic acid | Rosmarinic acid b | 0.12 | ± | 0.01 |
12 | Luteolin-7-O-glucuronide | Luteolin-4-glucoside | 0.01 | ± | 0.00 |
13 | Dihydroxy-dimethoxyflavone derivative | Luteolin-4-glucoside | 0.01 | ± | 0.00 |
14 | Dihydroxy-dimethoxyflavone | Luteolin-4-glucoside | 0.00 | ± | 0.00 |
16 | Dihydroxy-dimethoxyflavone | Luteolin-4-glucoside | 0.02 | ± | 0.00 |
17 | Luteolin 3′-O-acetyl-O-glucuronide | Luteolin-4-glucoside | 0.01 | ± | 0.00 |
20 | Isorhamnetin rutinoside | Rutin | 0.00 | ± | 0.00 |
21 | Luteolin | Luteolin-4-glucoside | 0.14 | ± | 0.03 |
22 | Isorhamnetin | Rutin | 0.12 | ± | 0.01 |
23 | Trihydroxy-methoxyflavone | Vitexin (Apigenin-8-C-glucoside) | 0.18 | ± | 0.01 |
24 | Methyl rosmarinate | Rosmarinic acid | 0.02 | ± | 0.00 |
25 | Apigenin-7-O-rutinoside | Vitexin (Apigenin-8-C-glucoside) | 0.00 | ± | 0.00 |
26 | Apigenin | Vitexin (Apigenin-8-C-glucoside) | 0.55 | ± | 0.04 |
27 | Hispidulin-rutinoside | Luteolin-4-glucoside | 0.89 | ± | 0.15 |
29 | 5,6,7,10-tetrahydro-7-hydroxyrosmariquinone derivative | Carnosol | 0.27 | ± | 0.02 |
31 | Carnosol methyl ether isomer | Carnosol | 0.00 | ± | 0.00 |
32 | Rosmanol | Rosmanol b | 0.15 | ± | 0.01 |
33 | Rosmadial isomer or rosmanolquinone | Rosmanol | 0.00 | ± | 0.00 |
34 | Rosmanol isomer (epirosmanol) | Rosmanol | 0.14 | ± | 0.01 |
35 | Carnosol quinone | Carnosol | 0.02 | ± | 0.00 |
38 | Carnosic acid hexoside | Carnosic acid | 0.00 | ± | 0.00 |
39 | Rosmanol isomer (epiisorosmanol) | Rosmanol | 0.06 | ± | 0.01 |
40 | 5,6,7,10-tetrahydro-7-hydroxyrosmariquinone derivative | Carnosol | 0.08 | ± | 0.01 |
41 | Carnosol methyl ether isomer | Carnosol | 0.00 | ± | 0.00 |
42 | Carnosol methyl ether isomer | Carnosol | 0.00 | ± | 0.00 |
43 | Carnosic acid derivative | Carnosic acid | 0.00 | ± | 0.00 |
44 | Rosmanol methyl ether | Rosmanol | 0.00 | ± | 0.00 |
45 | Rosmadial or rosmanol quinone | Rosmanol | 0.89 | ± | 0.08 |
46 | Epiisorosmanol methyl ether | Rosmanol | 0.01 | ± | 0.00 |
47 | Rosmanol methyl ether isomer | Rosmanol | 0.00 | ± | 0.00 |
48 | Carnosol | Carnosol b | 28.89 | ± | 2.24 |
49 | Carnosic acid quinone | Carnosic acid | 0.17 | ± | 0.14 |
51 | Rosmadial | Rosmanol | 1.25 | ± | 0.07 |
52 | Rosmaridiphenol | Carnosol | 0.57 | ± | 0.04 |
53 | 5,6,7,10-tetrahydro-7-hydroxyrosmariquinone | Carnosol | 0.01 | ± | 0.00 |
54 | Carnosic acid | Carnosic acid b | 121.08 | ± | 7.67 |
55 | 12-O-Methylcarnosic acid | 12-O-Methylcarnosic acid | 6.90 | ± | 0.58 |
56 | Carnosol isomer | Carnosol b | 1.16 | ± | 0.07 |
57 | Betulinic acid | Betulinic acid b | 2.10 | ± | 0.25 |
Hydroxybenzoic acids c | 0.01 | ± | 0.00 | ||
Hydroxycinnamic acids d | 0.04 | ± | 0.00 | ||
Rosmarinic acid derivatives e | 0.14 | ± | 0.01 | ||
Flavones f | 1.82 | ± | 0.18 | ||
Flavonols g | 0.31 | ± | 0.02 | ||
Flavanones h | 0.26 | ± | 0.02 | ||
Carnosic acid derivatives i | 128.15 | ± | 8.11 | ||
Carnosol derivatives j | 30.08 | ± | 2.31 | ||
Rosmanol derivatives k | 1.25 | ± | 0.11 | ||
Other diterpene derivatives l | 2.18 | ± | 0.12 | ||
Triterpenic acids m | 2.10 | ± | 0.25 | ||
Total phenolics | 166.32 | ± | 11.05 |
ID. | Identification | Flavor Note (Flavornet.org) | LRI-wax | LRI-BP5 | Identif. Method | Reference | Concentration (µg/g) |
---|---|---|---|---|---|---|---|
1 | 1R-α-Pinene | Intense woody, pine | 1022 | 928 | MS + LRI | [34] | 4.34 ± 0.65 |
2 | Hexanal | Green | 1087 | 776 | MS + LRI | [35] | 2.81 ± 0.28 |
3 | α-Thujene | Woody | 1128 | 948 | MS + LRI | [34] | 76.26 ± 13.13 |
4 | β-Myrcene | Peppery, terpenic | 1170 | 983 | MS + LRI | [34] | 6.36 ± 0.91 |
5 | (+)-4-Carene | 1185 | 1080 | MS | 15.96 ± 2.11 | ||
6 | Heptanal | Fresh, aldehydic | 1194 | 890 | MS + LRI | [36] | 4.90 ± 0.44 |
7 | D-Limonene | Sweet, citrus, peely | 1205 | 1024 | MS + LRI | [35] | 11.78 ± 2.80 |
8 | Eucalyptol | Eucalyptus, herbal | 1213 | 1025 | MS + LRI | [34] | 20.22 ± 2.58 |
9 | Cosmene | Dahlia, Laurus nobilis | 1223 | 998 | MS + LRI | [33] | 3.39 ± 0.28 |
10 | Not Identified | 1231 | 984 | 5.88 ± 1.36 | |||
11 | 2-Pentylfuran | Fruity | 1239 | MS + LRI | [37] | 3.01 ± 0.79 | |
12 | γ-Terpinene | Terpy, citrus | 1251 | 1052 | MS + LRI | [35] | 6.26 ± 1.17 |
13 | 3-Octanone | Mushroom, ketonic, cheesy and moldy | 1261 | MS + LRI | [37] | 0.61 ± 0.19 | |
14 | o-Cymene | Lavender and cypress oil | 1276 | 1017 | MS + LRI | [33] | 15.14 ± 1.87 |
15 | α-Terpinene | Terpy, woody, | 1287 | 1011 | MS + LRI | [36] | 5.93 ± 0.67 |
16 | 1-Octen-3-one | Intense creamy, earthy | 1308 | MS + LRI | [34] | 0.44 ± 0.28 | |
17 | 2,4-Hexadienal | Green, creamy | 1323 | MS + LRI | [38] | 0.48 ± 0.09 | |
18 | 2-Heptenal | Green, fatty | 1331 | MS + LRI | [37] | 2.58 ± 0.44 | |
19 | 6-Methyl-5-hepten-2-one | Citrus | 1344 | MS+LRI | [37] | 1.06 ± 0.32 | |
20 | 3-Octanol | Musty, mushroom | 1396 | MS | 0.74 ± 0.14 | ||
21 | Nonanal | Waxy, aldehydic | 1400 | 1094 | MS + LRI | [35] | 3.47 ± 0.91 |
22 | (E)-2-Octenal | Fatty, green, herbal | 1437 | 1048 | MS + LRI | [37] | 2.83 ± 0.59 |
23 | Ethyl caprylate | Fruity, waxy | 1441 | MS + LRI | [39] | 7.66 ± 2.43 | |
24 | p-Cymenene | Phenolic | 1445 | MS | 34.70 ± 5.71 | ||
25 | Ylangene | 1487 | 1369 | MS + LRI | [40] | 8.06 ± 1.50 | |
26 | α-Copaene | Woody, spicy, honey | 1495 | 1374 | MS + LRI | [37] | 1.02 ± 0.30 |
27 | trans-2,4-Heptadienal | Sweet creamy, fatty | 1503 | MS + LRI | [37] | 0.77 ± 0.10 | |
28 | Camphor | Camphoreous | 1524 | MS + LRI | [39] | 41.52 ± 6.00 | |
29 | 2-Nonenal | Fatty, green, melon | 1543 | MS + LRI | [35] | 0.31 ± 0.14 | |
30 | β-Linalool | Floral | 1553 | 1092 | MS + LRI | [33] | 18.79 ± 3.38 |
31 | Isopulegol | Minty, herbaceous | 1570 | MS | 0.37 ± 0.09 | ||
32 | Pinocarvone | Minty | 1576 | 1154 | MS + LRI | [41] | 3.56 ± 0.56 |
33 | Bornyl acetate | Camphoreous, woody | 1590 | 1278 | MS + LRI | [42] | 54.02 ± 8.77 |
34 | β-Caryophyllene | Spicy, peppery | 1604 | 1420 | MS + LRI | [37] | 26.44 ± 4.84 |
35 | Terpinen-4-ol | Peppery, woody | 1608 | 1174 | MS + LRI | [34] | 16.48 ± 3.65 |
36 | Hotrienol | Sweet, tropical | 1616 | 1105 | MS + LRI | [33] | 1.42 ± 0.76 |
37 | α-Thujenal | 1638 | MS | 1.39 ± 0.27 | |||
38 | Ethyl caprate | Sweet, waxy | 1646 | 1385 | MS + LRI | [39] | 12.41 ± 1.93 |
39 | Humulene | Woody | 1654 | 1456 | MS + LRI | [43] | 2.16 ± 0.38 |
40 | α-Caryophyllene | Woody, spicy, earthy | 1677 | 1404 | MS+LRI | [44] | 38.53 ± 7.24 |
41 | α-Muurolene | 1697 | 1478 | MS + LRI | [45] | 9.57 ± 1.98 | |
42 | α-Terpineol | Pine, lilac, citrus | 1704 | MS + LRI | [46] | 24.70 ± 4.46 | |
43 | Borneol | Pine, woody, camphoreous | 1708 | 1165 | MS + LRI | [47] | 11.92 ± 2.01 |
44 | Verbenone | Camphor, menthol | 1720 | 1203 | MS + LRI | [34] | 77.59 ± 12.85 |
45 | τ-Elemene | 1730 | MS | 4.00 ± 0.96 | |||
46 | p-Methen-3-one | 1737 | 1246 | MS | 2.57 ± 0.58 | ||
47 | Carvone | Minty, licorice | 1743 | 1213 | MS | 0.89 ± 0.23 | |
48 | δ-Cadinene | Thyme, herbal, woody | 1763 | 1517 | MS + LRI | [34] | 4.20 ± 1.04 |
49 | Myrtenol | Minty, camphoreous | 1798 | 1315 | MS + LRI | [41] | 0.76 ± 0.15 |
50 | 2-Phenylethyl acetate | Floral | 1826 | MS + LRI | [39] | 0.98 ± 0.12 | |
51 | Calamenene | Herb spice | 1840 | MS + LRI | [48] | 1.76 ± 0.46 | |
52 | p-Cymen-8-ol | Sweet, fruity, coumarinic | 1857 | 1183 | MS + LRI | [33] | 3.06 ± 0.80 |
53 | 2-Phenyl ethanol | Floral, rose | 1920 | MS + LRI | [39] | 1.00 ± 0.22 | |
54 | α-Calacorene | Woody | 1925 | MS + LRI | [49] | 2.46 ± 0.63 | |
55 | Eucarvone | Minty | 1933 | MS | 8.52 ± 2.22 | ||
56 | 5,5-Dimethyl-1-ethyl-1,3-cyclopentadiene | 1971 | 984 | MS | 0.78 ± 0.25 | ||
57 | 5,5-Dimethyl-1-ethyl-1,3-cyclopentadiene-like | 2008 | MS | 1.93 ± 0.49 | |||
58 | Eugenol methyl ether | Sweet, spicy, cinnamon | 2022 | MS | 1.29 ± 0.43 | ||
59 | 2-Ethylcyclohexanone | 2095 | MS | 0.58 ± 0.13 | |||
60 | Eugenol | Spicy | 2165 | 1345 | MS + LRI | [33] | 4.19 ± 1.11 |
61 | Thymol | Herbal | 2180 | 1293 | MS + LRI | [33] | 0.36 ± 0.13 |
62 | p-Thymol | 2195 | MS | 0.46 ± 0.11 | |||
63 | Carvacrol | Spicy | 2205 | MS + LRI | [33] | 0.73 ± 0.19 |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mena, P.; Cirlini, M.; Tassotti, M.; Herrlinger, K.A.; Dall’Asta, C.; Del Rio, D. Phytochemical Profiling of Flavonoids, Phenolic Acids, Terpenoids, and Volatile Fraction of a Rosemary (Rosmarinus officinalis L.) Extract. Molecules 2016, 21, 1576. https://doi.org/10.3390/molecules21111576
Mena P, Cirlini M, Tassotti M, Herrlinger KA, Dall’Asta C, Del Rio D. Phytochemical Profiling of Flavonoids, Phenolic Acids, Terpenoids, and Volatile Fraction of a Rosemary (Rosmarinus officinalis L.) Extract. Molecules. 2016; 21(11):1576. https://doi.org/10.3390/molecules21111576
Chicago/Turabian StyleMena, Pedro, Martina Cirlini, Michele Tassotti, Kelli A. Herrlinger, Chiara Dall’Asta, and Daniele Del Rio. 2016. "Phytochemical Profiling of Flavonoids, Phenolic Acids, Terpenoids, and Volatile Fraction of a Rosemary (Rosmarinus officinalis L.) Extract" Molecules 21, no. 11: 1576. https://doi.org/10.3390/molecules21111576
APA StyleMena, P., Cirlini, M., Tassotti, M., Herrlinger, K. A., Dall’Asta, C., & Del Rio, D. (2016). Phytochemical Profiling of Flavonoids, Phenolic Acids, Terpenoids, and Volatile Fraction of a Rosemary (Rosmarinus officinalis L.) Extract. Molecules, 21(11), 1576. https://doi.org/10.3390/molecules21111576